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ABSTRACT. The method of constructing confidence intervals from hypothesis tests is studied
in the case in which there is a single unknown parameter and is proved to provide confidence
intervals with coverage probability that is at least the nominal level. The confidence intervals
obtained by the method in several different contexts are seen to compare favorably with
confidence intervals obtained by traditional methods. The traditional intervals are seen to
have coverage probability less than the nominal level in several instances.

INTRODUCTION

Traditional methods of obtaining confidence intervals for a single unknown parameter
often rest, at least in part, on the asymptotic distribution of a pivotal statistic as the sample
size tends to infinity. The coverage probability provided by a confidence interval obtained
in this way is therefore unknown, since the actual sample size is necessarily finite. In this
paper the method of obtaining confidence intervals from tests of hypothesis is studied.
The advantage of using this method to obtain a confidence interval is that the coverage
probability is provably at least the nominal level regardless of the size of the sample.
This property is the content of our first theorem. For this reason the method of obtaining
confidence intervals from tests of hypothesis will be referred to as the conservative method.
The conservative method is then applied in several different settings. In those settings for
which traditional methods of obtaining a confidence interval are known, two comparisons
are made. First, the coverage probability for the traditional and the conservative intervals
are computed in the context of a representative example. The traditional methods are seen
to provide a coverage probability which often falls substantially below the nominal level.
Second, the lengths of the traditional and the conservative intervals are compared. In those
instances in which the traditional and conservative intervals provide nearly equal coverage
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probability the length of the conservative interval is seen to be quite competitive with the
length of the traditional interval. Thus the cost of maintaining a known level of confidence
by using the conservative method is not high. Further, the theoretical underpinning of the
conservative method is simple and intuitively appealing.

GENERAL THEORY

The general theory of constructing confidence intervals from tests of hypothesis will now
be developed in the case in which there is a single unknown parameter. The test statistic
M used to construct the confidence interval will be assumed to be stochastically monotone
in the unknown parameter. This property will be seen to hold in the examples presented
later, and makes the presentation of the theory fairly straightforward.

Suppose © C R is the set of possible values of the unknown parameter 6. Denote 0,,;, =
inf ® and 6,,,x = sup © the minimum and maximum values of the unknown parameter.
One or both of 0,,;, and 0,,x may be infinite.

The objective is to construct a conservative 100(1 — )% confidence interval for 6. This
means that random variables £ and U are sought having the property that Py[£ < 0 < U] >
1 — «a for all # € ©. Here and throughout whenever F is an event Py[E] is the probability
of the event E when 6 is the true value of the parameter. The random variables £ and U
may depend on « but not on 6.

To motivate the method, suppose that M is a test statistic suitable for testing the null
hypothesis Hy : 8 = 6y against the altenative Hy : 6 > 6y. Assume that the statistic M
is stochastically increasing in #. Intuitively this means that larger values of 6§ make M
probabilistically larger. Technically this means that for any number m, Py[M > m] is a
nondecreasing function of # € ©. Under this assumption the null hypothesis is rejected
if the observed value of M is too large. If m is the observed value of the statistic M the
null hypothesis is then rejected if the p-value Py, [M > m] < «. Based on the observed
value m of M, a reasonable choice for the lower endpoint £(m) of a confidence interval for
6 would be the smallest value of 6y for which Py,[M > m] > «. Parallel reasoning can be
used when searching for the upper endpoint of the confidence interval.

This discussion suggests the following method for constructing the random variables £
and U. For each real number r define £(r) = inf{0 € © : Py[M > r] > a}, and, if this set
is empty set L£(r) = Omax. Similarly define U(r) = sup{f € © : Py[M < r| > a} and set
U(T) = Opmin if this set is empty.

Theorem 1. Suppose M is a statistic which is stochastically monotone increasing in 6.
For any 0 < a < 1 and any 6 € O, Pp[L(M) < 0] > 1—«a, Pyl <U(M)| > 1— «, and
PylL(M) <O <UM)] >1-2a.

When the statistic M is stochastically decreasing in 6 the endpoints are defined using
the formulas £(r) = sup{f € © : Py[M < r| > «}, and, if this set is empty, L£(7) = Omin-
Similarly U(r) = inf{ € © : Py[M > r| > a} with U(r) = Omax if this set is empty.
Theorem 1 is then proved similarly for stochastically decreasing M.
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APPLICATIONS AND COMPARISONS

The general theory will now be illustrated in several different contexts. Comparison
with traditional methods will be provided as appropriate.

Binomial Success Probability. Perhaps the first application of the conservative
method historically was made in the context of finding a confidence interval for the success
probability p in a sequence of independent Bernoulli trials. Bickel and Doksum (1977) and
Kendall and Stuart (1991) are two of many references to the use of this method in this
setting.

Let M denote the number of successes in a known number n of independent Bernoulli
trials each with unknown success probability p. The statistic M is stochastically increasing
in p, and since the tail probabilities of M are continuous functions of p, £(m) and U(m)
are the solutions of the equations P,[M > m] = a and P,[M < m] = « respectively,
provided only that m # 0,n. These equations are easily solved numerically by making use
of the connection between binomial tail probabilities and the incomplete beta function.

In order to access the reasonableness of the method, a comparison was made with
traditional normal theory confidence intervals for p. For concreteness, two sided 95%
confidence intervals were found, so that a = 0.025. The traditional normal theory inter-
val for p has endpoints £'(m) = m/n — 1.96+/(m/n)(1 —m/n)/n and U'(m) = m/n +

1.96+/(m/n)(1 —m/n)/n.

For the first comparison the coverage probability for intervals obtained by the two
methods were computed in the case in which n = 20 and the true value of p varied from 0.01
t0 0.99 by increments of 0.01. The coverage probability is defined by P,[L(M) < p < U(M)]
and P,[L' (M) <p <U'(M)] respectively.
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Coverage Probability for Binomial p (n = 20)
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As expected, the coverage probability for the normal theory intervals is quite poor for
both small and large values of p. What is somewhat unexpected is the fact that the
coverage probability for the normal theory intervals is often near 90% even for values of p
near 0.5. The conservative method always has coverage probability of at least 95%, and is
quite conservative for both small and large values of p.

A high level of confidence can always be achieved by choosing an extremely wide confi-
dence interval. To see whether the intervals obtained from the conservative method were
extraordinarily wide, three quantities were computed: the minimum of the difference in
length min{i/(m) — L(m) — (U’ (m) — L' (m)) : 0 < m < n}, the maximum of the difference
in length max{U(m) — L(m) — (U'(m) — L (m)) : 0 < m < n}, and the expected difference
in length E,[U(M) — L(M) — (U' (M) — L'(M))]. (Here E, denotes the expectation when
p is the true value of the parameter.) This comparison is again for n = 20 and a = 0.025.
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Length Difference for Binomial p Intervals
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The minimum difference was 0.0178 for all values of p; the maximum difference was a
constant 0.1684. The expected difference in length was about 0.02 for the central values of
p for which the two methods give comparable coverage probabilities. The expected ratio
of the lengths (not shown) indicates that the conservative intervals are about 5% longer
than the normal theory intervals over the central values of p. The conservative intervals
are very competitive with the traditional normal theory intervals.

Suppose that instead of a single observation M on the binomial distribution a random
sample Mi, ..., M, on the binomial distribution with parameters n and p is given. The
conservative method can then be applied using the statistic My + - - - + M, in place of M,
and making use of the fact that the sum has the binomial distribution with parameters nr
and p.

Binomial Number of Trials. A second application of the method in the binomial
setting occurs when the success probability p is known but the number n of trials is
unknown. Such is the case in transect sampling of wildlife populations when the effective
width of the transect is known. See XXX (YYY). The observed number M of successes is
stochastically increasing in n (for p fixed) and the method is easily applied numerically.

In this setting normal theory intervals can again be obtained by using the fact that
(M —np)/+/np(1 — p) is approximately normal.

The same two comparisons as before were made in this setting. Here p = 0.02 was used
as the known value of p. Values of n were taken as multiples of 50, up to n = 2000.

The coverage probability for the normal theory intervals (lower curve) is again seen to
fall slighty below the nominal level.
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Coverage Probability for Binomial n (p = 0.02)
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The length comparison shows that the expected difference in length is around 40 for
most values of N. This is not unexpected, since both methods are sensitive to changes in
the nominal coverage probability.
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Length Difference for Binomial n Intervals
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Suppose that instead of a single observation M on the binomial distribution a random
sample Mi,..., M, on the binomial distribution with parameters n and p is given. The
conservative method can then be applied using the statistic My + - - - + M, in place of M,
and making use of the fact that the sum has the binomial distribution with parameters nr
and p. In this case, since r and p are known, the endpoints of the conservative confidence
interval are given by the formulas £(m) = inf{k > 0 : Py,[M; + --- + M, > m| > a} and
U(m) =sup{k > 0: Pg.[M1 + ---+ M, < m| > a} respectively. Here m is the observed
value of M7 + ---+ M,.

Hypergeometric Success Size. Suppose a simple random sample without replace-
ment of size n is taken from a population of known size N. Suppose further that the
population consists of two types of objects: successes, of which there are R (unknown),
and failures, of which there are N — R. The objective is to find a confidence interval for R.
Such a model was used by one of the authors to estimate the unknown number of defective
homes in a housing tract based on the results of a sample. As is shown in Theorem 2,
the number M of successes observed in the sample is stochastically increasing in R. This
makes the conservative method easy to apply.

For the comparison of the two methods, N = 100, n = 30, and a = 0.05 were used. The
normal theory intervals were constructed as in Tucker (1998).

As in the binomial p case, the coverage probability for the normal theory intervals falls
quite far below the nominal level even for moderate values of R.
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Coverage Probability for Hypergeometric R (N = 100, n = 30)
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Comparison of the lengths of the intervals shows that the conservative method is very
competitive, since the expected difference in length was less than 2 for most values of R.

Length Difference for Hypergeometric R Intervals
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Hypergeometric Population Size. In the hypergeometric setting the case in which
R is known while N is unknown is also of interest. This situation arises in the use of the
capture/recapture method of estimating the size of a population. Theorem 2 shows that
the number M of successes is stochastically increasing in N for fixed R. The conservative
method is then easily applied.

Poisson Parameter. Suppose M has a Poisson distribution with parameter A > 0.
The fact that M is stochastically increasing in A can be seen as follows. Suppose X (t),
t > 0, is a Poisson process with intensity 1. Then X(t¢) is a non-decreasing function of
t, with probability 1. Also X (¢) has the Poisson distribution with parameter ¢. Thus M
and X (A) have the same distribution. Since X (¢) is stochastically increasing in ¢, M is
stochastically increasing in A. The conservative method can now be easily applied to find
confidence intervals for A.

Suppose that instead of a single observation M on the Poisson distribution a random
sample M, ..., M, on the Poisson distribution with parameter A is given. The conservative
method can then be applied using the statistic My + - -- 4+ M, in place of M, and making
use of the fact that the sum has the Poisson distribution with parameter rA. In this case,
since r is known, the endpoints of the conservative confidence interval are given by the
formulas £(m) = inf{\ > 0 : P.\[M; + --- + M, > m] > a} and U(m) = sup{\ > 0 :
P.[M;+---+ M, <m] > a} respectively. Here m is the observed value of Mj +---+ M,..

Exponential Parameter. Suppose My, ..., M, is a random sample on the exponential
distribution with expectation 1/\. The statistic M; + - - - + M, is stochastically decreasing
in A and the conservative method can be applied. The traditional method uses the fact
that 2A\(M; +- - -+ M,) has a chi-squared distribution. The traditional and the conservative
method are easily seen to give the same confidence interval in this case.

Number of Unseen Types. In Finkelstein, Tucker, and Veeh (1998), the conservative
method was applied to find a confidence interval for the number ¢ of coupons in the coupon
collectors problem. This problem has applications to estimating wildlife abundance, among
others. The conservative method was seen to be competitive with traditional normal theory
methods.

PRrROOFS

Proof of Theorem 1. The proof will be given only for U since the proof for £ is similar.
First observe that if r < 7/ then U(r) <U(r’). To see this, the monotonicity of probability
provides the inclusion {§ € © : Py[M < 17| > a} C {# € ©: Py[M <r'] > a}, from which
U(r) =sup{d € O : Py[M < r] >a} <sup{f € © : Py[M < 1’| > a} = U(r"). Hence
{r € R:U(r) < 6} is an interval, say, (—oo,rg] or (—00, 7). In the first case U(ry) < 6.
Using this, the definition of U(ry), and the fact that Py[M < r¢] is a decreasing function
of 0, shows that Py[M < ro] < a. Then Py[U(M) < 0] = Py|[M < ro] < o, which is the
desired conclusion. In the second case the interval is open, and for any integer n > 1,
U(rg —1/n) < 0. Arguing as before this implies Py[M < ro —1/n] < a. Since this holds
for all n, passing to the limit as n — oo and using the Lebesgue Dominated Convergence
Theorem gives Py[M < t9] < a. Again, after equating events, Py[U(M) < 0] < . The one
sided part of the theorem is therefore proved. For the final conclusion simply note that
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Po[[L(M) <0 <U(M)|] < Pyl < LIM)] + Py[U(M) < 6] < 2c by the first part of the
theorem. [J

The following theorem justifies the use of the method in the case of a hypergeometric
sample.

Theorem 2. Suppose M is the observed number of successes in a simple random sample
of size n taken without replacement from a population of total size N of which R items
are successes. For each fixed N > 0, M is stochastically increasing in R. For each fixed R,
M is stochastically increasing in N.

proof. Suppose X1, ..., Xp+1 is a simple random sample without replacement from {1, ..., N+
1}. Here the integers {1,..., R} are considered the successes and the remaining integers
are considered as failures. Define n dimensional random vectors by

X1
XN-|—1 —

Xn
and

Xilix,envs1) + Xnt1lix,=nN41]

YN _ Xolix,ens1) + Xnt1lix,=nN41]

Xnlix, <n41]+ Xnt1lix, =N+

Define a function g : R — R by

91, .. Yn) = Z Lio,r) (¥i)-
i=1

First observe that ¢ is a function which is coordinatewise decreasing in each y;. Second
note that XV +1 is surely coordinatewise larger than XV. Thus g(X~V*1) < g(X) surely.
Hence P[g(XN*1) > 5] < P[g(XY) > 5] for all real s.

Observe now that when the total population size is N + 1, M = g(X~+1), since XV +!
has the same joint distribution as a simple random sample without replacement of size n
from {1,..., N + 1}. Hence P[g(XN*1) > s] = Pyy1[M > s]. Thus it suffices to show
that P[g(X") > s] = Px[M > s]. This will follow if we show that X has the same joint
distribution as a simple random sample without replacement of size n from {1,..., N}. To
do this, observe that the set of possible values of X% is the same as the set of outcomes
for a simple random sample without replacement. The result then follows from the fact
that the event [XV = 2] consists of N + 1 elementary outcomes of the random vector
(X1,...,Xny1): the N + 1 — n elementary outcomes in which (X7,...,X,) = =% and
Xp+1 is otherwise arbitrary, together with the n elementary outcomes in which one of
Xi,...,X, is N + 1 while the other X;’s and X, take on the required values in zV.
Since the elementary outcomes for (X1, ..., X,+1) are equally likely, the result is proved.
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The case in which the total number N of balls is known while the number R of successes
is the parameter can be analyzed as follows. Define X = (Xi,...,X,,), with the X’s as
before and set gr(y1,...,yn) = Z?Zl Lio,r](yj). Then gg is increasing in R for each fixed
y 80 gr(X) < gr41(X) surely. Hence Pr[M > s| = Plgr(X) > s| < Plgr41(X) > s] =
Pr1[M > s|, proving the desired monotonicity. [
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