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CHAPTER 1

SCOPE OF THE EXISTENCE THEOREM

This chapter is an overview of this book’s three main topics.

• How Riemann’s Existence Theorem describes moduli spaces of Riemann
surface covers of the Riemann sphere.

• How finite group theory puts practical — for applications — structures into
collections of such covers.

• How each finite group generates its own nilpotent theory of fundamental
groups, forming systems of moduli spaces with GQ actions.

1. Context for the book

We note L. Ahlfors’ satisfying entwining of the algebra and geometry in 1st
year graduate complex variables [Ahl79]. This author could do no better than
use it as his underpinning. Still, that book leaves the full scope of monodromy a
mystery, it prepares little on coordinates describing Riemann surfaces, and none on
families of Riemann surfaces.

E. Hille wrote a function theoretic encyclopedia [Hil62]. As a graduate student,
I enjoyed how relevant were its historical comments to sophisticed mathematics
in the 1800s. For example, mathematicians seeking immortality (in private, of
course) might ponder its many serious references to H. Schwarz’s work [Sc1890].
Few present day complex variable enthusiasts know the coherence or context of
that work. Two authors, G. Springer [Spr57] and R.C. Gunning ([Gun66] and
[Gun67]), did great service bringing Riemann surfaces to graduate students by
the 1960s. For the former, that was H. Weyl’s uniformization approach (as in his
projection lemma). For the latter it was the Cartan-Serre vector bundle view of
the algebro-differential geometry that works on Riemann surfaces.

E. Neuenschwanden’s perspective answers many questions on what took so long
for Riemann surfaces to make their mark [Ne81]. He documents contention be-
tween Weierstrass’s algebraic and Riemann’s harmonic function approaches. This
is relevant to the relation between Riemann and Abel and Galois. For Weierstrass
admits the influence of Abel on his work. Still, one can’t see it directly on Riemann.
This is despite serious documentation of his intellectual activities, including the di-
rect influence on him of Gauss. Further, [Ne81] leaves unanswered other questions
about the assimilation of mathematics.

These modern works have little group theory; not even including the original
approaches of Abel, Galois and Riemann. Few presented group theory so dra-
matically as did H. Weyl. Yet, even Weyl (on quantum mechanics) met resilient
resistance to group theory. My convictions are here; I advocate using the power of
group theory. Showing how finite and profinite group theory can handle intricate
monodromy and moduli, and apply practically to algebra and complex variables,

1



2 1. SCOPE OF THE EXISTENCE THEOREM

is my goal. Still, there’s a fence to walk. We can’t afford to let group theory over-
whelm us. Galois was first to note group theory’s power. Also, he wrote on its
potential to dominate the subject techically.

The introductions of two books, [MM95] and [Vö96], show they closely con-
nect through group theory with this book. [Fri94] and [Fri95c] specifically dis-
cuss connnections of our topics to [Se92]. These three books concentrate on how
Riemann’s Existence Theorem applies to the Inverse Galois Problem. By contrast,
classical topics appear here more often than in the first two. Also, this author uses
standard formulations of the Inverse Galois Problemmuch less. Yet, the reader can
find here a leisurely track through Riemann surface theory guided by problems re-
quiring little preparation for their statements, a virtue of the Inverse Galois Problem.
My choices often have a long literature before the connection to Riemann surfaces
appeared. By occasional referring to topics from these three books, starting in
Chap. 4, I have added efficiency to this liesurely pace.

By being leisurely, we (I and the reader) may also consider the struggle of many
generations with whether punctured Riemann surfaces and their moduli variation
belong to function theory or to algebra. Since it is leisurely, using a style less sophis-
ticated than my papers in the middle 1970’s, it might from its opening chapter be
mistaken as curiously old-fashioned. Further, my evident hero worship of Riemann
can further confuse those who don’t know me. What I have tried is an historical
model. I attempt to synthesize in two early chapters what might have been the
insights of those famous researchers from the 1800s for whom analytic continuation
and its applications to algebraic equations was an open extravaganza of intensely
studied equations. The complication of mathematics, that Galois remarked on as
often as one can do when one is going to disappear long before maturity, over-
whelmed all except the technical giants of the time. Yet, from this came synthesis:
Abstract approaches that simplified everything for those who could follow them.
The people I admire today tend to admire — by aspiration in their own research —
these very same people. If we aim to please and appeal to Abel, Galois and Riemann
on this score, we realize — in rational moments — that is an impossibility. Fur-
ther, since that is a triumvirate of geniuses, such an appeal detracts from showing
why even they struggled, and despite the time that has passed we too, with the
whole topic. There is a serious question for mathematics. When does mathematics
(versus Riemann) have a firm grasp on a significant subject?

Is it when an elite institution husbands a handful of caretakers of an industry of
supporting research? Is it when myriad papers allude to consequent deep theories,
even if they don’t directly involve the roiling concepts? Is it when some text has
nailed the subject completely to a prestigious group’s satisfaction? Is it when a
blithely confident prestigious group claim the subject’s foundations are firm and
available to any sincere seeker? Is it when the subject successfully supports several
independent and competing schools derived from its basic problems?

We don’t know what would convince most research mathematicians of the se-
curity of a subject. The author has a point in writing this book; though he cannot
easily pick one affirmative viewpoint for the maturity of this book’s subject. Its
techniques quickly worked to reveal the nature of long standing problems in his
hands. On that basis a fair observer might support that the techniques work. Still,
there are geniuses beyond Abel, Galois and Riemann who have their viewpoints.
Examplars of thinking with great scope and imagination certainly include [An02],
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[De89] [Moc96]. We end the book at the wealth of analytic questions and appli-
cations raised by Modular Towers, a little before the influence of these writers on
the author. So, only a shadow of their influence is here.

All, however, support connecting profinite groups to function theory. That
leads to final, painful consideration. Will we, and the world outside mathematics,
ever be able to tolerate the inundation that often overwhelms us from the connec-
tions bridged by mathematical language?

2. A quick summary

A fuller overview follows this sections brief summary.

2.1. A concise description, chapter by chapter. Compact Riemann sur-
faces as branched covers of a sphere appear in 1st year graduate courses as elemen-
tary discussions of multi-valued functions. We expand the usual brief treatment
in Chap. 2. This carefully treats analytic continuation to motivate the geometry
behind it. It introduces the Existence Theorem sufficiently to get lessons from
the theory of abelian algebraic covers of the punctured Riemann sphere (§3.2).
It starts with two different definitions of algebraic functions, one from algebraic
equations another phrasing from analytic continuation. An imprecise version of
Riemann’s Existence Theorem is that these describe the same functions. This is an
elementary investigation, based on the first half of graduate complex variables.

In this book Riemann’s Existence Theorem means the precise statement from
Chap. 4. That really organizes all algebraic functions (of z). Chap. 4 fully develops
Riemann’s Existence Theorem. It emphasizes data determining a branched cover
of the sphere up to equivalence. Abel and Galois started a tradition. Our version:
Translate complex analytic and arithmetic geometry problems into group theory
through application of forms of Riemann’s Existence Theorem.

Advanced texts often append another statement. It is that any compact Rie-
mann surface (Chap. 3) has an analytic (nonconstant) map to P1

z
def= C ∪ {∞}, the

Riemann sphere. Springer’s book [Spr57] dedicates much space to proving this
last statement. We rarely use it; our basic data already includes such a function
and (given the Riemann-Roch Theorem) includes Springer’s goals (see below).

Suppose, however, ϕ : X → P1
z is such an analytic map. Let z0 be a particular

z value, and consider Xz0 , the fiber of ϕ over z0. Then, finding algebraic equations
for X, necessary for most applications, depends on producing another function
ϕ′ : X → P1

w that separates points of Xz0 . The explicit production of such a ϕ′ is
a consequence of uniformization of X by the appropriate simply-connected domain
(disk, plane or sphere). As uniformization plays an important role in advanced
applications, say, related to θ functions, we often raise elementary aspects of it.

The globally defined functions, ϕ and ϕ′ have an algebraic relation F (ϕ, ϕ′) ≡ 0
between them: F ∈ C[z, w]. Let Lϕ′ ⊂ C be the field generated by the ratios of
all coefficients of F . Let K be a field containing Lϕ′ . A frequent application of
this relation F is to give meaning to the expression a K point on X. From F and
z0 ∈ K, there is an equivalence class of permutation representations of the absolute
Galois GK of K. This comes from its action on points of X over z0. Refined
applications of covers analyze the dependence of this statement on the choice of ϕ′.

Chap. 4 shows the following. Let Lzzz be the field generated by the symmetric
functions in zzz (with ∞ removed if it appears).
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(2.1a) There is a choice of ϕ′ giving K algebraic over Lzzz.
(2.1b) The complete set of minimal fields Lϕ appearing as Lϕ′ in the algebraic

closure of Lzzz is an intrinsic (moduli) invariant of ϕ : X → P1
z.

(2.1c) Sometimes (the Existence Theorem shows) Lϕ consists of a unique field.

When zzz consists of algebraically independent values, the analysis of Lϕ includes the
moduli (deformation) theory of a cover. That is Part II of the book. Comparing
this case with the case Lzzz = Q (or some other explicit algebraic number field) is
tantamount to approaches to the Inverse Galois Problem.

We assume students with one semester each of a graduate algebra course and a
graduate complex variables course. Few students master Galois theory from their
algebra courses. Thus, we give an analytic continuation approach to showing the
field of convergent Puiseux expansions around a point is algebraically closed. This
supports many elementary subtopics that could otherwise be baffling. For example,
Riemann’s Existence Theorem uses an infinite number of incompatible algebraically
closed fields containing the field C(z). Let zzz = (z1, . . . , zr) be a fixed set of points
on the sphere. Denote the complement of zzz on the sphere by Uzzz.

Riemann’s Existence Theorem is about algebraic functions extensible on Uzzz.
These are functions with analytic continuations along any path (from an explicit
base point) avoiding zzz. At each point z0, not in zzz, these algebraic extensible func-
tions embed in the algebraically closed field of Puiseux expansions in z0. Isomor-
phisms between their different embeddings is coded in the fundamental groupoid.

Chap. 2 describes abelian functions of z through analytic continuing branches
of the log function. It demonstrates many basic definitions and some advanced
concepts. Among these is that of a group attached to monodromy action. For books
motivated by θ functions and their applications, this book is unusually persistent
in emphasizing finite group theory.

Chap. 3 has basics on fundamental groups and permutation representations.
Though our definitions and first examples of manifolds are traditional, our aim
is to illustrate practical use of deformations of Riemann surfaces. We concen-
trate on very explicit manifolds. Chap. 5 produces highly structured moduli spaces
parametrizing equivalence classes of Riemann surfaces.

Consider the notation around (2.1). For zzz fixed, and K = Lzzz, if z0 ∈ K, there
is an action of GK on the profinite completion of the fundamental group π1(Uzzz, z0)
(Chap. 4). Moduli parameters appear with the following question.

Problem 2.1. What happens with covers of Uzzz as zzz varies?

First appearances give the following impression.

(2.2a) The fundamental group of Uzzz doesn’t change with zzz.
(2.2b) GQ action changes drastically if you can even consider it varying with zzz.

Both (2.2a) and (2.2b) are wrong.
Suppose we try to write equations (with coefficients in zzz) for the deformations

of an algebraic function f = fzzz extensible on Uzzz (Chap. 2). Locally in zzz this is
possible. Going, however, around various closed paths in the space for zzz, fzzz might
return to a different extension field of C(z). Riemann’s Existence Theorem tells
precisely how to calculate which paths return to the original function field (§5.4.1).
Hurwitz monodromy action is the phrase for our most important calculations. This
produces coordinates for coefficients relating fzzz algebraically to (z,zzz) (Chap. 5).
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Choosing generators and a base point are what allow covering applications
of the fundamental group. A response to (2.2a) is that this extra data produces
a refined moduli space setup. This motivates a Lie algebra approach to (2.2b)
putting the two parts of (2.2) under a common framework. We use ideas from
renown papers of Y. Ihara and J.P-Serre and moduli space that give the proper
context for the Inverse Galois Problem.

Abelian covers of Uzzz for any zzz comes from branches of log (Chap. 2). Ihara
studied (parts of the) arithmetic of nilpotent covers of Uzzz when r = 3 [Iha86].
Nilpotent theory appears in applications to the Inverse Galois Problem. Here it
starts from nonsplit nilpotent extensions extending data about covers with any
given finite (often simple) group G. For p a prime dividing the order of G, a
univeral totally nonsplit extension pG̃ of G produces sequences of refined moduli
spaces (§8.3).

[Fri78] and [Iha86] had common elements: use of the theory of complex mul-
tiplication, and an arithmetic philosophy using the braid group. The former used
analytic geometry and finite group theory. There is now a natural way to join this
to the profinite and function theory approach of the latter. This means joining
Modular Towers to the Grothendieck-Teichmüller technology. The tools include
extension of Deligne’s tangential base points [De89] with insight from Riemann’s
θ functions.

2.2. Meaning of the word, elementary in the title. The first two chap-
ters are elementary by most perspectives. Still, understanding Chap. 5 on moduli
requires mastery of the first two chapters. The approach is elementary because
it allows a newcomer into the area through examples and techniques using finite
group theory. Traditionally, for example, with modular curves, one must have seri-
ous training in complex analysis. The action happens with automorphic functions
on the upper half plane.

Here we often use uniformization from below, replacing the upper half plane
and representations of SL2(R) with the Riemann sphere P1

z and finite group theory.
Then, modular curves and their associated towers are an example of the moduli of
dihedral group covers. The same technique works by replacing the dihedral group
by any finite group. This opens up applications beyond the traditional modular
curve approach.

This modular curve generalization uses a construction attached to each prime
p dividing the order of a finite group G: The universal p-Frattini cover pG̃ of G.
This especially considers those primes p for which G is p-perfect (it has no cyclic
quotient of order p).

Add to this a collection C of conjugacy classes from G whose elements have
order prime to p. Then, (G, p,C) produces a sequence of moduli spaces of curves.
Example: G is the dihedral Dp of order 2p (p an odd prime) and C consists of
four repetitions of the conjugacy class of involutions. Then, the sequence of moduli
spaces is the classical modular curve series {Y1(pk+1)}∞k=0: Quotients of the upper
half-plane by well-known subgroups denoted Γ1(pk+1) of PSL2(Z). The kth level
of the sequence in this case is Y1(pk+1. Introducing the generalizing sequences of
spaces, Modular Towers, is the book’s main advanced topic.

When G is an alternating group An (n ≥ 4), and p = 2, Modular Tower
properties generalize applications of θ functions. Specifically, in this alternating
group case several components may appear in a Modular Tower level. This is unlike
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the dihedral case where all levels are connected. We use modular representations of
characteristic quotients of pG̃ (§10.2). This extension of Schur’s theory of universal
central extensions connects these components to the famous mod 2 (half-canonical
class) invariant from θ functions.

Function theory, as in cusp forms and Eisenstein series from modular curves
also appear here. Since the levels are moduli spaces of curves, we know most about
those functions by relating them to θ functions of curves representing points in the
moduli spaces. Such varying θ functions produce θ-null automorphic forms. Our
main examples illustrate this when the moduli spaces are quotients of the upper
half plane, giving covers of the classical j-line. This exactly corresponds (for any
(G, p)) to the case C consists of four conjugacy classes in G.

Modular curves, though a guide, are a small portion of the noncongruence quo-
tients of the upper half plane with a tower structure related to a prime p. New ap-
plications reveal the value of a Riemann’s Existence Theorem approach. Function
wise it generalizes both the braid group approach to the Inverse Galois Problem
and the Tate module.

Early chapters develop detailed motivation for using classical functions. The
deeper function theory, however, appears in outline (with exposition on applications
related to the literature). Developing this completely is a topic for a later book.

3. Early historical motivation

A renown problem from the early 19th century was to express in radicals solu-
tions x of the general nth degree polynomial equation

(3.1) f(x) = xn + a1x
n−1 + · · · + an−1x + an = 0,

with f of degree n in x. The goal specifically asks for solutions x using known
functions of the coefficients a1, . . . , an. The explicitly known functions of the time
were what we call radicals.

Traditional books tackle this using Galois theory with pure algebra. They
reproduce Galois’ Theorem characterizing when a field extension L/K is a subfield
of a chain of radical field extensions of K. This happens if the Galois closure of
L/K has solvable group.

It is a pretty story. Still, Galois’ Theorem is not a common object of mathe-
matical pilgrimage (even if Galois is). This treatment hides ingredients that still
seize the imagination of modern mathematicians, as it possessed Abel, Galois and
Riemann. Abel and Galois recognized group theory for showing, with ai s and
n ≥ 4, the field of radical sequences in the ai s do not contain the solutions. Still,
these books lack problems motivating present research. Further, the subject’s char-
acter falls outside the neatly compartmental introduction of rings, groups, modules
and elementary classification results of the rest of 1st year graduate algebra. These
historically come long after it, leaving the impression Galois theory is both mildly
exotic and slightly moribund.

3.1. Consider functions of one variable. To be more explicit turn to com-
plex variables, as did Abel. Instead of a1, . . . , an being general, specialize to func-
tions a1(z), . . . , an(z) of one complex variable z. Assume a1(z), . . . , an(z) are in
the field C(z): rational functions of z with complex coefficients. It is convenient to
replace x by a variable w taking complex values. Refer in this specialized form to
the equation f(a1(z), . . . , an(z), w) = m(z, w) = 0.
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The left side of (3.1) does not factor into lower degree polynomials over the
field a1, . . . , an generate. The specialized expression m(z, w) = 0 may factor over
C(z). To simplify, assume m is an irreducible polynomial in w over C(z). Analytic
continuation displays the n solutions in w as n manifestations of one solution. The
manifestations cohere through a group. Here is how it arises.

3.2. Motivating integrals. Critical values zzz = z1, . . . , zr of m are places z′

where m(z′, w) has repeated roots. Fix z0 = z not equal to a critical value of m.
Then the zeros w of m(z, w) have expressions w1(z; z0), . . . , wn(z; z0), meromorphic
functions in z around z0. This holds for any z0 outside zzz. So these algebraic
functions are extensible on C ∪ {∞} \ {zzz} = Uzzz (Chap. 2). The group of m(z, w)
(relative to z) is all permutations of the wi s from continuation around closed paths
in Uzzz based at z0. Call the wi s abelian if this group is abelian.

This study of zeros jibed nicely with another problem of Abel’s day: Analyze
elementary antiderivatives, like the watershed example

∫
dx√

x3+ax+b
. Specifically,

what is the dependence of these antiderivatives on the parameters a and b?
Here m(z, w) = w2 − (z3 + az + b). Write G(z) = 1√

z3+az+b
acknowledging

(Chap. 2) that plugging in values of z near z0 requires choosing one of two functions
G(z) analytic in a disc about z0 with G(z)−2 = z3 + az + b. Consider F (z),
an antiderivative of G(z), locally. An integral gives F (z). So, it has analytic
continuations around Uzzz. These continuations produce an abelian group of periods
(Chap. 2). Chap. 4 shows the group is Z × Z. Further, its fit with the analytic
continuations of G(z) appears in the semidirect product Z × Z ×s{±1} (§8). Let
Dn be the dihedral group of order 2n.

Classical modular curves parametrize four branch point Dn extensions of Uzzz.
Galois checked with his theorem for which n these modular curve parameters were
solvable functions of the classical j parameter [Rig96, p. 133]. Properties of F (z)
entwine integration and the appearance of abelian extensions:

(3.2) F (z) is a versal abelian extensible function on Uzzz with monodromy around
zzz bounded by G(z) (Chap. 4).

Restricting to Uzzz still shows the full scope of Riemann’s version of (3.2). The
next three sections base a story of his program on analytic continuation.

4. Algebraic functions among extensible functions

Denote Laurent series expansions about z0 by Lz0 . Let E(Uzzz, z0) be extensible
(meromorphic) elements of Lz0 on Uzzz. Call f ∈ E(Uzzz, z0) algebraic if it satisfies
m(z, f(z)) ≡ 0 with m ∈ C[z, w] a nonzero polynomial. Characterizing such f
through analytic continuation, the main topic of Chap. 2, is the first step to clas-
sifying algebraic functions. Any analytic continuation of f around a closed path in
Uzzz also gives a zero of m. So, there are only finitely many analytic continuations of
f . Analytic continuations of f along paths whose end points have limits in zzz take
values nowhere dense (a finite set) in the Riemann sphere. This qualitative state-
ment characterizes algebraic f . The full force of Riemann’s Existence Theorem is
in phrasing this through fundamental group representations (Chap. 4). Denote the
algebraic elements of E(Uzzz, z0) by E(Uzzz, z0)alg.

4.1. One element of E(Uzzz, z0) is versal for E(Uzzz, z0)alg. There are so many
algebraic functions in E(Uzzz, z0) = E(Uzzz) (if the cardinality, r = |zzz| exceeds two).



8 1. SCOPE OF THE EXISTENCE THEOREM

We can explain little about them by listing their polynomial equations. Yet, there
is much structure in this collection.

4.1.1. Setup for uniformizaton. Riemann provided such by finding one function
f̃zzz giving all of E(Uzzz, z0)alg through a type of Galois correspondence. An outline
for this appears in Chap. 3.

(4.1a) Recognize each algebraic function f ∈ E(Uzzz) has an attached topological
cover ϕf : Xf → Uzzz.

(4.1b) Produce a (uni)versal cover ϕzzz : Ũzzz → Uzzz with a discrete group π1(Uzzz, z0)
acting on Ũzzz.

(4.1c) Show Xf is a topological quotient of Ũzzz by a subgroup of π1(Uzzz).
(4.1d) Show Ũzzz has a complex analytic embedding in C: h : Ũzzz → C.

As in Chap. 3, (4.1d) produces f̃zzz as follows. Let Uz0 be any disk around z0

(on Uzzz). Cauchy’s Theorem (we return soon to that) shows this:
(4.2) Each g ∈ E(Uzzz, z0) extends to a unique meromorphic function on Uz0 .
4.1.2. Ũzzz and Hurwitz equivalence. Riemann’s Existence Theorem shows why

Ũzzz identifies with the upper half plane H = {z ∈ C | �(z) > 0}. Apply the
Existence Theorem (see Chap. 4 or §5.1) with a branch cycle description of form

g1 = (1 . . . s1) · · · (st−1+1 . . . st),

s1 + s2 + · · · + st = n; g2 = (s1 s2 . . . st) and g3 = (g1g2)−1. Count points over
branch points: t + (n − t + 1) + 1 = n + 2.

Uniformize U{0,1,∞} with the classical λ function (§7.1.1). Choose n = r − 2.
This produces a genus 0 cover of ϕggg : Xggg → P1

z unramified over U{0,1,∞} with
exactly r points over {0, 1,∞}. Further, λ factors through this cover:

H → Xggg \ ϕ−1
ggg (0, 1,∞) → U{0,1,∞}.

This uniformizes one copy of P1
z minus r points. Deform (differentiably) Xggg \

ϕ−1
ggg (0, 1,∞) to any other copy of P1

z minus r points (Chap. 5).
Regard algebraic functions f = y (of z) as giving a relation between two vari-

ables x and y. Classical literature often chooses the isomorphism class of the func-
tion field C(z, y) as the unique goal of an algebraic relation. If C(z, y) is isomorphic
to C(z∗, y∗), this views the algebraic relation between (z∗, y∗) (take the minimal
polynomial of y∗ over C(z∗)) as elementary equivalent to the relation between z
and y. The history of considering algebraic relations had its motivation in integrals.
There the most telling invariant of a function field C(z, y) is the genus g (maximal
number of linearly independent holomorphic differentials §6.2) on the function field.

A connected algebraic space parametrizes all algebraic relations of genus g
(Chap. 5). Investigating this and subtler problems about algebraic relations suggest
a more delicate equivalence between function fields. In addition to the isomorphism
of C(z∗, y∗) with C(z, y), this isomorphism includes that C(z∗) = C(z). Call this
Hurwitz equivalence. Even in restricting to genus g function fields there are many
components to the parameter spaces of Hurwitz equivalences of algebraic relations.
Hurwitz (equivalence) spaces all derive from the elementary notion of deforming
points as in the construction above for Ũzzz.

4.1.3. The value of f̃zzz. Since ϕzzz : Ũzzz → Uzzz is a covering space, ϕ−1
zzz (Uz0)

has countably many connected components {Ui}∞i=1, each homeomorphic to Uz0

by restriction of ϕzzz. Let ϕ1 : U1 → U0 be this one-one restriction. Then, (4.1d)



4. ALGEBRAIC FUNCTIONS AMONG EXTENSIBLE FUNCTIONS 9

produces the function

(4.3) f̃zzz = h ◦ ϕ−1
1 : U0 → C.

This one function distinguishes homotopy classes of paths on Uzzz by analytic
continuation. It separates homotopy classes of paths (based at z0) by its values
at end points of analytic continuations. Since Ũzzz is simply connected and in C,
Riemann’s mapping theorem says it is analytically isomorphic to a disk (or to C,
if r = 1 or 2) for each zzz.

4.2. Uniformizing from above versus below. Thus, Ũzzz is a domain for
parametrizing Xf for all f ∈ E(Uzzz, z0), as zzz varies. This complements how we use
Riemann’s Existence Theorem.

4.2.1. Shortcomings of h ◦ ϕ−1. The universal covering space helps organize
functions and differential forms. Still, algebraists find it hides phenomena close to
their interests. For example, h ◦ ϕ−1

1 is neither algebraic nor known: Its values
at algebraic points of Uzzz are rarely algebraic. Though based on λ(τ) in §4.1.2, it
changes with zzz. Yet, it provides no explicit equations for algebraic functions.

Even proving a cover from Riemann’s Existence Theorem is algebraic still goes
through a hard proof that we now separate from other, more algebraic, observations.
Suppose ϕ : X → P1

z is a cover. Let ϕw : X → P1
w be any function separating all

points on the fiber Xz0 over z0. Then, X → P1
z × P1

w by x �→ (ϕ(x), ϕw(x)) has
closed image birational to X in the algebraic variety P1

z×P1
w. Apply Chow’s Lemma

(Chap. 4) to get that X is algebraic.
Classical construction of ϕw relies on a uniformization H → Uzzz presenting Uzzz as

a quotient H/H, H a subgroup of PSL2(R). One must find nontrivial H invariant
functions on H [K72, Chap. III]. Variants are in [Spr57, Chap. 6-10] and [Vö96,
Chap. 5]. We rely on the treatment from the last of these references — especially
well adapted to Riemann’s Existence Theorem. How to find ϕw (or some related
differential form) algebraically appears in many of our examples.

4.2.2. Virtues of h ◦ ϕ−1. The phrase “abelian theory” means here Riemann’s
unified generalization of Abel’s results. This includes describing functions, abelian
covers and the results of integration of differentials on a Riemann surface. It in-
cludes Riemann’s extension of Cauchy’s integral theorem to open Riemann surfaces.
We discuss it, and our reason for including a nilpotent theory below. There is no
denying the value of h ◦ ϕ−1.

(4.4a) It organizes tool the abelian and nilpotent theory.
(4.4b) It coordinates analyzing real points on moduli spaces of curves.
(4.4c) It is suspiciously close to being algebraic, producing an algebraic object

(a flat P1-bundle) capturing its uniformizing properties.

4.2.3. The Existence Theorem and classical uniformization meet. Each item in
(4.4) has Existence Theorem and Ũzzz aspects: Uniformization from below versus
above. The literature neglects the former, though it is constructive and practical.
The latter has had elegant developments.

Both work best as tools for analyzing properties of families (moduli spaces) of
curves. They give enhancements when the moduli spaces themselves fit in natural
sequences. The abelian theory gave the first such natural sequences. This shows in
modular curve sequences (§8.3, Chap. 5).
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4.2.4. Illustrating with modular curves. When the parameter r (cardinality of
zzz) is 4, the comparison between Modular Towers and modular curves is direct. For
example, these properties hold for Modular Towers when r = 4.

• Their levels are curves.
• They include modular curve towers and come with an essential prime p:

Its powers correspond to Modular Tower levels.
• They lie over the classical j-line and have useful cusps over j = ∞.
• All levels are moduli spaces, with variants corresponding to structures

going with modular curve notation X0(pk+1), X1(pk+1) and X(pk+1).
Any finite group G and prime p dividing |G| produces many Modular Towers; many
more than there are modular curve towers. The name Modular Tower comes from
this comparison and the group (modular representation ) theory that appears in
their analysis.

An elementary comparison occurs in analyzing real points on a Modular Tower.
Through Riemann’s Existence Theorem this gives the essential data about cusps.
From that come their geometric properties (Chap. 5), including genuses of their
components. This is especially interesting when the finite group G producing the
Modular Tower is simple and the prime p is 2. We now discuss the Existence
Theorem, then the abelian theory.

5. E(Uzzz, z0)alg and data from groups

Riemann’s Existence Theorem (Chap. 4) compactifies ϕf : Xf → Uzzz to a ram-
ified cover of Riemann surfaces ϕ̄f : X̄f → P1

z. It then turns the process around by
using special generators of the fundamental group π1(Uzzz, z0) of Uzzz. From these it
produces all elements of E(Uzzz, z0)alg.

5.1. Identifying a fundamental group requires generators. Suppose G
is a finite transitive subgroup of Sn. A surjective homomorphism ψ : π1(Uzzz, z0) → G
canonically produces a cover Xψ → Uzzz from homotopy classes of paths. We don’t
need generators of π1(Uzzz) to define these covers Chap. 3. They, however, handily
list all such homomorphisms and therefore all such covers. Convenient listing of
covers allows explicitly computing properties of Hurwitz spaces (Chap. 5).

The collections of r paths (based at z0) we call classical generators of π1(Uzzz, z0)
appear in Chap. 3. Points in zzz produce conjugacy classes Czzz in π1(Uzzz, z0). Classical
generators are homotopy classes of paths respectively representing these conjugacy
classes. Choose representing paths that pair wise meet only at their beginning and
end point z0. Label one as ḡ1. Label the others from their having a clockwise order
in leaving the point z0. These r paths ḡ1, . . . , ḡr now satisfy

(5.1) ḡ1ḡ2 · · · ḡr = 1: The product-one condition.
Invariants of Hurwitz space components appear from (5.1) (§10.1 illustrates).

Classical generators — satisfying these conditions — automatically generate the
fundamental group (Chap. 3). Solving for ḡr presents the fundamental group as
a free group on r − 1 generators. Yet, that violates the product-one symmetry. So,
that free group presentation appears only in stray computations.

This part of Riemann’s theory works very well. It successfully applies to many
problems. These require some finite group theory. It is the center of the first
third of the book. Polynomial equations describe algebraic curves. This is what
gives structure allowing fields of definitions and interpreting rational points. The
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Riemann’s Existence Theorem approach, however, emphasizes effective group the-
ory over manipulating explicit equations. Exercises and examples illustrate this
(Chap. 3, Chap. 4, Chap. 9).

5.2. Changing classical generators. There is no canonical set of classical
generators for π1(Uzzz, z0). The necessary variation of this choice produces the braid
and mapping class groups (Chap. 5). This complication enriches mathematics.
Still, it requires explanation.

The second third of the book organizes collections of elements from E(Uzzz, z0)alg.
This allows zzz to vary. Sets of r (unordered) distinct points on P1

z have a topology
and analytic structure extending that of P1

z. This set is Pr \Dr = Ur: Projective r-
space minus the discriminant locus (Chap. 5). Think of Ur as monic polynomials of
degree either r or r−1 with distinct roots. Or, consider it the quotient of (P1

z)
r \∆r

by permutation action of Sr, the symmetric group of degree r, on ordered r-tuples
of points. Here ∆r is r-tuples with distinct coordinates.

The fundamental group of Ur is the degree r Hurwitz monodromy group Hr

(Chap. 5), an Artin braid group quotient. A permutation representation of Hr

produces the space of deformations of Xf . These are unreduced Hurwitz spaces.
A given function f ∈ E(Uzzz, z0)alg deforms in many ways as zzz varies. Local

deformation, however, of ϕ̄f : X̄f → P1
z is unique along any path. This allows

analyzing parameters for these moduli spaces. Yet, it leads further from explicit
equations. To paraphrase Joni Mitchell’s “Both Sides Now” (from the 60’s): Some-
thing’s lost and something’s gained in putting equations away . Explicit functions,
however, return with the abelian and nilpotent theory.

5.3. Moving zzz, even with z0 fixed, forces changing generators. Picture:
z1 and z2 follow semicircles, producing

(5.2) Q1 : (ḡ1, . . . , ḡr) �→ (ḡ1ḡ2ḡ
−1
1 , ḡ1, . . . , ḡr).

Replacing 1 by i ≤ r − 1 gives the full generating collection Q1, . . . , Qr−1 of the
Hurwitz monodromy group Hr (Chap. 5). The Hr action from (5.2) on classical
generators is the technical tool for describing families of covers.

Let G be a fixed finite group. Assume these further ingredients.

(5.3a) zzz′ is a specific point of Ur.
(5.3b) ψzzz′ : π1(Uzzz′ , z0) → G is a specific surjective homomorphism to G using

classical generators ḡ1, . . . , ḡr (§5.1).
(5.3c) T : G → Sn, n an integer, is a faithful permutation representation.

Then, ψzzz′ gives a finite (ramified) cover ϕG,T,zzz′ = ϕzzz′ : Xzzz′ → P1
z of Riemann

surfaces of degree n. The images of ḡ1, . . . , ḡr give generators g1, . . . , gr of G ≤ Sn,
with an associated set of r conjugacy classes C in G. Riemann’s Existence Theorem
labels covers by g1, . . . , gr (branch cycles). It gives ϕG,T,zzz′ as an equivalence relation
on homotopy classes of paths based at z0. Suppose zzz′ moves to nearby zzz′′, with
z0 ∈ P1

z and paths representing ḡ1, . . . , ḡr fixed. Then, there is a unique isomorphism
of π1(Uzzz′ , z0) and π1(Uzzz′′ , z0) commuting with their maps to G.

An automorphism α of π1(Uzzz, z0) sends generators to new generators, chang-
ing ψzzz to ψzzz ◦ α. Inner automorphisms of π1(Uzzz, z0), however, produce covers
equivalent to the old cover. It is moduli of covers we use; equivalence two homo-
morphisms if they differ by an inner automorphism. Further, only automorphisms
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from the Hurwitz monodromy group Hr send classical generators to classical gen-
erators (possibly changing the intrinsic order of the paths). Such automorphisms
arise from deforming the pair (zzz, z0) along closed paths in Ur. They preserve the
conjugacy classes of classical generators. So, C, the conjugacy class set in G, is an
Hr invariant of any given homomorphism ψ.

5.4. The moduli spaces appear. The Nielsen class of (G,C) (Chap. 5)
consists of r-tuples (g1, . . . , gr) satisfying the product-one condition attached to
(G,C). The Existence Theorem uses classical generators of π1(Uzzz, z0) to produce
equivalence class of covers.

5.4.1. Writing equations in zzz. The Nielsen class Ni(G,C) has entries in a set
of conjugacy classes C in G, independent of the braid action. Thus, Hr acts on ele-
ments of Ni(G,C) (similar to (5.2)). An aside: We need to quotient by conjugation
from G. Here is how to think of this action.

Let ϕ0 : X0 → P1
z be a cover from the Existence Theorem using ggg ∈ Ni(G,C).

Take the branch points to be zzz0. What if someone asks for explicit equations for
this cover? That could mean either:

(5.4a) equations just for ϕ0; or
(5.4b) equations for ϕzzz : Xzzz → P1

z, with branch points zzz, valid for zzz near zzz0

(where it specializes to ϕ0).

Don’t those seem like asking too little? Why concentrate on one set of branch
points zzz0, or even on a neighborhood of zzz0? You’d want ϕzzz valid for all zzz ∈ Ur.
If, however, this were possible, then analytically continuing ϕzzz around any closed
path P in Ur would return you to ϕ0.

The homotopy class of P is an element QP of Hr. Further, Chap. 5 shows the
cover at the end of P has a branch cycle description (ggg)QP . (Compute that with
the starting classical generators of π1(Uzzz0).) So, finding equations for ϕzzz valid for
all zzz requires (ggg)QP be ggg (modulo conjugation by G or closely related). This you
can check: Is (ggg)Q essentially ggg for all Q ∈ Hr. Example: Consider

ggg = ((1 2 3), (3 2 1), (1 4 5), (1 5 4)) ∈ Ni(A5,C34)

(§10.1). Then (ggg)Q2 = ((1, 2 3), (2 4 5), (3 2 1), (1 5 4)). This is not conjugate to ggg
even under S5. So, as typical when r ≥ 4, there are no such equations for ϕzzz.

5.4.2. Analytic continuations of ϕzzz0 . Nontrivial H4 action means coefficients
of equations for ϕzzz act as coordinates for a nontrivial cover of Ur. What cover?

It comes from the action of Hr, the fundamental group of Ur, on Ni(G,C) pro-
duced by covering space theory. Notation for this cover depends on the equivalence
used for elements of the Nielsen class (as in (5.5)). Typical notation is H(G,C, T ).
Each point of H(G,C, T ) corresponds to an equivalence class of covers: A point
over zzz ∈ Ur is an element from Ni(G,C) attached to zzz. Then, H(G,C, T ) itself
covers the space Ur of distinct unordered r-tuples of points from P1

z (Chap. 5).
Various equivalences among covers produce different versions of this space. Two

predominate in early applications. Denote the subgroup of Sn normalizing G and
permuting the conjugacy classes in C by NSn(G,C).

(5.5a) H(G,C)in: T is the regular representation and the Galois cover comes
with a fixed isomorphism between its Galois group and G (inner spaces).

(5.5b) H(G,C, T )abs: T any faithful representation, with r-tuples equivalenced
by NSn(G,C) conjugation (absolute spaces).
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See the main example of this chapter at §10.1.
The combinatorial groups in Chap. 5 have long histories: the Artin braid group,

the Hurwitz monodromy group and the mapping class group. As in Chap. 4, we give
formal proofs. Pictures appear only to convey conceptual symbolic data. Absolute
spaces are the work horses in applications (Chap. 9). Inner spaces, however, directly
connect the Inverse Galois Problem to generalizations of modular curves (§7.4).

5.4.3. Statics and dynamics of a cover. In the game of mentally writing equa-
tions for a cover, why would one cover be more significant than another? Many
historical applications, such as the Inverse Galois Problem, consider a cover with
equations over Q as most significant. For example, many arithmetic problems gain
solutions if one can produce a cover with a particular monodromy group over Q(z)
or over Q. Such a cover provides solutions to related problems over another field
by extending its equations to that field.

We picture such a cover ϕ0 : X0 → P1
z as being at the crossroads of a network

of roads. The real points on H(G,C)in would go through the point corresponding
to ϕ0, as would all p-adic points for every prime p. Concentrate on a real point,
ppp0 ∈ H(G,C)in corresponding to a cover ϕ0 over R. To get a measure of the
potential energy of this point we measure its distance from boundary points on
H(G,C)in. Developing such a measure, depends on measuring something that goes
to 0 as we deform ϕ0 along a real component going to a boundary point, and the
measuring coordinates must be canonical functions of the coordinates of the point
ppp as it moves from ppp0 to the chosen boundary point.

The theory of abelian covers on X̄0 gives classical functions that we can use for
making such measurements. As easily this could be on X̄0 minus a finite number
of points, as with Uzzz. Still, in the compact case, functions in E(X̄0) with finitely
many analytic continuations are algebraic.

6. Abelian theory on X̄f and integration

Let f ∈ E(Uzzz, z0). Suppose analytic continuations fγ of f(z) have this property.
(6.1) fγ(z) = f(z) for each closed path γ based at z0.

Rather than extensible, Chap. 2 calls f extendible. Denote extendible elements of
E(Uzzz) by E(Uzzz)ext.

Consider f ∈ E(Uzzz)ext. Cauchy’s Theorem in Uzzz shows precisely the nature
of integrals f(z) dz around certain closed paths. Since these are integrals, assume
without further mention the paths miss any poles of f dz. Let zzzf,∞ be the set
of these poles. Assume for simplicity it is a finite set (appropriate for algebraic
functions) which may include ∞: zn dz has a pole of order n + 2 at ∞.

The definition of integral makes sense. Let F (z) be an antiderivative of f in a
neighborhood of z0. For any (simplicial) path γ : [0, 1] → Uzzz, take the indefinite
integral to the end point of γ to be Fγ (Chap. 2).

Cauchy’s Residue Theorem: Let γ be a closed path homologous to 0 in Uzzz.
Compute

∫
γ

f(z) dz from the winding number of γ and residue of f at each z′ ∈ zzzf,∞
(Chap. 2). Winding numbers are values of integrals

∫
γ

ω where ω is a differential
form — logarithmic, or of 3rd kind — taking the shape 1

2πi
dz

z−z′ = ωz′ with z′ ∈
zzzf,∞. Also, winding numbers appear in the definition of being homologous to 0:
The path has winding number 0 about each point in zzz.
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6.1. Changes of significance for algebraic f . Here is a paraphrase of
Cauchy. Suppose (6.1) holds. Then, poles of f and the map γ → (

∫
γ

ωz1 , . . . ,
∫

γ
ωzr )

determine
∫

γ
f(z) dz when γ is closed and homologous to 0.

Suppose, however, f is both algebraic and extendible. That means it is a
rational function on P1

z. Then, there is no significant difference between the points
in zzz and those in zzzf,∞. By combining them both in the set zzzf,∞ this allows dropping
the homologous to 0 condition. We may consider integrals around any closed path.

Riemann made a more abstract change. Antiderivatives of ωzi
are (up to an

additive constant) branches of log(z − zi), i = 1, . . . , r. Recognizing Cauchy’s
Theorem as a statement entirely about integrals of meromorphic differentials (not
of functions) immediately allowed generalizations. Here is what the abelian theory
does for Uzzz (Chap. 2).

(6.2a) It gives explicit differentials providing details on integrals of any mero-
morphic differentials around any closed paths.

(6.2b) It describes elements of E(Uzzz)alg with associated group abelian.
Chap. 2 does (6.2b) by corresponding such functions to an r-tuple in (Q/Z)r with
entries summing to 0.

6.2. Extending Cauchy’s Theorem to X̄f . Riemann extended Cauchy’s
Theorem to f ∈ E(Uzzz, z0)alg not satisfying (6.1). Compatible with (6.2), he ex-
tended it to meromorphic differentials on X̄f . This emphasis on differentials over
functions didn’t throw functions out. They were still there through the definition
of df , the differential and df/f , the logarithmic differential of f (Chap. 3).

The serious step was analyzing the space of holomorphic (or first kind) differ-
entials on X̄f (Chap. 3, Chap. 4): differentials with no poles anywhere. Standard
notation for this g = g(X̄f ) dimensional space over C is Γ(X̄f ,Ω1): Global sections
of the sheaf of holomorphic differentials on X̄f . The genus g of X̄f now attaches
to f = f(z), toward pinning its place among algebraic functions of z.

Guidance came from the Abel-Jacobi-Legendre differentials like dz√
z3+az+b

from
§3.2. Just giving the dimension of Γ(X̄f ,Ω1) called for a more abstract approach.
Riemann needed a full basis to solve the Jacobi-Inversion problem. Relying on
coordinates from P1

z was a confining kludge.
With points removed from X̄f , add further logarithmic (or 3rd kind) differen-

tials. In Uzzz, the (vector-)space of logarithmic differentials has a preferred basis by
reference to classical generators of π1(Uzzz, z0) (§5.1).

Extending this to X̄f still leaves an infinite set of choices for a Γ(X̄f ,Ω1) basis,
with all choices related by the action of a group: The symplectic group Sp2g(Z).
Different basis choices correspond to different choices of 2g closed paths whose ho-
mology classes determine integration of any meromorphic differential around closed
paths. This is an imprecise statement of Cauchy’s Theorem on X̄f .

As with Uzzz, there is a notion of classical generators. With Uzzz the paths were
nonintersecting, except at the base point. On X̄f classical generators signifies
normalizing information about the intersection of these 2g paths. Given classical
generators for Uzzz there is a process for producing classical generators on Xf . This
provides explicit actions of appropriate subgroups of Hr on the homology of X̄f .
Suppose X̄f appears in the moduli space of curves of genus g. Then, the whole
action may well give Sp2g(Z). On Hurwitz spaces, however, the data is more refined.
The significant group action may be much smaller.
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6.3. Jacobians and generalizing Abel’s Theorem. Suppose ω1, . . . , ωg is
a specific Γ(X̄f ,Ω1) basis. As with Uzzz, Cauchy’s Theorem on X̄f builds from this
data an abelian group. In this case it is a compact complex torus J(X̄f ), the Ja-
cobian of X̄f . Follow Mumford’s view [Mum76, p. 58-67]. Consider the space
of locally defined holomorphic tangent vectors for X̄f as dual to locally defined
holomorphic differential forms (Chap. 3). Then, paths are dual to holomorphic dif-
ferentials (by integration). The problem is to interpret a dual to global holomorphic
differentials. This generalizes the Abel-Jacobi approach to Cauchy’s Theorem and
it produces an abelian covering theory.

Let h be any meromorphic function on X̄f (Chap. 3) of degree u. Then, h :
X̄f → P1

z has zeros x0
1, . . . , x

0
u and poles x∞1 , . . . , x∞u . A mysterious identification

then occurs: X̄f appears in J(X̄f ). So, each zero x0
i and pole of h produces a point

in J(X̄f ). List these as pppx0
i
, pppx∞

i
, i = 1, . . . , u.

6.3.1. Logarithmic differentials. Yet, finding the ppp s doesn’t require giving h. It
only needs points x0

1, . . . , x
0
u and x∞1 , . . . , x∞u on X̄f viewed as inside J(X̄f ). Define

[Dxxx] = [D(pppx0
i
, pppx∞

i
, i = 1, . . . , u)] as the sum of all the pppx0

i
s minus all the pppx∞

i
s

on J(X̄f ). To say [D] is zero means it is the origin of J(X̄f ). Abel’s Theorem
(generalized) says existence of h with these zeros and poles characterizes exactly
when [D] is zero.

If h exists, consider the logarithmic derivative dh/h. This is a meromorphic
differential of 3rd kind with pure imaginary periods. Even if h doesn’t exist, given
the divisor Dxxx above, the following holds.

(6.3) There is a unique differential ωxxx with residue divisor Dxxx having pure
imaginary periods (Chap. 4).

6.3.2. Coordinates from holomorphic differentials. Suppose [D] is not zero, but
m[D] is zero on J(X̄f ) for some integer m. Then, repeating all the zeros and poles m
times produces a function h on X̄f . The mth root of h defines an abelian unramified
cover Y → X̄f . So, the abelian theory of X̄f appears from this version of Cauchy’s
Theorem. Riemann produced θ = θX̄f

functions to provide global coordinates
(uniformization) for this construction. They are functions on Cg (§6.5).

Many mathematical items on X̄f appear constructively from this. This includes
functions and meromorphic differentials (with particular zeros and poles). This
was a central goal in generalizing Abel’s Theorem: To provide Abel(-Jacobian)
constructions for a general Riemann surface. For the function h it has this look:

(6.4) h(x) =
u∏

i=1

θ(
∫ x

x0
i

ωωω)/
u∏

i=1

θ(
∫ x

x∞
i

ωωω).

In θ you see g coordinates; the ith entry is
∫ x

x0
i
ωi. Each holds an integral over one

basis element from ωωω. Integration paths join respective points on X̄f ’s universal
covering space. The integrals make sense up to integration around closed paths.
So, they define a point in J(X̄f ).

Even if h doesn’t exist, the logarithmic differential of (6.4) does. It gives the
third kind differential from (6.3). Here you see the differential equation defining
θ functions. In the expression for h, replace

∫ x

x∞
i

ωωω by a vector www in the universal
covering space of the Jacobian. Form the logarithmic differential of it: dθ(www)/θ(www).
Translations by periods will change it by addition of a constant. With ∇ the
gradient in www, ∇(∇θ(www)/θ(www)) is invariant under the lattice of periods.
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Thus, J(X̄f ) provides transparent coordinates for differentials, and their peri-
ods, through a mysterious embedding of X̄f in it. Then, objects from the abelian
structure on J(X̄f ) restrict to X̄f (§10.6). To use, however, Riemann’s theory an
algebraist faces two major complications.

6.4. Complication 1: The role of f . Suppose X̄f varies in the Hurwitz
space H(G,C) attached to (G,C). It moves along a path in Ur with the coordi-
nates for zzz. Is Riemann’s theory sufficiently algebraic to express the changes using
equations with coefficients in the the point of H(G,C) corresponding to X̄f . An-
swer: It is algebraic in many ways, though rarely will coordinates from H(G,C)
support all the identifications. Here is why.

6.4.1. The Picard components. There are three geometric ingredients in Rie-
mann’s theory: J(X̄f ), X̄f and the zero (Θ) divisor of the function θ = θX̄f

(§6.5).
The first identifies with divisor classes Pic0(X̄f ) = Pic0

f of degree 0 on X̄f (Chap. 4).
The second embeds naturally (algebraically) in Pic1

f , divisor classes of degree 1 on
X̄f . Then, Θf is the dimension g − 1 variety of positive divisor classes in Picg−1

f .
Further, Picg

f interprets the Riemann-Roch Theorem and the Jacobi Inversion

Problem geometrically (Chap. 4). It takes its group structure from adding two
positive divisors of degree g together modulo linear equivalence. Weil used this for
an algebraic construction of Pic0

f years after his thesis. His principle: The nearly
well defined addition on positive divisors produced a unique complete algebraic
group on the homogeneous space of divisor classes. Therefore Pic0

f is almost the
symmetric product of X̄f taken g times. Riemann’s theory was an inspiration to
Weil’s 1928 thesis (§10.6). Still, Weil was not certain until later that Pic0

f and X̄f

have the same field of definition. This reminds that what now looks obvious is the
result of many mathematical stories.

6.4.2. Half-canonical classes. All Picard components Pick
f are pair wise ana-

lytically isomorphic. Yet, finding an isomorphism analytic in the Hurwitz space
coordinates may require moving to a cover of the Hurwitz space (§10.6).

Applying Riemann’s theory directly requires having X̄f and the Θf divisor on
Pic0

f . For example, suppose there is an analytic assignment of a divisor class of
degree g − 1 on each curve X̄f in the Hurwitz family. Then, translation of Θf

by this divisor class puts it in Pic0
f . Here it would be available to construct the

θ function. Convenient for this might be a half-canonical class: two times gives
divisors for meromorphic differentials (Chap. 4).

Places marked by ⊕ in the Constellation Table of §10.1 signify inner Hurwitz
spaces components that support such an assignment of half-canonical classes. This
example shows how the Schur multiplier of a finite group appears in describing
connected components of Hurwitz spaces (§10.2). It is a taste of the nilpotent
theory arising in Modular Towers (§8.3). One last subtlety, however, occurs. Only
some half-canonical translates work to give a formula like (6.4). They must be
odd; the linear system has odd dimension (Chap. 4). This includes that θ(000) = 0:
When you plug in x = x0

i you expect h(x0
i ) = 0. For the correct multiplicity of a

zero on the right of (6.4), the gradient of the θ at 000 also must be nonzero. Such
half-canonical classes always exist (Chap. 4).

Half-canonical classes, however, attached to ⊕ components in §10.1 are even.
Sometimes they provide nontrivial θ-nulls along the moduli space.



6. ABELIAN THEORY ON X̄f AND INTEGRATION 17

Riemann was even less algebraic in relating X̄f and its Jacobian. He used
coordinates from X̃f , its universal covering space, to uniformize X̄f .

6.5. Complication 2: X̃f and nilpotent covers. The analytic isomor-
phism class of X̃f depends on the genus g of X̄f . If g = 0 it is the sphere, if g = 1
it is C and it is the upper half plane H (or disk) if g ≥ 2. As with Uzzz (§4.1),
suppose we accept that X̃f is an analytic subspace of the Riemann sphere. Then,
this comes from the Riemann mapping theorem. Still, it is not the uniformizing
space we would expect. That would be X̃ab

f , the quotient of X̃f by the subgroup
of π1(X̄f ) generated by commutators. This is the maximal quotient of X̃f that is
an abelian cover of X̄f .

6.5.1. Abelian Frattini covers. Mathematics rarely looks directly at X̃ab
f . It

embeds in the universal covering space Cg of J(X̄f ). It is on Cg that θX̄f
lives with

its zeros, the Θ divisor, meeting X̃ab
f transversally. Periods of differentials on X̄f

translate X̃ab
f into itself. Yet, it is sufficiently complicated there seems to be no

device for picturing it.
There are two models for picturing this. A standard picture shows the complex

structure on a complex torus (like the Jacobian). It is of a fundamental domain
(parallelpiped) in Cg. Then, 2g vectors representing generators of the lattice defin-
ing the complex torus (Chap. 3) give the sides of the parallelpiped. Inside this sits
the pullback of X̄f . The geometry for this picture uses geodesics (straight lines)
from the flat (Euclidean) metric defining distances on the complex torus.

Assume the genus of X̄f is at least 2. Then, the universal covering X̃f of
X̄f is the upper half plane X̃f . A standard picture for X̄f appears by grace of
this having the structure of a negatively curved space. Geodesics here provide a
polygonal outline of a set representing points of X̄f (Chap. 4). Since X̃f → X̃ab

f

is unramified, X̃ab
f inherits a metric tensor with constant negative curvature. Yet,

it sits snuggly in a flat space. Every finite abelian (unramified) cover Y of X̄f is a
quotient of X̃ab

f ; it is a minimal cover of X̄f with that property. Recall: We started
with ϕf : X̄f → P1

z. Assume it is a Galois cover, with group G.
Let Gf denote the abelian covers ψ : Y → X̄f with ψf = ψ ◦ ϕf : Y → P1

z also
Galois. Call ψf a (relatively abelian) Frattini cover if the following holds. For any
sequence Y → W → P1

z, of covers with W �= P1
z, there is always a proper cover of

P1
z that W → P1

z and X̄f → P1
z factor through. A Frattini cover has no differentials

and functions that pull back from covers disjoint from ϕf , so its function theory
isn’t accessible by knowing smaller degree covers. The most mysterious quotients
of X̃ab

f are these relatively abelian Frattini covers.
This Frattini cover notion does not require an abelian cover ψ. Still, a Frattini

cover arises always from ψ being a Galois cover with nilpotent (a product of its
p-Sylows) group.

6.5.2. No universal nilpotent cover. Relatively nilpotent Frattini covers pro-
duce natural sequences of moduli spaces generalizing sequences of modular curve
covers (§8.3). Further, these moduli space sequences interpret many expectations
about the regular version of the Inverse Galois Problem (§8). Relatively nilpotent
covers and especially relatively Frattini covers bring up a combination of group
theory and function theory. This includes many problems around new aspects of
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the abelian theory using the Frattini property. This book explores aspects of it
through these sequences of moduli spaces.

A complete understanding of all nilpotent (versus abelian) covers of X̄f requires
new, recent, ideas. An immediate difficulty is that there is no X̃nil

f similar to X̃ab
f .

Equivalently, no nontrivial subgroup of Γ0 = π1(X̄f , x0) is in the intersection of all
iterates of commutators in this group.

That is, let Γk < π1(X̄f , x0) be elements of form (g1(g2(. . . gk−1, gk) . . . ) with
g1, . . . , gk ∈ Γ0. Only {1} is in all the Γk s. So, putting structure on the complete
collection of algebraic nilpotent covers of X̄f requires profinite limits. First consider
how profinite limits appear in GQ acting on points of the moduli spaces.

7. Acting with GQ

What changes in replacing zzz by zzz′, another r-tuple of elements? You might
expect the fundamental group of Uzzz to tell nothing about changes. As a group it
remains the same. We don’t, however, use it as an abstract group. Its generators
appear directly in applications. Changing zzz forces changing generators. Yet, we
understand the braiding changes from Hr (§5.2). From elementary principles they
give a profinite guide for action of GQ.

7.1. Acting on Laurent series. Suppose σ ∈ GQ and z0 ∈ Q. Assume
f(z) =

∑∞
n=N an(z−z0)n has coefficients in Q̄. Then, σ acts on the an s, producing

fσ. The hypothesis, however, of algebraic coefficients won’t hold for f̃zzz from (4.3).
7.1.1. Setup for a test Case: r = 3. Suppose z1, z2, z3 are in Q. Change the

variable z by an element of SL2(Z) to map {z1, z2, z3} in some order to {0, 1,∞}. Six
different permutations α ∈ SL2(Z) do this, depending on the order we choose. Com-
posing Ũzzz → Uzzz with one of these produces λ : Ũzzz → U0,1,∞ = P1

λ \ {0, 1,∞}. Rie-
mann’s uniformization appears from a classical function, λ : H → U0,1,∞ (Chap. 4).

7.1.2. Uses for λ(τ). Periods of an antiderivative of F (z) form an additive
subgroup of C isomorphic to Z × Z (§3.2). In that notation, consider

m(z, w) = w2 − z(z − 1)(z − λ)

with λ ∈ P1
z \ {0, 1,∞}. Choose τ ∈ H so the function λ takes τ to the value

λ (appearing in m(z, w)). Identify Z × Z with the subgroup Hτ of C that 1 and
τ generate. Other choices of τ give the same lattice Hτ . It only depends on
λ. Let Γ(2) be the group of integral matrices congruent to the identity matrix
modulo 2. Suppose λ(τ0) = λ0. Then, τ �→ λ(τ) has as preimage of λ0 the set
Γ(2)(τ0) = {α(τ0) | α ∈ Γ(2)}: λ uniformizes H/Γ(2).

Picard used λ to show any nonconstant function f(z) meromorphic on C ex-
cludes at most three values. Assume otherwise, and f(C) excludes 0, 1,∞. Then
the monodromy theorem (Chap. 3) analytically continues λ−1 ◦ f to a function
C → H. The maximum modulus principle prevents existence of nonconstant holo-
morphic function maps C into the upper half plane. This contradiction shows f
must be constant [Ahl79, p. 307].

7.1.3. Another valuable function. Ordering the coordinates of zzz violates some
of our goals. The origins of the subject kept that in mind. Use the notation
Uλ:0,1,∞ when the variable for U0,1,∞ is λ. Six elements of PSL2(Z), forming a
subgroup S, leave stable the set {0, 1,∞}. Then, S acts on Uλ:0,1,∞. The quotient
is P1

j \ {∞} = Uj:∞. The composite from H → Uj:∞ is a Galois cover with group
PSL2(Z) (Chap. 4). It is ramified (not a topological cover) over fixed points of
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elements in SL2(Z) with eigenvalues 4th or 6th roots of 1. We use j(τ) to display
how Modular Towers of reduced Hurwitz spaces when r = 4 (four elements in C)
generalize classical modular curves.

7.1.4. GQ won’t directly act on λ and j. A theorem of Schneider-Siegel says
τ(z0) and z0 are simultaneously algebraic only if τ is the ration of periods for an
elliptic curve with complex multiplication. Therefore, even the constant term in
the expansion of λ−1(z) around z0 won’t often by algebraic. That illustrates the
extent previous generations sought to prove properties of λ(τ). Here, however, it
shows using f̃zzz directly for the action of GQ won’t work.

7.2. Profinite fundamental groups. Suppose X → Uzzz is a finite (unram-
ified) cover, and zzz consists of algebraic points. Then, X = Xf where f has the
following properties (Chap. 4).

(7.1a) It is defined by a nontrivial polynomial equation m(z, f(z)) ≡ 0.
(7.1b) m = m(z, w) has algebraic coefficients.
(7.1c) ∂m

∂w (z0) and m(z0, w) have no simultaneous zeros.

Apply the implicit function theorem (Chap. 2). It says m(z, w) has degw(m) dis-
tinct zeros in Lz0 . Conclude: Coefficients of f(z) around z0 are algebraic.

7.2.1. Grothendieck’s Alternative. Define σ ∈ GQ acting on a path γ through
what the result does to algebraic functions f :

f �→ fσ−1◦γ◦σ = fγσ .

In words: Apply σ−1 to the coefficients of f , analytically continue f around γ and
then apply σ to the coefficients of the result. The effect of γ on algebraic functions
determines it. So this determines γσ.

Problem 7.1. What does γσ look like?

Only if σ is complex conjugation c. will there be a path γ′ (independent of f) so
that represent fγσ = fγ′ . To see this, apply the theorem of Artin-Schreier: σ, if not
complex conjugation c. , either has infinite order or it is µc. µ−1 where all powers of
µ give distinct conjugates of c. . Further, σ and µ generate an uncountable subgroup
of GQ. If all the γσ s were paths, {γσ′}σ′∈〈σ〉 would have to be a countable, therefore
finite, set. Simple considerations show this is impossible.

7.2.2. Where can we put γσ? Let Q̄ be the algebraic closure of Q in C. The
collection E(Uzzz, z0)alg is in the Laurent series about z0. With no loss we’re allowed
to assume the coefficients are in Q̄.

This gives an ordering: f ≤ g if Q̄(z, g) ⊃ Q̄(z, f). Action of a path on Q̄(z, g)
determines its action on Q̄(z, f). So, paths act on the equivalence classes and
respect this ordering. Each equivalence class defines a specific function field inside
Lz0 . It is the exact data you get from a cover and a point on the cover over z0.
The ordering allows considering PPz0 , projective systems of (algebraic) points over
z0. Thus, paths act on PPz0 (Chap. 4 or [Ihar91, p. 104]).

Proposition 7.2. This action on PPz0 determines paths in π1(Uzzz, z0). The
collection {γσ}γ∈π1(Uzzz,z0),σ∈GQ

also acts on PPz0 . Define πalg
1 to be the projective

completion of this action. Then, πalg
1 is the completion of π1 by all normal subgroups

of finite index. Further, GQ acts on this.
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7.3. Extending GQ action. Extend the homomorphism π1(Uzzz′ , z0) → G to
ψzzz′,z0 : π1(Uzzz′ , z0)alg → G. As a profinite group, π1(Uzzz′ , z0)alg is also a free group
on r (topological) generators modulo one relation. Here, however, there are many
more sets of classical generators.

For GQ to act requires zzz is stable under GQ. Then, GQ acts on π1(Uzzz′ , z0)alg

through Ihara’s pro-braid group if z0 ∈ Q. Again, recognize this action through
its effect on classical generators of π1(U ′zzz, z0)alg. Dependence on z0 is so subtle,
that any two distinct choices of z0 give different actions. One remedy is to consider
only the induced action of GQ modulo inner automorphisms by π1(Uzzz′,z0)

alg. Two
further points guide investigations.

(7.2a) Unless the cover Xzzz′,z0 → P1
z coming from ψzzz′,z0 is Galois and defined

(with its automorphisms) over Q, the action of GQ won’t respect ψzzz′,z0 .
(7.2b) The action is so big, interesting properties of GQ are hard to detect at the

level of finite covers.

7.4. Motivation from the Inverse Galois Problem. Consider a finite group
G and the regular version of the Inverse Problem. It says for some zzz, G should be
the group of a cover of Uzzz with it and its automorphisms over Q. That is, G should
be an r-branch point realization over Q. To find r and this cover needs structure.

You won’t want to do one group at a time. So, we look at various quotients
of π1(Uzzz′,z0)

alg with classical generators up to an action by Hr. Then, use GQ

action to investigate when there might be a value of r and a corresponding zzz′ to
realize such a quotient over Q. Rather, however, than taking finite group quotients
of π1(Uzzz′,z0)

alg, take them maximally Frattini. Then dependence of GQ action on
zzz′ has some uniformity. This gives the application generalizing modular curves
Chap. 5 calls Modular Towers.

Start with a finite group G. Call a surjective homomorphism µ : H → G
Frattini if for any subgroup H∗ ≤ H, µ(H∗) = G implies H∗ = H. This is the
exact group translation of the cover property from §6.5.1. Suppose µ corresponds
to a sequence of covers µ∗ : X → X/ ker(µ) → X/H. Then, any proper cover W
appearing in the factorization X → X/H must factor properly through the cover
X/ ker(µ) → X/H. A profinite group G̃ gives the maximal Frattini cover of G.
All other group covers of µ : H → G are targets for the map G̃ → G. Given
ψ : π1(Uzzz)alg � G, a significant geometric invariant of ψ is the set of maximal
Frattini quotients of π1(Uzzz)alg (quotients of G̃) appearing as factors of ψ. These
Frattini invariants interpret properties of the levels of Modular Towers. Their
simplest instances refine Riemann’s theory of θ characteristics (§10.1). They give
many implications for the Inverse Galois Problem.

Conjugacy classes C hit by classical generators separate these homomorphisms
discretely. This data gives structure to the problem. A preliminary investigation
with (G,C) from the Branch Cycle Lemma (Chap. 9, see §8.2) produces a necessary
condition for a (G,C) realization (over Q). It is that C be a rational union of
conjugacy classes.

8. Extensible nilpotent functions and the group G̃

We explain the universal Frattini cover G̃ of G following the guide of Abel.
He solved an inverse problem to part of the expression by radicals problem. This
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produced dihedral group extensions, labeled by parameters still appearing in treat-
ments of modular curves. For a prime p, Zp denotes the p-adic numbers. Suppose
A and B are two abelian groups. Assume elements of A act as automorphisms of
B: a ∈ A acts on b ∈ B giving a(b). Then, form a group on A × B (called A ×sB)
using multiplication of 2 × 2 matrices:

(
a b
0 1

)(
a′ b′

0 1

)
=

(
a+a′ ab′+b

0 1

)
.

8.1. A guide from dihedral groups. Case: G = Dp = Z/p ×s {±1} has
Zp ×s{±1} and Zp ×sZ2 as the pieces of its universal Frattini cover. Patch these
together as a fiber product over Dp. This generalizes: For each prime p dividing
|G|, there is a universal p-Frattini cover pG̃ (Chap. 5). You can deal with one
prime at a time. So, for investigating the arithmetic properties of quotients of
π1(Uzzz)alg, consider the biggest quotients compatible with r and C satisfying the
Branch Cycle Lemma. Let p be a prime. Recall: A conjugacy class in a finite group
is called p′ if its elements have order prime to p.

Certain properties of pG̃ suggest levels of a tower of moduli spaces.

(8.1a) pG̃ → G has a pro-free pro-p group ker0 as kernel.
(8.1b) It has a characteristic sequence of quotients Gk, k = 0, 1, . . . .
(8.1c) Each p′-conjugacy class of G lifts uniquely to a p′-conjugacy class of pG̃.
(8.1d) Elements of Gk whose images in G generate, already generate Gk.

Form ker1 as the closed subgroup of ker0 generated by kerp
0 and the commutators

(ker0, ker0). This gives G1 in (8.1b) as the quotient pG̃/ ker1. Continue inductively
to form the other Gk s.

8.2. Applying the Branch Cycle Lemma. When there is profinite data,
or over R or Qp, the explicit formula from the Branch Cycle Lemma is valuable.

Suppose σ ∈ GQ maps to nσ ∈ Ẑ∗ = G(Qcyc/Q). Find π ∈ Sr to satisfy
zσ
i = z(i)π. Then, a (G,C) realization (over Q at zzz) implies

(8.2) Cnσ

(i)π = Ci, i = 1, . . . , r.

Suppose the following:
(8.3) C consists of r conjugacy classes whose elements have orders prime to p.
Note: Classes C from G uniquely extend to p′ classes in all Gk s. Also, suppose

(G,C) passes Branch Cycle test (8.1). Then, so does (Gk,C) for all values of k.
This illustrates a phenomenon: The groups Gk are similar. So, they produce a
guiding question.

Question 8.1. Are the Gk s so similar their realizations fall to the Inverse
Galois Problem with a k-free bound on the number of branch points?

The answer is conjecturally “No!” If you bound the number of branch points,
there should be a bound on the values of k for which Gk has a K regular realization
where K is a number field. Making this bound explicit, however, is another matter.
The Mazur-Merel Theorem is well-known. It says, for any number field K, there
is an explicit bound CK on pk+1 so that for pk+1 > CK , there are no non-cusp
rational points on the modular curve X1(pk+1). Below we see this interprets as the
easiest special case of this conjecture: There are but finitely many four branch point,
dihedral group involution realizations. The first step in the process forces us into
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investigating the structure of some Modular Tower. An H-M (Harbater-Mumford)
representative of (G,C) is an r-tuple ggg ∈ C with this property:

(8.4) 〈ggg〉 = G and g2i−1 = g−1
2i , i = 1, . . . , s with r = 2s.

Approach the following statement by considering r′ to be very large (say, two
trillion). Then, consider if you can see a difference between the following cases.

(8.5a) G is the monster (or use your favorite simple group) and p = 2.
(8.5b) G is D5 and p = 5.

Theorem 8.2. Fix r′. Suppose there are (Gk,Ck) realizations over Q with
rk ≤ r′ conjugacy classes in Ck, for each k ≥ 0. Then, there exists r ≤ r′ and
p′-conjugacy classes C with (Gk,C) realizations over Q for all k.

If p = 2, each (Gk,C) realization falls on a Hurwitz space component corre-
sponding to an Hr orbit containing H-M representatives.

8.3. Thm. 8.2 and Modular Towers. Thm. 8.2 (Chap. 5) produces p′ con-
jugacy classes C in pG̃ and a sequence {zzzk}∞k=0 of Q-stable unordered r-tuples
of distinct points from P1

z. This sequence has the property that zzzk lies under a
(Gk,C) realization. Further, suppose p = 2. Then, the attached homomorphisms
π1(Uzzzk

)alg → pG̃ send classical generators of π1(Uzzzk
)alg to H-M representatives in

pG̃ so the induced quotient to Gk has GQ-stable kernel.
Chap. 5 shows how this system of realizations fits into a system of moduli

spaces generalizing classical modular curves. Consider all maps π1(Uzzz, z0) → pG̃
with generators ggg mapping to C as zzz runs over Ur (z0 �∈ zzz). For each k this
produces an affine algebraic variety Hk. Its C points correspond to equivalence
classes of maps π1(Uzzz, z0) → Gk (with zzz variable). The group GL2(C) acts on
these spaces. The quotient is another affine variety Hrd

k , level k of the Modular
Tower for (G,C, p).

A significant case: G = Dp (p odd), p the prime and C is r = 4 repetitions of
the conjugacy class of involutions (elements of order 2) in Dp. Then, Hrd

k is the
modular curve X1(pk+1) minus its cusps. Each case with r = 4 produces a tower
of curves, respective quotients of the upper half plane by finite index subgroups
of PSL2(Z). Usually the Modular Tower levels are noncongruence covers. They
always have a useful moduli space structure.

8.4. A diophantine view of a nilpotent theory. Generalizations of the-
orems of Mazur and Serre now have formulations through the action of GQ on
projective systems of points on the spaces

(8.6) · · · → Hrd
k+1 → Hrd

k → · · · → Hrd
0 → U rd

r = Jr.

Conjecture 8.3 (Main Conjecture). Suppose (G,C, p) is data for a Modular
Tower. Assume G is centerless and does not have Z/p as a quotient. For k large,
Hrd

k has no Q points.
8.4.1. Interpreting the Main Conjecture. Thus, Q realizations of Gk require in-

creasing large sets of conjugacy classes for k large. This is more refined information
than from any known versions of the Branch Cycle Lemma. If p = 2, Thm. 8.2
says rational points will appear only on H-M components of the sequence, and this
refines the problem immensely. Changing Q to another number field K requires
significant generalization (Chap. 5).

Here is a response to the setup of cases from (8.5). Both require information on
the geometry of Modular Tower levels we don’t know yet. The dihedral group case
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(with r equal two trillion) looks easier because it translates to statements about
classical moduli spaces: The moduli of cyclic 5k+1 degree covers of hyperelliptic
curves (of genus 1,000,000,000,000-1). No one knows if this space is without Q
points for large k. Suppose the curves in the family have genus 1. Then we know
much since the Modular Tower levels are modular curves.

Yet, with the monster, there could be surprises. For example, for (A6,C35)
with p = 2, there are no Q points at level 1 of the Modular Tower. Reason: There
are no points at level 1 at all, the result of the ⊗ symbol at (6,5) in the Constellation
Table of §10.1. The case r = 4 gets much attention for problems that immediately
generalize those for modular curves (§10.5).

8.4.2. Nilpotency from projective systems of points. Let X be a compact Rie-
mann surface. Denote the pro-p quotient of the fundamental group of X by
π1(X)(p). When this group appears only up to inner automorphism, we drop the
notation for the base point. Thm. 8.2 includes a nilpotent theory. Consider one
of the homomorphisms ψzzz : π1(Uzzz, z0)alg → pG̃ mapping a fixed set of classical
generators of into the p′-conjugacy classes C.

Let X0 → P1
z be the G quotient cover from this homomorphism. For investi-

gating all possible such maps ψzzz, note it factors through a smaller quotient group
of π1(Uzzz, z0)alg. This is an extension Mzzz (independent of ψzzz as a group extension)
of G = G0 by π1(X0)(p).

Call two such homomorphisms Mzzz → pG̃ → G0 inner equivalent if they differ
by inner automorphisms from ker0 in (8.1a). Suppose X0 = Xppp → P1

z corresponds
to ppp ∈ Hrd

0 . Projective systems of points on the Modular Tower over ppp correspond
to inner homomorphism classes of Mzzz → pG̃ → G0. Shorten this phrase to a
point on the Modular Tower. In this case refer to Mzzz as Mppp. Let the set of inner
homomorphism classes be Tppp.

Homomorphisms factoring through pG̃, surjective to G0, map surjectively to
pG̃ (from (8.1d)). Let g = g(Xppp) be the genus of Xppp — transparent from C by the
Riemann-Hurwitz formula. So, π1(Xppp)(p) is a free pro-p group on 2g generators
modulo one commutator relation.

8.4.3. GQ action on Ni(pG̃,C)in. The notion of Nielsen class (§5.4) applies
uniformly to (pG̃,C). Its absolute and inner versions inherit an Hr action. Orbits
for this action correspond to projective systems of components at the levels of the
Modular Tower. Reducing this action modulo ker0 maps each orbit to an Hr orbit
at level 0. Components of Hrd

k (over Q̄) map among each other by GQ acting on
the coefficients of their equations.

We don’t often see equations for these moduli spaces. So, figuring this action
from the data is one of our main problems. From this, regard GQ as acting on the
Hr orbits in Ni(pG̃,C)in. In the An examples of §10.1, there are components at a
finite level k that have no projective system of components above them. This could
happen with any (G,C). The invariant in §9.1 catches these obstructed components
precisely, when you can compute it (Chap. 5).

Problem 8.4. Compute the GQ action on Hr orbits of Ni(pG̃,C)in. Also,
compute the pattern of chains of obstructed components.

8.4.4. A nilpotent Tate Grassmanian. For G any finite group this theory has
a large pro-nilpotent part. Thus, it generalizes the abelian theory setup.
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Suppose zzz ∈ Ur lies below a Q point ppp ∈ Hrd
0 . Then, GQ acts on π1(Xppp)(p)

(modulo inner automorphisms) as a quotient of the action on π1(Xppp)alg. Act by
GQ on the quotient of π1(Xppp)(p) by the closed subgroup of commutators. Denote
this quotient by Tppp, the Tate module for p. This gives the theory of abelian covers
of Xppp with group order a power of p. Its relation to the Jacobian of Xppp is clear. It
is the projective system of points of p-power order on the Jacobian.

Continue the actions of GQ. Suppose α is in Tppp. Then, σ ∈ GQ acts on α (on
the right) through the composition α◦σ (Chap. 9). There is a Lie algebra structure
on π1(Xppp)(p). Using it and the Weil pairing allows dualizing these maps. The result
is T ∗ppp , a nilpotent version of GQ acting on a Grassmannian of a Tate module of the
Jacobian for Xppp (Chap. 5).

One goal of Modular Towers is to provide small actions for GQ. Modular
Towers retains the feel of finite groups. Though a generalization of modular curves,
the group theory reminds of situations yielding groups as Galois groups. Chap. 9
reviews achievements of that program, appearing in detail in [Se92], [MM95] and
[Vö96] (see [Fri94]). In particular, the Dettweiler-Völklein generalization of Katz’s
rigid tuples [DVo98] pushes realization of Chevalley simple groups to a new place.
It produces many cases with G0 simple where Q points are dense in Hrd

0 .
These give a setting for ĜT relations close to the Inverse Galois Problem ter-

ritory. Yet, the pro-finite elements of Modular Towers are like those of modular
curve towers, suitable for checking the effect of these constraints. One goal is to
see if ĜT relations force significant quotients of pG̃ to have Q realizations.

9. The Grothendieck-Teichmüller group

When GQ acts on fundamental groups related to moduli spaces, that action
preserves underlying geometry. Often that geometry is not obvious to us. So,
asking what to expect from a GQ action has us delving more deeply to where the
geometry appears. The principle everyone uses occurs in divining components of
a moduli space. The expectation is GQ should map these components among each
other, unless a geometric reason prevents it.

9.1. Moduli spaces with several components. The Constellation Table
of §10.1 illustrates this. Superficially the two components appearing at the locus
(n, r) (r ≥ n) have much in common. Action of GQ, however, on their equations
leaves them fixed. Setup: The only alternative is it maps one of them to the other,
because their union is a moduli space. Finish: The Schur multiplier invariant gives
a geometric condition separating the components (§10.2.2).

Does GQ have relations appearing everywhere in moduli space actions? These
would induce relations for GQ acting on all related moduli spaces (Chap. 5). The
Grothendieck-Teichmüller group offers such relations. We discuss now the implica-
tion of these for the Inverse Galois Problem. Recall the space Jr = Ur/PGL2(C)
and its relative Λr = (P1

z)
r \ ∆r when r = 4: Λ4 = Uλ:0,1,∞ (§7.1.1).

§4.1 has a description of the extensible algebraic functions E(Λ4, λ0)alg. Each
starts from a Laurent series in λ0 that analytically continues along any path in Λ4.

9.2. Deligne’s tangential base points. Deligne suggested an extra struc-
ture to E(Λ4, λ0)alg by expanding the choices of base point [De89]. The elements
of Lλ0 sit inside an algebraically closed field Pz0 , convergent Puiseux expansions
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around λ0 (Chap. 2). They look like Laurent series in (λ − λ0)1/e for some integer
e. They don’t, however, work as functions in a neighborhood of λ0 (Chap. 2).

Give the special case λ1/e meaning by making it take positive values along the
real axis pointing from 0 to 1. This produces an analytic expression convergent in a
neighborhood of any point on the positive real axis between 0 and 1. An alternative
would ask λ1/e to take positive values along the real axis in the negative direction
from 0 to −∞.

Distinguish between those two choices. Extend the meaning of the first to all
Puiseux expansions about 0 using the notation P0 1. Each produces a meromorphic
function defined near 0 to the right of 0. Similarly, for the second choice use the
notation P0 ∞. Each element in this defines a meromorphic function near 0 to the
left of 0. To be explicit, choose an open disk (on P1

λ). It should be symmetric about
the real axis, tangent to the imaginary axis and contain part of the real axis from
0 to 1 (Chap. 2). Denote this disk D0 1.

For any i and j, distinct elements from {0, 1,∞} form the similar set of functions
Pi j. The ordering from §7.2.2 on algebraic functions in L0 extends to algebraic
elements of P0 1. So does the action of GQ extend (Chap. 4).

Denote the set of ordered arrows by B. Label the linear fractional transforma-
tions that permute {0, 1,∞}: ti j takes i to 0, j to 1 and k to ∞. Apply ti j

−1 to
D0 1 to get similar disks Di j attached to Pi j.

Principle 9.1 (Branch Extensibility). Consider f ∈ E(Λ4, λ0)alg and i, j dis-
tinct elements from {0, 1,∞}. Suppose γ : [0, 1] → Λ4 is a path with γ(0) = λ0

and γ(1) in Di j. Then, there exists a unique Ffγ ∈ Pi j restricting to fγ . The
collection of order preserving maps on the equivalence classes of fields C(λ, Ffγ

) is
π0 1 = π1(Λ4, 0 1)alg. It has a natural GQ action (Chap. 4).

Let x be a clockwise circle ([Ihar91] takes counterclockwise; see comments of
§11) around 0 meeting D0 1. It represents an element of π0 1 from Princ. 9.1. For
example, suppose in the definition of Ffγ that γ(1) is on x. Take F = Ffγ equal to
h(λ1/e) with h meromorphic around 0. Let ζe = e

2πi
e .

The effect of x on F is the substitution λ1/e �→ ζ−1
e λ1/e. So, σ−1◦x◦σ (following

§7.2.1) gives this sequence of operations on a power series. Act on coefficients with
σ−1, then substitute ζ−1

e λ1/e, then act by σ on the resulting coefficients. Use the
notation of §8.2: nσ is restriction of σ to cyclotomic numbers. The total effect is
the substitution λ1/e �→ ζ−nσ

e z1/e. So, xσ = xnσ .

9.3. The first two relations. Following [AnIh88], the ti j s act on Puiseux
expansions. So, they give maps among the fundamental groups πi j.

9.3.1. Continuations from 0 1 to 1 0. Extend this to the fundamental groupoid
(Chap. 3), to give π0 1 1 0 = π1(Λ4; 0 1, 1 0). Let γp : [0, 1] → Λ4 be a path running
along R ∪ {∞} from 0 toward 1, with γp(0) ∈ D0 1 and γ(1) ∈ D1 0. As with x it
defines an element of π0 1 1 0.

Let x′ be the transform of x by t1 0 (λ �→ 1 − λ). Take y = γp ◦ x′ ◦ γ−1
p . Then,

y represents an element of π0 1. Even easier than x, σ−1 ◦ y ◦ σ has the effect of
γσ

p (x′)nσ (γ−1)σ. Let mσ = γσ
p γ−1

p . Then yσ equals mσynσm−1
σ .

Since x and y are topological generators of π0 1, the effect of σ on them de-
termines the action of σ. It makes sense to write mσ(x, y). If P1 and P2 are two
both homotopy classes of paths with the same end points, then they are conjugate.
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Even though this is a profinite group, apply this to γp and γ−1
p . Therefore, mσ is

a commutator in the pro-free group x and y generate.
9.3.2. The product-one relation. Most significant is what σ does to xy. Equiv-

alently: What is zσ, with z = (xy)−1 the 3rd element in a product-one relation (as
in (5.1)). The formula for this comes from the first two Drinfeld-Ihara relations:

(9.1a) mσ(x, y)mσ(y, x) = 1; and with uσ = nσ−1
2 ,

(9.1b) mσ(z, x)zuσmσ(y, z)yuσmσ(x, y)xuσ = 1.
Apply t1 0 to mσ(x, y) to see (9.1a). Let r be the half-circle from the center of

D1 0 to the center of D1 ∞ going clockwise. Then, r defines an element of π1 0,1 ∞.
Expression (9.1b) comes from applying σ to the geometric relation

t1 ∞
2(r ◦ γp) ◦ t1 ∞(r ◦ γp) ◦ (r ◦ γp) = 1.

We left out the famous 5-cycle relation [Ihar91, p. 107]. It forcefully appears soon.
9.3.3. Return of the j-line. There is a conspicuous quotient of the fundamental

group of π1(P1
j:0,1,∞) (§7.1.3). It has generators γγγ:

γ0 = q1q2, γ1 = q1q2q1 and γ∞ = q2

from a quotient of H4 (Chap. 5; see §5.3). These satisfy
(9.2) γ3

0 = 1, γ2
1 = 1, γ0γ1γ∞ = 1; the group 〈γ0, γ1〉 is PSL2(Z).

When r = 4 a reduced Hurwitz space has a Riemann’s Existence Theorem de-
scription coming from these generators acting on a reduced Nielsen class (Chap. 5).
The geometry of the reduced Hurwitz spaces {Hrd

k }∞k=0 shows from analyzing γγγ.
Most crucial are disjoint cycles of γ∞,k, the result of γ∞ in its action on Nirdk .

Principle 9.2 (Cusp Principle). Each disjoint cycle of γ∞,k corresponds to a
cusp point for H̄rd

k over j = ∞. Further, each cusp has its own geometry.

9.4. Detecting ĜT at the level of a Modular Tower. Relations (9.1) have
versions for action of GQ on γγγ. Yet, we must generalize them beyond their present
shape to have them suit the geometry of a Modular Tower. Here is why.

9.4.1. Viewing tangential base points from P4. Deligne’s tangential base points
come from components of real points on (P1

z)
4\∆4 = U4. An example is Rz1,z2,z3,z4 :

4-tuples of distinct points on R ∪ {∞} = R∞ where the four points are in the
same order as (0, 1,∞,−1) around the circle. Rearrangements from permuting the
elements {z1, z2, z3} produce new connected components. To get to B, mod out by
the subgroup of PSL2(R) stabilizing each component.

Formulas similar to (9.1) allow working directly with H4. Replace elements of
B with the image of Rz1,z2,z3,z4 in P4 \D4 = U4. This is in [IM95] which also treats
higher values of r.

9.4.2. Other real component configurations. The sets Rz1,z2,z3,z4 often fail to
capture the cusp geometry on a Modular Tower. Here is an example. Real points on
level 1 of the (A5,C34) Modular Tower (§10.1, §10.3) lie on the genus 12 component
of H̄rd

1 . Denote that H̄+
1 .

Real points on H̄+
1 collect in eight disjoint components, each associated to a

cusp (of width 20). Four attach to H-M representatives in this Nielsen class (§8.2).
Let CPz1,z2,z3,z4 = {z1, z2 ∈ H | z3 = z̄1, z4 = z̄2}: Two sets of complex conjugate
pairs of points, with the first two in the upper half plane. The preimage in the
inner Hurwitz space of these eight components is 32 real components. Each lies
over a locus of real points in U4 with preimage in U4 of type CPz1,z2,z3,z4 .
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There are
(

4
2

)
= 6 choices for which two coordinates to put in the upper half

plane. Then, counting possible lower half plane pairings with z1 gives a total of 12
such real components of U4. Action of PSL2(R) on CPz1,z2,z3,z4 has a hyperbolic
description (Chap. 2). Put z1 at i under this action, so orbits of z2 are points at a
fixed (hyperbolic) distance from i.

To choose an explicit representative from each orbit, take a (hyperbolic) circle
from i to i + 1: A half circle perpendicular to the real axis through i and i + 1.
Then, the interval description for Deligne’s tangential base points has as analog the
portion of the circle from i to the right of i going through i + 1.

9.5. Variants of the Drinfeld-Ihara relations Chap. 9. There was a first
definition of ĜT . It was a subgroup of the automorphisms Aut(F̂2) of the profree
group on generators x and y.

9.5.1. ĜT : A moving target. ĜT ’s elements are automorphisms of the form
(x, y) �→ (xn, mynm−1): n ∈ Ẑ∗ and m ∈ (F̂2, F̂2) satisfy relations 9.1 (with the
5-cycle relation). The composition of two is another automorphism. That this
composition also satisfies the relations is more serious. This gives a group structure
to such pairs (n, m).

After the first definition, there was speculation ĜT might contain GQ as an
open subgroup. These days, however, ĜT presents a moving target. Recent joint
work of Nakamura and Schneps reveals new relations satisfied by the image of GQ

in ĜT . Its unclear whether to relabel ĜT appropriately for these relations or to
start indexing a sequence of ĜT -like groups. Yet, there are still only few of them
and each is precious.

9.5.2. Cusps producing other base points. Consider GQ acting as permutations
on Hr orbits of a reduced Nielsen class (§8.4.2).

Several steps are necessary to include ĜT type relations (Chap. 9). First: De-
velop corresponding relations from tangential base points using components like
CPz1,z2,z3,z4 (as suggested in [Fri95a, App. C-D]).

Second: Complete comparing with ĜT by extending this action to Ni(pG̃,C)rd.
This works because H4 acting on generators of the 4-punctured sphere identifies
with a subgroup H ′

5 of H5. We explain.
As in §5.2, consider (P1

z)
5 \ ∆5 = U5. There is a fibration, U5 → U4 by

projection on the first four coordinates. Embed S4 in S5 as the permutations
leaving 5 fixed. Then, S4 acts to give a new fibration, U4 × P1

z5
\ D′5 → U4 with

D′5 the image of ∆5 in P4 × P1 (Chap. 5, [BF82], [DFr99] for the R analysis).
Even without this quotient, analogs of all ĜT relations would appear. The fiber is
a copy of P1 minus four points, with classical generators identified with words in
Q1, . . . , Q5. So, even analogs of the 5-cycle relation (Chap. 9) show in identifying
the GQ action on Ni(pG̃,C)rd when r = 4.

Comparison between ĜT and Modular Towers then has these practical goals.
Use all cusps on a Modular Tower to define the ĜT attached to that Modular Tower.

Problem 9.3. What do ĜT relations applied to Modular Towers detect about
Q orbits on Ni(pG̃,C)rd. Compare with the Branch Cycle Lemma and ω (§10.2.2)
invariant combination?

We conclude by tying together four advanced goals of the research motivating
this book. It is convenient to do this by joining classical θ-functions to Modular
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Towers. Each diophantine element of this section gives specific detailed results on
the Modular Towers of this example (Chap. 5).

10. Combining the Existence Theorem and θ functions

The first Hurwitz spaces were moduli spaces of simple branched covers. In this
case the Hurwitz spaces are connected. An easy application of the Riemann-Roch
theorem then shows connectedness of the moduli space of curves of genus g.

10.1. Theta functions and Hurwitz spaces. An example with many ap-
plications comes from covers with alternating groups An as monodromy groups.
Take An, n ≥ 4, with the prime p = 2 and 3-cycles (r of them) as data for a
Modular Tower. The usual representation Tn gives an absolute space of degree n
covers with group An. There is a corresponding inner space of Galois covers (as
in (5.5)). The following diagram displays the complete set of inner Hurwitz space
components at level 0 of their Modular Tower.

Locations in this diagram have an attached integer pair (n, r). The location
shows components of the inner Hurwitz space for (An,C3r ). Abbreviate this to
Hin

n,r. The corresponding absolute spaces would be for the data (An,C3r , Tn), or
Habs

n,r . The group is the alternating group An. Conjugacy classes are r repetitions
of 3-cycles. There is a famous spin group cover of An, Ãn where Ãn → An is a
central nonsplit extension with kernel Z/2. The universal 2-Frattini cover of An

(as in (8.1) automatically factors through Ãn. This is a special case of a general
phenomenon. The universal p-Frattini cover pG̃ of any perfect group G factors
through the universal central extension of G.

Labels for rows are by the genuses of the degree n covers. The relation between
the spaces Habs

n,r and Hin
n,r comes from a corollary in [Fri96].

Proposition 10.1 (Absolute-Inner). The natural map Hin
n,r → Habs

n,r has degree
2. Each component of the former maps to a corresponding component of the latter.

10.1.1. Explanation of the symbols. Two primitive icons appear. The symbol ⊗
corresponds to a(n irreducible) component whose points represent covers X̂ → P1

with this property. A special degree two unramified cover Ŷ → X̂ satisfies
(10.1) Ŷ → P1 composed from Ŷ → X̂ and X̂ → P1 is Galois with group Ãn.

Then, ⊕ denotes a component of covers in Hin
n,r having no such Ŷ cover. Ex-

cluding the genus 0 row, all rows have exactly two components. One is of ⊗ type,

Table 1. Constellation of spaces H(An,C3r )in

Components correspond to lifting invariant values.
Genus at (n, r) of degree n cover: g = r − n + 1

of the Galois cover: g∗ =
(r−3)n!

6

g≥1−→ ⊗⊕ ⊗⊕ . . . ⊗⊕ ⊗⊕ 1≤g←−
g=0−→ ⊗ ⊕ . . . ⊗ ⊕ 0=g←−

n ≥ 4 n = 4 n = 5 . . . n even n odd 4 ≤ n
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the other of ⊕ type. The spin group cover of alternating groups reveals its presence
in components of Hurwitz spaces.

10.1.2. Subtleties about Schur multipliers. This phenomenon holds in general.
Schur multipliers of finite groups produce distinct components of the Hurwitz space.
For each conjugacy class C in C, let bC be its multiplicity of appearance in C. A
generalization of a Conway-Parker result has as hypothesis that bC is suitably large
for all C in C. Conclusion: Distinct components in level k of a Modular Tower
correspond exactly to elements in a subgroup of the Schur multiplier.

Yet, whether bC is suitably large depends on Gk (or on k) with G = G0 fixed.
This is the issue of §10.2. The Constellation Table shows level 0 of Modular Towers
for all alternating groups with p = 2 and 3-cycle conjugacy classes.

Further, covers in one component differ from those in another in a simple
striking way. Suppose ϕ̂ppp : X̂ppp → P1

z is a cover attached to ppp ∈ Hin
n,r. Then the

differential dϕ̂ppp has a divisor of form 2D̂ppp. (This happens whenever all elements
in the conjugacy classes C have odd order.) The divisor D̂ppp is canonically defined
over ppp. Let dim(D̂ppp) be the dimension of the space of meromorphic functions h on
X̂ppp for which (h) + Dppp ≥ 0 (Chap. 3, Chap. 4).

So, D̂ppp defines a half-canonical divisor at each point on Hin
n,r, and a half-

canonical divisor class on Hin,rd
n,r . A formula of Fried-Serre ([Fri96], [Ser90b])

says the components of Hin,rd
n,r separate according to dim(D̂ppp) modulo 2. For r ≥ n,

there is an ⊕ component of even half-canonical classes, the other of odd. For the
components of Habs

n,r , define a similar divisor Dppp. Then, the formula for even or odd
half-canonical classes is dim(Dppp)+ r [Ser90b, Thm. 3]. Note: When Xppp has genus
0, dim(Dppp) is 0. Alternating ⊗ and ⊕ signs in the first row of the Constellation
Table correspond exactly to r. §10.2 shows this is a small piece of an invariant
applying to every Modular Tower.

10.2. Conjugacy class products. Examples show the Branch Cycle Lemma
and ω invariant (§10.2.2) combination work well in this profinite context. Still,
computing ω is not yet easy.

10.2.1. How modular representations appear. Computing the ω invariant for a
Modular Tower relies on modular representation theory. The ω invariant is trivial
for the usual modular curve tower. Here the kernel of pG̃ → G is one dimensional
(pG̃ = Zp ×s{±1} and ker0 = pZp). It is, however, more interesting for Modular
Towers in the Constellation Table of §10.1.

Consider the location (5, 4). Four repetitions of the conjugacy class C3 of 3-
cycles appear there. Here consider it a conjugacy class in 2Ã5 (pG̃ for A5 and p = 2).
As above, let C4

3 be all products of four elements from C3. Let Mk be Gk/Gk+1,
the Gk module associated to level k. For any Gk submodule M ′

k of Mk there is a
quotient Gk+1/M

′
k = G′k. A special case is when Mk/M ′

k = Wk is maximal for Gk

acting trivially on it.
Suppose G0 is a perfect group (includes any simple group). Then, Wk is the

maximal exponent p Schur multiplier of Gk and G′k = Rk, the representation cover
of Gk (Chap. 5). This A5 case has p = 2 and Rk → Gk has kernel Z/2 for each k.

Let O be an Hr orbit of Ni(Gk,C) with ggg a representative. Since Rk → Gk is
a central extension, ggg has a unique lift to g̃gg ∈ Rr

k ∩C. If the product-one condition
holds for g̃gg, then it is in Ni(Rk,C). Otherwise let s(ggg) ∈ Wk be the product of the
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g̃gg entries. Running over all such orbits O creates a subset Obs1,k = Obs1(Gk,C)
of Wk not containing the identity.

Suppose O is an Hr orbit with s(ggg) = 1. Consider Mk+1 � M ′
k � Wk, with

M ′
k a Gk submodule. Call O obstructed at M ′

k if these two properties hold.

(10.2a) ggg lifts to Ni(G′k,C), but not to Ni(Gk+1,C).
(10.2b) M ′

k is minimal with this property.

From [FrK97, §2] (or Chap. 5), Gk+1/M
′
k has a nontrivial p part to its Schur

multiplier. Also, M ′
k contains a proper submodule distinct from 111Gk

. Under these
assumptions (running over allowable orbits O) put M ′

k in the set Obs2,k. We state
a problem only C = C3r (general formulation in Chap. 5). The answer is not
known even if r = 4.

Problem 10.2 (Commutator Problem). Fix r ≥ 4 even. What are the elements
of Obs1,k = Cr

3 ∩Wk \ {1}? Suppose k is large. Is this set just the identity? Then,
the same question for Obs2,k where we ask if it is empty for k large.

10.2.2. Interpreting Problem 10.2. Notice the problem is about commutators.
Suppose r is even and C is any conjugacy class with C = C−1. Then, elements of Cr

are products of r/2 commutators of form (g, g′) with g, g′ ∈ C. Now assume G0 is
a perfect group. Then, so are the Gk s for all k. Therefore, for r large, all elements
of Gk are in Cr. The crucial elements are in Wk? For example, make a graph on
the group Gk. Elements of Gk are the vertices, and edges are pairs g1, g2 ∈ Rk

with g1g
−1
2 ∈ C. As a function of k, what is the minimal distance between 1 and

Wk \ {1}?
The sets Obs1,k and Obs2,k give a version of the ω invariant (§10.2.2, Chap. 5,

[Fri95a, Part III], [Ser90a]). This big invariant ω(O) is a collection of conjugacy
classes in the kernel of pG̃ → G0. An H4 orbit that contributes to the sets Obs is
obstructed; O has nothing above it at level k + 1. Suppose we know these sets and
they determine the Q̄ components of Hrd

k . Then, it is easy to compute definition
fields of obstructed components contributing to Obsi,k i = 1, 2.

10.3. The diophantine effect of few components. Take r = 4. Chap. 5
shows the genus of components in the sequence (8.6) goes up with k. That suffices
to prove Conj. 8.3 when r = 4. For example, level 0 of the (A5,C34) Modular Tower
(§10.1) has one genus 0 component. Yet, level 1 has two components of respective
genuses 12 and 9. The latter is obstructed [BFr02].

This one example illustrates the influence of Schur multipliers (equivalent to
distinguishing θ characteristics). Why no obstructed component at level 0, and
then such appears at level 1? The Schur multiplier presence at level 1 comes from
two same length (1152) H4 orbits on Niin1 . So, the inner Hurwitz space has two ab-
solutely irreducible components of the same degree as covers of U4. Yet, they aren’t
conjugate under GQ. The H4 orbits gave distinct permutation representations that
show profoundly in the cusps of the reduced spaces cover P1

j .
Suppose r = 4 and all components at some level of a Modular Tower have genus

least 2. This assures only finitely many points (no matter what is the number field
K) at some level k. That does come from Falting’s Theorem (the former Mordell
Conjecture [Fal83]), though there are other older techniques that are more explicit
about computing the exceptional values of k [Fr02, §5].
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What, however, will help analyze levels of a Modular Tower when r ≥ 5; they
are no longer curves? We don’t know. It would be valuable to show level k compo-
nents are varieties of general type for large k. Then, according to a conjecture of
Lang, rational points on that level would lie in a lower dimensional subset. That
would be progress, though not the quality of Conjecture 8.3.

More to the point would be a canonical height on a Modular Tower. Having in
print background for developing this is an important goal of this book.

10.4. Height functions. Let K be a number field. Let H†k be the unob-
structed components of Hrd

k (§10.2.1). The goal is a function HG,C : Hrd
0 → R

whose properties prove Main Conjecture 8.3. That’s simple enough and too much
to expect. So, following [Fal83], aim for a finiteness result. Consider finding func-
tions Hk : Hrd

0 → R, k = 0, . . . , with these properties.

(10.3a) Hk(ppp) is nondecreasing in k for each fixed ppp.
(10.3b) For k large it is positive on a nontrivial Zariski open subset Vk of Hrd

0 .
(10.3c) Hk is a sum of local height functions, one for each prime dividing |G|.
(10.3d) There are no K points on H†k over Vk.
(10.3e) When r = 4, H†k consists of finitely many curves. For k large, Hk should

detect that the genus of all components of H†k has gone beyond one.

Should such a function be effective? Bounding k with Hk not positive on an
open set is only one critical problem. As important is to describe the nonordinary

(see §10.5) locus that is the intersection of ∩k(H†0 \ Vk). There also must be an
overall measure using the branch points. The primes dividing |G| contribute heavily
to a measure of how branch points behave.

10.5. Introducing nonordinary points. We prefer to think of Conj. 8.3
as the Main Operating Conjecture. It’s value is to find failures in nonobvious
places. These would provide astounding realizations for Inverse Galois Problem.
[FKVo98] has an example of a Chevalley group G0 = PGLn(p) (with certain
special p and n and conjugacy classes C (with r = 5). The p-adic version G† is
a p-Frattini cover of G0 (a common phenomenon, attested to in [Ser86]). It has
characteristic quotients G†k formed as in (8.1). Then, there is a projective system
of (G†k,C) realizations (over some number field K).

Since G† is a p-Frattini cover of G0, it is the image of a map pG̃ → G†. Let ker∗

be the kernel of this map. So, this gives a K point on a significant Modular Tower
quotient. There is exactly one point in Hin,rd(G0,C) under a K point in the tower.
It would be proper to call such a point extraordinary . The literature, however,
uses the name nonordinary point. Justifying that name, and locating nonordinary
points and there corresponding Modular Tower quotients is a topic motivated by
classical problems.

10.5.1. R contribution to height. Cusps of Hrd
k guide us to the behavior at the

real prime. Cusps attached to H-M representatives give a degeneracy that goes
with R contribution to the height function. This is what happens at level 1 of the
(4, 5) location. Elementary techniques of [BFr02] and [DFr90] use uniformization
of R points on Hurwitz spaces.
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The less elementary part comes from interpreting them with group theory.
Combining this with tangential base points as in §9.4.2 allows analyzing new func-
tions on a Modular Tower. This includes the even θ-nulls from §6.4.2, which relate
to other functions:

(10.4a) half-canonical differentials on the space Hin,rd; and
(10.4b) Scholl’s Eisenstein series associated with cusps [Scho86].

The cusp tangential base point geometry allows quantifying the amount of degen-
eracy as points of the moduli space approach the cusp. Cusps attached to H-M
representatives (as in (8.4)) support a total degeneracy. Including contributions for
all cusps is still an open problem.

10.5.2. Combining geometry and function theory. Here is one development with
modular curve precedents. Consider a Modular Tower (with r = 4) and a degree 0
divisor D supported in cusps of a component at some level of the tower. Sometimes
such a D generates a torsion group on the Jacobian of the tower component. Cases
include when the support of D consists of cusps associated to H-M representatives
(as in ⊕ components of §10.1). We give a brief outline.

Under the hypotheses, consider the automorphic function θ0 on the reduced
Hurwitz space coming from the θ-nulls along the fibers of the family. Scholl asso-
ciates to D a sum ED of Eisenstein series. Since D is a divisor on the curve giving
the Modular Tower component, it corresponds to a logarithmic differential on this
curve (§6.3.1). This is ED.

So, following (6.4), our goal is to evaluate ED using θ functions. An example
place would be the level 0 component Hrd

0:(5,4) = Hrd
0 of the Modular Tower at locus

(5, 4) of the §10.1 Constellation Table. This component has genus 0. Its Jacobian is
trivial. So we don’t mean a θ function on Hrd

0 (or on Hodd
0 where this computation

really happens, see §10.6). Yet, it is much more than a genus 0 curve. It is a moduli
space from whose points we gather data.

Evaluate a significant 3rd kind differential such as ED from θ0 at each cusp
tangential base point (as in §9.4.2) in the support of D. As θ0 is canonically
defined for a family over Q, its expansion at the cusps has algebraic coefficients. A
Theorem of Waldschmidt [Wa79] interprets this algebraic coefficient statement. It
is equivalent to D generating a torsion group in the Jacobian.

Since these components are moduli spaces, this has interpretations for the
Inverse Galois Problem. Here is a low-brow corollary of the geometry in this story.
There are exactly three regular C34 realizations (up to SL2(Q) action) of the spin
group cover of A5. These realizations correspond to three points on the genus 1
pullback of Hrd

0 to the λ-line. The cusps there generate a group of order 12 over Q.
Nine of those points are cusps, but three are not.

A bigger story, however, requires considering a curve X̂ppp (of genus 21) corre-
sponding to a point ppp in the real locus of a tangential base point of §9.4.2 type.
Calculation of ED gives a measure of how X̂ppp degenerates (into unions of copies
of P1

z) as it pushs along toward evaluation at the tangential base point. It is a
bigger story because function theory informs about cusps on all projective systems
of components in the Modular Tower. Height data involves all levels of a Modular
Tower. Chap. 9 tells that story, related to [R77], [CTT98] and [GR78].

This focused example brings together function theory, geometry and arithmetic
on a Modular Tower. It illustrates many potential applications of Modular Towers.
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10.5.3. p contribution to the height. This investigation comes from restricting
the action of GQ to GQp , p the prime of the Modular Tower. After Hasse’s invari-
ant, the idea of nonordinary points for p started with Serre-Tate theory ([Se72],
[Se68]). Ihara used Hasse’s invariant in examples that still inform us [Ihar00].
Mochizuki’s use of canonical Frobenius elements defines the meaning of ordinary
(and nonordinary?) directly [Moc96]. His theory, however, must descend from
the moduli space of curves of genus g to the moduli spaces in a Modular Tower.
Defining and identifying nonordinary points on a Modular Tower is at the top of
the problems this text aims at (Chap. 9).

In Ihara’s approach the theory is entirely nilpotent. He has p-adic versions of
classical functions. Especially, such have appeared from the action of GQ on the
second commutator quotient of π0 1 = π1(Λ4, 0 1)(p) (§9.1). Coordinates arise from
going to the induced Lie algebra actions. The rubric comes from Gassner-Magnus
matrices. These give coordinates for the Lie algebra of an automorphism group
acting on the second graded term of the Lie algebra of π

(p)
0 1 . Abelian covers of Λ4

are Fermat curves. Similar to the discussion of §8.4.4, this is a p-adic Lie algebra
acting on the p-Tate module of Fermat curves. [Ihar91] describes the appearance
of Jacobi sum grössencharacters.

These use partials (in the Lie algebra) of mσ(x, y) from (9.1). The Ihara-
Drinfeld relations are vital here. Nakamura connects Ihara’s example and another
case: Replace Λ4 by an elliptic curve minus one point. When it is an elliptic curve
with bad degeneration at p, [Na98] produces a Tate Eisenstein series. This is a log-
arithmic partial of Ihara’s series. For some examples from the Constellation Table,
the real Eisenstein series of §10.5.1 have p-adic parallels to Nakamura’s examples.
This is what we mean by function theory on the nilpotent part of Modular Towers.

The nonlinear part, from G0 still has a classical function relation as with θ
invariants in §10.1. The nilpotent part, in examples, produces global functions on
the moduli space. Specifically we expect these functions, at least those from H-M
representative cusps, to tell us about nonordinary points.

10.6. Weil’s distributions. Look at (6.4) again. Weil’s thesis constructed
an analog of it: (h(x)) ≡

∏u
i=1 θw

x0
i
(x)/

∏u
i=1 θw

x∞
i

(x). Here is its meaning. Both
sides are fractional ideals in the ring of integers OK of a number field K. The
≡ sign means the left and right are equal up to a bounded fractional ideal. The
left side is the principal fractional ideal that h(x) generates. Most important, of
course, are the functions θw

x′ : x �→ θx′(x) maps K points x into integral ideals. This
function is defined only up to ≡. Weil’s distribution theorem allowed he (and Siegel
[Si29]) to perform diophantine magic.

This works to define part of the height data for the commutative quotient of a
Modular Tower. We explain. Denote the commutator subgroup of a profinite group
H by (H, H). Replace inner homomorphism classes of Mppp → pG̃ in §8.4.2 by the
sequence Mppp/(π1(Xppp), π1(Xppp)) → pG̃/(ker0, ker0). The question is now a refined
question about subspaces of the Tate module of J(Xppp).

[Si29] starts with a crude set of reductions by going to a finite extension of K.
Doing this point-by-point along a Hurwitz space would be a disaster. Canonical
heights avoid this. Here is a related allusion to the odd half-canonical classes.

Following a comment from §6.4.2, we should replace Hrd
0 by its pullback to a

space Hodd
0 . Points of Hodd

0 are pairs, ppp ∈ Hrd
0 with an odd half-canonical class on
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Xppp. When the general point of Hodd
0 carries a non-degenerate half-canonical class

(§6.4.2) this starts an effective analysis. We still don’t know what to do in the
general case.

Here is a final word on even half-canonical classes. The locations in the Constel-
lation Table with ⊕ support even half-canonical classes varying analytically with
the coordinates of the Hurwitz space. Suppose the attached θppp is not zero at the
origin of J(X̂ppp). Then, taking its value at the origin provides an automorphic form

(the meaning is precise and conventional when r = 4) on Hin,rd
0 whose value appears

in inspecting properties of the cusps.

10.7. Prelude to the general case? Level 1 of Constellation Table Modular
Towers has further surprises related to the Schur multipliers of the level 1 groups.
These illustrate practical applications of the nilpotent extension theory of covers
(Chap. 9). There are lessons for group theory and geometry.

One is that nilpotent extensions (of any given group, simple or solvable) occur
in many constructions with underlying geometric meaning. Such events don’t nat-
urally extend to solvable extensions much less to general (pro-)finite group theory.
Consider lessons from the dihedral group Dp and its association with the modular
curve case of Modular Towers. It has a natural series of groups by changing the
prime p to any other prime: vary p among primes. That isn’t, however, so special.

10.7.1. Hecke operators. Consider the notation arising from §8.1 for the dihe-
dral group Dp = Z/p ×s{±1}. Let p′ be a prime distinct from 2 or p. The famous
Hecke Operators of modular curve theory come from there being several values of
j(τ1), . . . , j(τp′+1) for τ ∈ H where j(p′τj) is a particular value. This produces an
algebraic correspondence represented by a curve Tp′ on X0(N)×X0(N). A natural
correspondence automatically induces an action on holomorphic differentials and
cohomology, etc. Significantly, this correspondence produces a lift of the Frobenius
correspondence from characteristic p′: The Eichler-Shimura congruence formula.

Here is how to interpret this from a Modular Tower viewpoint. Consider the
Nielsen class Ni(Dp,C24)abs = Ni0. Suppose ggg ∈ Ni0 is the branch cycle description
of a cover fggg : P1

w → P1
z with Dp as monodromy group and involutions as branch

cycles. This description comes from a choice of classical generators of π1(Uzzz, z0).
Then, the Galois closure of fggg is an elliptic curve E which has a canonical degree
p isogeny to another elliptic curve E′. Let Ap′ be any cyclic subgroup of p′ order
on E and let A′p′ be its image in E′. The morphism E/Ap′ → E′/A′p′ modulo
multiplication by -1 produces a new rational function fggg,p′ . This is the genesis of
the Hecke theory. It won’t extend easily to a general Modular Tower. Yet, there
are other candidates for constructions like the above.

Let H be any finite group acting irreducibly on a Z module V of rank m.
Consider conjugacy classes C of H. (Take H = {±1} and V = Z to get the
dihedral group situation.) Consider the semi-direct product V ×sH and then for
each prime p, take V/pV ×sH = Hp. Suppose (p, |H|) = 1. Extend the conjugacy
classes to Hp. Then, apply the Modular Tower construction to (Hp,C, p).

Let p′ be a prime distinct from those dividing |H| and p. Add in V/p′V with
an H action to get V/pGV × V/p′V ×sH with an extension of the branch cycles
C to this. This produces situations analogous to that for Hecke operators. This
remains unexplored territory. A few examples will encourage further exploration.
Examples of this type should give Modular Towers uniformizing natural collections
of varieties defined over Q, when the Branch Cycle Lemma conditions imply Q
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structures (§8.2). Given H what varieties have such a natural uniformization? We
haven’t developed the expertise to consider this in detail. The value of making such
a formulation is that all the arithmetic (including rational point statements) will
fall under a uniform rubric. This would include using the Main Conjecture 8.3 on
Modular Towers.

10.7.2. Separating the nilpotent tail and the nonnilpotent quotient. Group ex-
tensions of a given G0 by a solvable group behave no better than general extensions
of G0. Roughly, the only distinction between solvable (excluding nilpotent) and
general groups is that only cyclic groups appear as simple composition factors in
solvable groups. That is the author’s belief. With it goes the feeling that each finite
nonnilpotent group G0 generates its own intrinsic geometry. The discrete invariants
of §10.2 capture much of this.

Then, there is a rich function theory appearing in the geometry from the nilpo-
tent tail of a Modular Tower (as in §10.5). Together they separate the nilpotent
tail from the nonnilpotent quotient. We believe this separation is natural and in-
evitable, and will never be breached. Further, our diophantine experience with
problems involving solvable groups is that they belong more with the nonnilpotent
quotient than with the nilpotent tail. We intend these comments to raise questions
about modern understanding of Galois’ famous theorem.

11. Aids to the reader and choice of actions

Expression numbers go from the left margin and most running lists use latin
letters. For example, item 3 of expression 2 of section 5 of chapter 4 is (5.2c).
Reference to it in another chapter would use the variant Chap. 4 (5.2c). Lemmas,
corollaries, theorems, remarks, definitions, and examples fall under one collection of
numbers: Definition 3 of section 9, written Def. 9.3, might follow Ex. 9.2. Figures
have their own numbering system. Exercises appear as the last section in each
chapter. References to these follow a special notation: Exercise 3, part c) appearing
in section 9 appears as [9.3c]. Again, the chapter is given if it is in another chapter
than that being read. Bibliographical items have notational shorthand for the
author’s(s’) name(s), followed by a pinpoint reference, the usual LATEX scheme.
Like [Ahl79, p. 31].

There is sufficient material for a year course around two themes: fundamental
groups in complex analytic geometry and families of Riemann surfaces. A third
semester of complex analysis might cover just Chap. 2, Chap. 3 and Chap. 4. One
year of complex analysis and one semester of graduate algebra are sufficient back-
ground. We assume undergraduate topology, as in a junior-senior analysis course,
for proper background for the treatment of fundamental groups (Chap. 3).

The author spent much time considering on which side permutation groups
would act. He chose the right side as the primary action side. That is, when
g ∈ Sn is an element of the symmetric group acting on integers {1, . . . , n}, usually
we write g applied to i as (i)g. It is not possible to be universally consistent. It is
so typical to act with matrices on the left that with matrix groups we follow the
usual convention. In making this decision there were these problems:

• Eventually, no matter the starting side, situations force simultaneous ac-
tion on the other side.

• Group products in fundamental groups work with permutation represen-
tations only if you act on the right.
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• Finite group theorists in the United States act on the right.
Many students trained by such books as [Lan71] and [Jac85] put group actions

on the left. Neither book, however, does enough group theory training to dissuade
from the need to spend considerable further time. Of course, there are always
notational ways around the difficulties in any one situation.

The exposition on Riemann-Roch and the Picard groups in Chap. 4 quotes such
sources as [FaKr90], [Mum76] and [Se59]. In addition, later examples quote fi-
nite group theory results outside the scope of this book. This goes with the book’s
aspiration to teach group theory interpretation, rather than detail. It simplifies ex-
position on examples to use references to [Vö96], in place of lengthy computations.
The differences between the two books are large, ours geometric, while [Vö96] is
more group theoretic. We, however, spend as much time on group theory. Our
intention is to teach its use through examples to a generation of students interested
in using Riemann surfaces who have little training in group theory. Still, the reader
will recognize the two authors had more than a passing acquaintance.

12. Poetry and Mathematics

In the solipsistic world of mathematics, there are still many who find the subject
matter of moduli of covers — that this book tackles —beautiful. The author
agrees, with reservations.

Mathematics isn’t poetry though Keats gave us hope it might be!
A thing of beauty is a joy for ever: its loveliness increases; it will
never Pass into nothingness; but still will keep a bower quiet for
us . . . : From Endymion

12.1. The grandest virtues. The grandest virtue of mathematics is its mod-
ularity; That it builds from pieces. Second: That it lasts so long. An ingredient
here is its independence of the framing secular language used. One easily sees the
appearance of pythagorean triples in the Rind Papyrus. Yet, few would appreciate
that the pyramid architect Imhotep was a god to the Egyptian Middle Kingdom.

Still, the converse of Keats’ rhyme may not hold. The persistence of mathe-
matics does not imply its beauty. The Durants suggest:

Poetry makes of language and feeling a music that cannot be
heard across the frontiers of speech. [Du54, p. 77]

Independent of my abilities with written and spoken German, I can thrill to the
simplifying structure Riemann brought to algebraic functions. Though I never think
to tack a new verse onto Endymion, adding consequentially to Abel, Galois and
Riemann is an ever present goal.

12.2. The eye of the beholder. Mathematical colleagues often don’t ap-
preciate the goals of other areas. One θ function adherant can’t imagine the value
of preoccupation with diophantine properties of large fields, and vice-versa. I’m
speaking of co-writers I’ve known for over 30 years. It is one example of many.

If mathematicians sincerely fail to see the beauty of each others’ grand enter-
prises, how could the world at large have the language and intellectual base to agree
with what we think beautiful? In practice it is extremely difficult to explain the
beauty of mathematics, even on occasion to a Nobel Prize winning Chemist; or to
nonmathematical graduates of our elite institutions. Our perceptions can fail from
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not appreciating the depth of what we already know before we address our papers.
Failure to recognize the absorbed contribution of previous generations has much to
do with the present hubris of today’s mathematical community.

In particular, we (collectively) learned much from Abel, Galois and Riemann,
though the first two produced very few theorems, and the third influenced mathe-
matics through something strikingly beyond theorems. Abel and Galois used group
theoretic interpretation to bring simplicity to an area littered with facts labeled as
theorems. Riemann created coordinates for analyzing the details of a world of
baffling geometries. All inherited and enhanced the goal of synthesizing algebra
and geometry that Lagrange first articulated. In the age of specialization, we still
recognize the coherency of mathematics in large part because of these people.

Mathematics is the only language supporting rich neologisms that bears its
topics unadulterated to other areas and other generations. It overwhelms us lo-
cally in our seminars and colloquiums. Our students rail against what they think
its incoherence, though its free inundating associations cause far more problems.
The world, however, slowly accustoms to it, long forgetting — especially in related
sciences — what a miracle of persistence is wrought by the foundation of clear def-
inition. Definition that more than spotlights a resonant example; fluid definition
that takes on new shape in each generation. In its fluidity it lasts and lasts and
lasts. So we are certain, will the ideas of Abel, Galois and Riemann.

12.3. Two afterthoughts. The following found its motivation from θ func-
tions and diophantine properties of large fields. There is an exact sequence [FrV92]:

1 → F̃ω → GQ →
∞∏

n=2

Sn → 1.

The group on the left is the profree group on a countable number of generators.
The group on the right is the direct product of the symmetric groups, one copy for
each integer. The absolute Galois group is caught between two known groups.

Here is a paraphrase from [Fri99, Acknowledgements]
The 20th century of mathematics belongs to group theory appli-
cations; I don’t mean just Lie groups or classifications.





CHAPTER 2

ANALYTIC CONTINUATION

1. Why Riemann’s Existence Theorem?

We start with two different definitions of algebraic functions. An imprecise
version of Riemann’s Existence Theorem is that these describe the same set of
functions. Chap. 2 has two goals. First: To define and show the relevance of
analytic continuation in defining algebraic functions. Second: To illustrate points
about Riemann’s Existence Theorem in elementary situations supporting the main
ideas. Our examples are abelian algebraic functions. They come from analytic
continuation of a branch of the log function. This also shows how integration
relates algebraic functions to crucial functions that aren’t algebraic. These examples
depend only on homology classes, rather than homotopy classes, of paths. The slow
treatment here quickens in Chap. 4 to show how Riemann’s approach organized
algebraic functions without intellectual inundation.

1.1. Introduction to algebraic functions. The complex numbers are C,
the nonzero complex numbers C∗ and the reals R. We start with analytic (more
generally, meromorphic) functions defined on an open connected set D, a domain
on P1

z = C ∪ {∞}, the Riemann sphere: §4.6 defines analytic and meromorphic.
The standard complex variable is z. When D is a disk, a function f(z) analytic on
D has a presentation as a convergent power series about the center z0 of D. The
first part of the book describes algebraic functions (of z). Let D be any domain
in P1

z and z0, z
′ ∈ D. Denote (continuous) paths beginning at z0 and ending at z′

by Π1(D, z0, z
′) (§2.2.2). Use Π1(D, z0) for closed paths in D based at z0. For any

finite set zzz = {z1, . . . , zr} ⊂ P1
z denote P1

z \ {zzz} by Uzzz.
1.1.1. Riemann’s definition of algebraic functions. Suppose f(z) is analytic in

a neighborhood of z0. Call f algebraic if some finite set zzz ⊂ P1
z has these properties.

(1.1a) An analytic continuation (Def. 4.1) of f(z) along each λ ∈ Π1(Uzzz, z0)
exists. Call this fλ(z). Let Af (Uzzz) be the collection {fλ}λ∈Π1(Uzzz,z0).

(1.1b) The set Af (Uzzz) is finite.
(1.1c) For z′ ∈ zzz, limit values of fλ along λ ∈ Π1(Uzzz, z0, z

′) is a finite set.

1.1.2. Standard definition of algebraic functions. There is another definition of
algebraic function (of z). Suppose f(z) is analytic on a disk D. It is algebraic if
some polynomial m(z, w) ∈ C[z, w] (nonconstant in w) satisfies

(1.2) m(z, f(z)) ≡ 0 for all z ∈ D.
This chapter explains (1.1) and its equivalence with (1.2) (Prop. 7.3).
Simple examples illustrate (1.1) and (1.2). These often appear briefly in a first

course in complex variables. Though they give only algebraic functions with abelian
monodromy group, they hint how Chap. 4 lists all algebraic functions.

39
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We review elementary field theory as it applies to f(z) satisfying (1.2). With
no loss assume m(z, w) in (1.2) is irreducible in the ring C[z, w] ([9.8]) and f(z)
satisfies (1.2). Any graduate algebra book is proper for this review, including
[Lan71], [Jac85] and [Isa94]. The latter, with the best treatment of permutation
representations and group theory, will be our basic reference. [Isa94, Chap. 17]
contains material supporting the comments of §1.2.

1.2. Equivalence of algebraic functions of z. Let C(z) be the field of
the rational functions in z. Its elements u(z) consist of ratios P1(z)/P2(z) with
P1, P2 ∈ C[z]. Standard notation denotes the greatest common divisor of P1 and
P2 as (P1, P2). Suppose P1 and P2 have no common nonconstant factor: Write this
as (P1, P2) = 1. Then the integer degree of u(z), deg(u), is max(deg(P1),deg(P2)).
The Euclidean algorithm finds the greatest common divisor of P1 and P2. Factor
this out to compute deg(u). This degree is also the degree of the field extension
C(z) over C(u(z)): [C(z) : C(u(z))] [9.3].

Suppose L and K are fields with K ⊂ L. The degree [L : K] of L/K is the
dimension of L as a vector space over K. Assume L = K(α) for some α ∈ L. Then,
[L : K] is the maximal number of linearly independent powers of α over K: the
degree of α over K. This degree is also the minimal positive degree of an irreducible
polynomial fα(w) ∈ K[w] having α as a zero. Up to multiplication by a nonzero
element of K, fα(w) is unique. If L/K is a field extension, α ∈ L is algebraic over
K if [K(α) : K] < ∞.

1.2.1. The degree of C(z)/C(u(z)). Introduce variables z′ and w′. Write u(w′)
as P1(w′)/P2(w′) with (P1, P2) = 1, and

m(z′, w′) = P1(w′) − z′P2(w′) ∈ C[z′, w′].

Then, m(z′, w′) is irreducible of degree n = max(deg(P1),deg(P2)) [9.3]. Consider
m(z′, w′) as a polynomial in w′ with coefficients in the field C(z′). Let w′′ be a zero
of this polynomial in some algebraic closure of C(z′) = K. Then, L = C(z′)(w′′) =
C(w′′) is the quotient field of the integral domain R = K[w′]/(m(z′, w′)). It is a
degree n extension of C(z′). Now C(z′) is isomorphic to C(u(z)): map z′ to u(z).
Map w′′ to z to extend this to an isomorphism of L with C(z).

1.2.2. Degree of function fields over C(z). §1.2.1 uses Cauchy’s abstract pro-
duction of C(z′)(w′′) with w′′ a zero of m(z′, w′) [Isa94, Lem. 17.18]. It, however,
explicitly identifies w′′ with z and z′ with u(z). Putting L in C(z), a genus 0 or pure
transcendental field over C, is convenient for seeing the algebraic relation between
functions — like z′ and w′′.

Now assume f(z) is any algebraic function according to (1.2). Similarly con-
struct L = C(z, f(z)), a degree degw(m(z, w)) field extension of the rational func-
tions C(z). This is the algebraic function field of m (or of f). Call any f∗ ∈ L with
L = C(z, f∗) a primitive generator of L/C(z). (Or, f is just a primitive generator
when reference to z is clear.)

1.2.3. Equivalence of presentations of L/C(z). Infinitely many algebraic func-
tions f gives the same field L up to isomorphism as an extension of C(z). Within
a fixed algebraic closure of C(z) it is abstractly easy to list all primitive generators
of L. They have the form f∗ = g(z, fk) with fk any other zero of m(z, w) and
g(z, u) ∈ C(z)[u]. To assure C(z, f∗) = L add that [C(z, f∗) : C(z)] = [L : C(z)].
Riemann’s Existence Theorem lists algebraic extensions of C(z) efficiently by listing
the isomorphism class of extensions L/C(z) and not specific algebraic functions.
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Suppose C(f(z)) contains z. Then, L = C(f(z)) is pure transcendental. So, it
is easy to list (without repetition) generating algebraic functions. Even, however,
when the total degree of m is as small as 3, L usually is not pure transcendental
field [9.10g]. While listing generating functions of L is then harder, it isn’t our main
problem. To identify when two function field extensions L1/C(z) and L2/C(z) are
(or are not) isomorphic is more important. Two questions arise: Is L1 isomorphic
to L2? If so, does the isomorphism leave C(z) fixed?

Abel handled these questions for cubic equations. His results would have been
easy if L was pure transcendental. This book includes applying Riemann’s extension
of Abel’s Theorems. Riemann’s Existence Theorem is the start of this extension.

Riemann’s Existence Theorem foregoes having all algebraic functions within
one convenient algebraic closure. There may be no unique algebraic closure of C(z)
so useful as C. §1.3 introduces the infinite collection of incompatible algebraically
closed fields appearing in Riemann’s Existence Theorem. Every algebraic function
f(z) appears in each of them.

1.3. Puiseux expansions. Consider the Laurent field Lz′ consisting of se-
ries f(z) =

∑∞
n=N an(z − z′)n, with N any integer, possibly negative, where

f(z)(z−z′)−N is convergent in some disk about z′. Elements of Lz′ define functions
meromorphic at z′. Then, Lz′ is a field, containing C(z) and we are familiar with
it. It isn’t, however, algebraically closed. To remedy that, for any positive integer e
form Pz′,e, convergent series in a variable ue. Think of ue as (z−z′)1/e: ue

e = z−z′.
For e | e∗ let t = e∗/e. Map Pz′,e into Pz′,e∗ by substituting ut

e∗ for ue. Regard
the union ∪∞e=1Pz′,e = Pz′ as a field, the direct limit of the fields ∪∞e=1Pz′,e with its
set of compatible generators {ue}∞e=1. Details on the following are in [9.9].

Lemma 1.1. Suppose P∗/Lz′ is any field extension generated by a sequence of
elements {u∗e}∞e=1 with these properties.

(1.3a) u∗e is a solution of the equation ue = z − z′.
(1.3b) (u∗ee′)e′

= u∗e for all positive integers e, e′: compatibility condition.
Then, ue �→ u∗e gives a canonical isomorphism between P∗ and Pz′ that is the
identity on Lz′ . In particular, automorphisms of the Galois extension Pz′/Lz′

correspond one-one with compatible systems of roots of 1.
The field Pz′ of Puiseux expansions around z′ provides an explicit algebraically

closed field extension of C(z). It is clear fractional exponents are necessary for an
algebraic closure. It is harder to see they give an algebraically closed field (Cor. 7.5).
The fields Pz′ and Pz′′ are isomorphic. Such an isomorphism, however, restricts to
mapping C(z) → C(z) by z �→ z − (z′′ − z′). For comparing all algebraic functions
of z we usually must regard these algebraically closed fields as distinct. Each, in
its own way contains the field of algebraic functions (using either (1.1) or (1.2)).

Comparing expressions for a given algebraic function embedded in different
Puiseux fields leads to our precise version of Riemann’s Existence Theorem.

1.4. Monodromy groups and the genus. Both definitions (1.1) and (1.2)
readily attach a group Gf to any algebraic function f(z). Using an irreducible
m(z, w) from (1.2) (with m(z, f(z)) ≡ 0) it is the group of the splitting field of
m(z, w) over C(z) ([Isa94, p. 267] and [9.5]). The order of this group is the de-
gree of the splitting field extension over C(z). Efficient use of group theory gives
more structured information than describing field extensions. Knowing something
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about the Galois group is usually better information than comes from looking at
polynomial coefficients.

§4.4.1 gives a geometric construction for Gf . Chap. 4 has this group as its
main theme. This group reveals Af (D) from (1.1) as the complete set of zeros
w of m(z, w) (Prop. 6.4). Then, Gf acts through analytic continuation. This
representation of Gf on Af (D) (of degree degw(m(z, w)) is discrete data from f .
Discrete here means the group Gf does not change with continuous changes in zzz.

Every algebraic function f has another integer attached to it, the genus of its
function field (Chap. 4). If L = C(z, f(z)) is isomorphic to C(t) for some t ∈ L,
it has genus 0 as above. This means all genus 0 function fields are abstractly
isomorphic. Note: The integer [L : C(z)] is rarely a good clue for computing the
genus [9.3]. Abel’s results allow viewing genus 1 function fields as similar to genus
0 function fields, though that similarity has limits. Crucial: Unlike genus 0 fields,
there are many isomorphism classes of genus 1 function fields (over C).

Abel’s results allow listing isomorphism classes of genus 1 function fields, ex-
actly as we list points of P1

z. That is, with a classical parameter j replacing z, finite
values of j correspond one-one to isomorphism classes of genus 1 function fields.
As with P1

z the value j = ∞ requires special consideration. Even if L has genus 1,
we don’t easily find where its corresponding j value is in this list. Still, for many
problems this is a satisfactory theory.

Riemann generalized much of Abel’s Theorem to function fields of all genuses.
Most difficult was his analog, for genus greater than 1, of a parameter space for
isomorphism classes of fields. Variants on its study continue today, and this book
is an example.

1.5. Advantages of Riemann’s definition. Defining branches of z
1
e (§8.3)

on any disk D in C\{0} gives a practical introduction to analytic continuation. This
gives the simplest algebraic functions. Still, how would we have located w = f(z)
satisfying f(z)5 − 2zf(z) + 1 = 0 by a similar definition? The field C(z, f(z)),
like C(z

1
e ), is pure transcendental [9.3]. Yet, this is not obvious from a Puiseux

expansion of f(z) around some point.
Suppose f(z) is a convergent power series satisfying (1.1). Can we expect to

find data appropriate to its description?: The set zzz of exceptional values, and the
finite group expressing there are but finitely many analytic continuations around
closed paths. Excluding elementary examples, the Riemann’s Existence Theorem
approach suggests it doesn’t pay to give functions by their power series. Elliptic
functions (Chap. 4 §7.1) are a good example where the functions are explicit, though
power series don’t give their definition. Riemann’s Existence Theorem uses group
data to replace power series information about f(z).

This is practical, computable information about algebraic equations making
Riemann’s approach useful to the rest of mathematics. Especially it gives a way to
track complete collections of related algebraic functions. This is the story of moduli
of families of covers. Abel used the modular function classical texts call j(τ) where
τ is a complex number in the upper half plane. We refine and generalize this theme.

2. Paths

We assume elementary properties of the complete fields, the real numbers R
and the complex numbers C as in [Rud76, Chap. 1], [Ahl79, §1.1-1.3].
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2.1. Notation from calculus. For each positive integer n, let Rn (resp. Cn)
be the set of ordered n-tuples xxx = (x1, . . . , xn) (resp. zzz = (z1, . . . , zn)) of real
(resp. complex) numbers. The set Rn is a vector space over R: addition of
xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) gives (x1 + y1, . . . , xn + yn); and scalar
multiplication of xxx by r ∈ R gives rxxx = (rx1, . . . , rxn). The zero element (origin)
of Rn is 000 = (0, . . . , 0). The inner product of xxx and yyy is xxx · yyy =

∑n
i=1 xiyi. The

law of cosines (from high school trigonometry) interprets the dot product · to give
the expression |xxx||yyy| cos(θ) where θ is the (counter clockwise) angle from the side
from 000 to xxx to the side from 000 to yyy in (a/the) plane containing 000, xxx, yyy. Define the
distance between points xxx,yyy ∈ Rn to be

|xxx − yyy| =
√

(xxx − yyy) · (xxx − yyy).

Here are simple properties of the distance function.
(2.1a) |xxx| ≥ 0 and |xxx| = 0 if and only if xxx = 000.
(2.1b) |xxx − zzz| ≤ |xxx − yyy| + |yyy − zzz| for xxx,yyy,zzz ∈ Rn: the triangle inequality.

Thus, the distance function gives a metric on Rn.

2.2. Elementary properties and paths. Multiplication of complex num-
bers is crucial, especially that each nonzero complex number has a multiplica-
tive inverse. Still, vector calculus often appears in the study of analytic func-
tions using the topological identification of R2 with C. In standard coordinates:
(x, y) ∈ R2 �→ x + i y = z ∈ C. Rephrase multiplication of complex num-
bers on elements of R2: z1 ↔ (x1, y1) and z2 ↔ (x2, y2) gives the association
z1z2 ↔ (x1x2 − y1y2, x1y2 +x2y1). Beyond these properties we gradually introduce
statements from a one semester graduate course in complex variables. Paths and
integration, however, are so important, we pause for notation around integration of
1-forms and Riemannian metrics.

For a, b ∈ R, a < b, [a, b] denotes the closed interval of R with a and b as end
points. A path in Rn consists of a continuous map γ : [a, b] → Rn for some choice
of a and b with a < b. That is, for each t ∈ [a, b], there is a range value γ(t), the
point on the path at time t.

Integration around paths turns computations into first year calculus integrals or
derivatives. Such integration extends to manifolds (Chap. 3) because they are pieces
of Rn tied together. Since γ(t) is a point of Rn, it has coordinates. One standard
notation for these coordinates is (f1(t), . . . , fn(t)) (f is for function). Another
possible notation is (x1(t), . . . , xn(t)). We prefer (γ1(t), . . . , γn(t)). The points
γ(a) and γ(b) are, respectively, the initial and end points of the path. The path γ
is closed if γ(a) = γ(b).

2.2.1. Derivatives of a path. Call γ differentiable if

dγ(t)
dt

=
(dγ1(t)

dt
, . . . ,

dγn(t)
dt

)
,

the tangent vector to γ at t, exists and is continuous for each t ∈ [a, b]. (Use one-
sided limits at the end points.) Reminder: dγ(t)

dt is a point in Rn. Interpret it as
giving a direction and speed (length of the vector dγ(t)

dt ) of travel along the path γ
at time t. We always insist γ is continuous (to be a path).

Definition 2.1. Let γ : [a, b] → Rn be a path. For a ≤ a′ < b′ ≤ b denote the
restriction of γ to [a′, b′] by γ[a′,b′]. Call γ simplicial if for some integer m there exist
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t0 = a < t1 < · · · < tm−1 < tm = b with γ|[ti,ti+1]
differentiable, i = 0, . . . , m − 1.

This includes γ|[ti,ti+1]
having a one-sided derivative at the end points.

2.2.2. Paths and connectedness. The notation Π1(X, x0, x1) denotes the collec-
tion of (continuous) paths in a topological space X, starting at x0 and ending x1.
Write Π1(X, x0) when x0 = x1. We often need paths in integrals to be simplicial.
When necessary, the text assumes this implicitly for γ, though we may merely write
γ ∈ Π1(X, x0, x1). For analytic continuation, or integrating meromorphic differen-
tials, simplicialness is necessary only for paths satisfying explicit conditions as in
(Rem. 4.4). One subtle use of simplicial paths is to give classical generators of the
fundamental group of Uzzz (Chap. 4).

If Π1(X, x0, x1) is nonempty, then x1 is path-connected to x0. This is an equiv-
alence relation, and the equivalence classes are the path-connected components of
X. For subspaces of manifolds (Chap. 3; in particular, subspaces of Rn), the path-
connected components are the same as the connected components. Further, for
our examples, using simplicial paths would define the same components. [Ahl79,
p. 54-58] discusses connectedness at greater length.

2.3. Integrals along a simplicial path. Using simplicial paths guarantees
existence of various integrals, including arc length and line integrals along γ. We
explain this. Let γ be a simplicial path in Rn. Consider Tγ : [a, b] → R2n defined
by t �→ (γ(t), dγ(t)

dt ). Suppose F = F (xxx,yyy) = F (x1, . . . , xn, y1, . . . , yn) is defined
and continuous on an open set containing the range of T . The integral

(2.2)
∫

γ

F
def=

∫ b

a

F ◦ Tγ dt

exists, though d
dt (γi(t)) may be undefined for finitely many t [Rud76, p. 126]. Here

are two traditional cases.
(2.3a) F =

√
yyy · Q(xxx)(yyy) with Q(xxx) : Rn → Rn by yyy �→ Q(xxx)(yyy) linear in yyy,

where Q(xxx) is a symmetric and positive definite matrix for each xxx.
(2.3b) F = G(xxx) · yyy with G = (G1(xxx), . . . , Gn(xxx)) : Rn → Rn a continuous

function (vector field) defined on the range of γ.
Definition 2.2. Suppose γ is a one-one function onto its range. Case (2.3a)

of (2.2) is the arc length of γ relative to the infinitesimal metric Q(xxx) at xxx. [9.19]
explains the value of tensor form for metrics. In case (2.3b), (2.2) is the line integral
of the differential one form G · dxxx =

∑n
i=1 Gi(xxx) dxi along γ.

Here is the crucial point of these examples. Suppose we change γ to another
parameterization γ∗ of the same set. Then, (2.2) doesn’t change modulo these
conditions: γ∗ is one-one in case (2.3a); and γ∗ has the same beginning and end
points as γ in case (2.3b). Proving this uses Lemma 2.3 [9.19b].

Recall from vector calculus, the physical meaning of (2.3b). It is the work done
in moving a particle along the path parametrized by γ against the force field G.
Here is the formula for computing integrals of such differential expressions along γ:

(2.4)
∫

γ

n∑
i=1

Gi(xxx) dxi
def=

n∑
i=1

∫ b

a

Gi(γ1, . . . , γn)
dγi

dt
dt.

Tensor form of a metric defines distance along γ from an integral of positive func-
tions [9.19]. The triangle inequality is automatic:

∫ b

a
f(t) dt+

∫ c

b
f(t) dt ≥

∫ c

a
f(t) dt

if f(t) ≥ 0 for t ∈ [a, c].



2. PATHS 45

Lemma 2.3 (Change of Variable Formula). Let γ : [c, d] → R be a simplicial
path. Assume f : R → R is continuous, defined on the range of γ and a = γ(c),
b = γ(d). Then, ∫ b

a

f(x) dx =
∫ d

c

f(γ(t))
d

dt
(γ(t))dt.

Proof. This is a variant on [Apo57, p. 216]. Let F (x) =
∫ x

a
f(t) dt for x in

the range of γ, and H(x) =
∫ x

c
f(γ(t))d

dt (γ(t)) dt. The functions F (γ(x)) and H(x)
are both continuous. Excluding finitely many x, the chain rule shows they have the
same derivatives. Thus H(x) − F (γ(x)) is a constant evaluated by taking x = c:

H(c) − F (γ(c)) = H(c) − F (a) = 0 − 0 = 0.

The formula follows by taking x = d. �

Apostol notes: “Many texts prove the preceding theorem under the added
hypothesis that dγ(t)

dt is never zero on [c, d]. The interval joining a to b need not be
the image of [c, d] under γ.”

2.4. Relation between integrals and analytic functions. Integration the-
ory is the heart of complex variables. Equations, algebraic or differential, with
coefficients analytic on a domain D, define the classical functions of complex vari-
ables. By a domain we mean an open connected topological subspace of a given
topological space. The first examples of the subject are domains in C, the complex
plane. As we use them, we will remind of most basics from a first semester graduate
complex variables course.

This chapter refers to basic material of [Ahl79]. The notation H(D) denotes
the ring (integral domain [9.8a]) of functions analytic (equivalently, holomorphic)
on D. With R any ring, let R[w] be polynomials in w with coefficients in R.

2.4.1. Analytic Functions. The definition of analytic function reflects how the
chain rule works for a composition of an analytic function and a path. Assume
λ : [a, b] → D is any differentiable path: t �→ λ1(t) + iλ2(t) has λ1 = ((λ) and
λ2 = �(λ), differentiable on the interval [a, b].

Definition 2.4. Suppose z0 ∈ D, t0 ∈ [a, b] and λ : [a, b] → D is any path,
differentiable at t0, for which λ(t0) = z0. Then, f(z) defined on D is analytic at z0

if there exists a complex number M + iN dependent only on f and z0 with

(2.5)
d

dt
(f ◦ λ)(t0) = (M + iN)

dλ

dt
(t0).

To compute the derivative on the left, assume f(z) = u(x, y) + iv(x, y) has partial
derivatives (not necessarily continuous) and use the chain rule.

Apply (2.5) to t �→ z0 + (t − t0)vvv in two cases: vvv = 1 and vvv = i. This produces
two expressions for each of M and N . That M and N could satisfy both expressions
is equivalent to the Cauchy-Riemann equations:

(2.6) M =
∂u

∂x
=

∂v

∂y
and N = −∂u

∂y
=

∂v

∂x

with each expression evaluated at λ(t0).
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2.4.2. The notation f ′(z). To accentuate that the expression M + iN comes
from f alone, denote it by f ′(z) or df

dz . It only, however, exists for functions
satisfying the Cauchy-Riemann equations. Here are ways it is like a derivative.

(2.7a) It fits in the chain rule for d
dt of f(λ(t)) like a derivative.

(2.7b) Directional derivative Dvvv of f(z) in the direction vvv works as does the
gradient for a general function F : R2 → R2: Dvvv(f)(z0) = f ′(z0)v is
d
dt (f(z0 + tv))(0). Check equivalence of this with being analytic!

(2.7c) Analytic composites C h−→C
g−→C have a simple chain rule [Con78, p. 35]:

d

dz
(g ◦ h)(z) =

dg

dw
(w)|w=h(z)

dh

dz
(z).

(2.7d) f ′(z) dz acts like the differential 1-form h′(x) dx in first year calculus.

2.5. More explanation of differential forms. First, consider (2.7d) in
more detail. The fundamental theorem of calculus says

∫ b

a
h′(x) dx = h(b) − h(a).

A partial analog for integration on C considers f ′(z) dz, with f analytic. We say f
is a primitive (or antiderivative) of f ′. The outcome is the same. Let za and zb be
two points in D. Then, let λ : [a, b] → D be a piecewise differentiable path from za

to zb. [Con78, Ch. IV, Th. 1.18]:

(2.8)
∫

λ

f ′(z) dz =
∫ b

a

f ′(λ(t))
d

dt
(λ(t)) dt = f(zb) − f(za).

Definition 2.5 (Differential forms). Suppose m, n : C → C are continuous
on D, though maybe not analytic. The symbol m(z) dx + n(z) dy is a differential
(complex 1-form) on D. Closed, locally exact and exact differentials appear later.

A differential 1-form is analytic (or holomorphic) if on each disc in D it has
the form f(z) dz with f(z) analytic. We also use meromorphic differentials: f is
meromorphic on D. [Con78, p. 63] introduces only the differential 1-forms m(z) dz,
(m(z) may not be analytic). It often uses

∫
λ

f to substitute for
∫

λ
f dz. These have

the form above: Write dz as dx + idy. They don’t, however, include all differential
1-forms m(z) dx + n(z) dy.

It is convenient to change variables from (x, y) to (z, z̄) to write differentials in
the form u(z) dz + n(z) dz̄ with z̄ = x − iy (and dz̄ = dx − idy). Chap. 3 Lem. 5.6
formulates the several complex variable version of the next lemma. Call a function
anti-holomorphic if about each point it has a power series expression in z̄.

Lemma 2.6. The operator 1
2 ( ∂

∂x − i ∂
∂y ) maps z to 1 and z̄ to 0. So, it extends

the action of ∂
∂z on holomorphic functions, and it kills anti-holomorphic functions.

Similarly, 1
2 ( ∂

∂x + i ∂
∂y ) extends the action of ∂

∂z̄ from anti-holomorphic functions to
all differentiable functions.

If f is a differentiable function, the expression for the total differential df =
∂f
∂x dx + ∂f

∂y dy is the same as ∂f
∂z dz + ∂f

∂z̄ dz.

Proof. Everything is from the definitions. The sums defining ∂
∂z and ∂

∂z̄
act on differentiable functions. For the last equality in differentials, check that
∂f
∂z dz + ∂f

∂z̄ dz, written in x and y, gives ∂f
∂x dx + ∂f

∂y dy. �



3. BRANCH OF log(z) ALONG A PATH 47

3. Branch of log(z) along a path

Let D be a domain in C∗. Denote a path γ : [a, b] → D by just γ. A power
series

∑∞
n=0

zn

n! defines the exponential function ez.

3.1. How ez defines branches of log(z). The exponential has properties so
valuable for explicit computation that many parts of mathematics find functions
generalizing it. This chapter practices with the exponential function how that
works. Here are basic properties of ez.

(3.1a) e0 = 1 and ez1+z2 = ez1ez2 : ez gives a homomorphism C → C∗.
(3.1b) ex+i y = ex(cos(y) + i sin(y)).

In particular, the exact values w ∈ C with ew = 1 are in the set {n2πi | n ∈ Z}.
Variants of the following definition appear throughout this chapter.

Definition 3.1. Suppose h(t) is a continuous function defined on [a, b] satis-
fying eh(t) = γ(t). Call h a branch of log(z) (or, of log) along γ.

For z0 ∈ D, let γ : [a, b] → z0 be the constant path. Suppose w = w0 is one
solution of ew = z0. Then, all solutions are {w0+n2πi}: possible values of a branch
of log h(z) at z0. An easier definition is of a branch of log on the domain D. This
is a continuous function H : D → C satisfying eH(z) = z for all z ∈ D: a right
inverse to the exponential function. It is necessary to assure 0 �∈ D; eH(0) = 0 has
no solution H(0) because ez never equals 0.

3.2. Questions about branches of log. The two definitions raise the fol-
lowing questions. Variants apply to the general topic of analytic continuation.

(3.2a) What is the relation between Def. 3.1 and the definition of H?
(3.2b) When does a branch of log exist along γ, and if it exists how many such

branches are there?
(3.2c) How does Def. 3.1 give a simple criterion for the existence of H (on D)?
(3.2d) What integrals naturally associate with interpreting existence of H(z)?
(3.2e) What natural geometric relation between C∗ and C codifies the answers

to the previous questions?

Prop. 3.2 answers questions (3.2a), (3.2b) and (3.2c). Then, Prop. 3.5 answers
those remaining. These arguments motivate the theory of Riemann surface covers
and their moduli. We never use classical language referring to branch cuts (except
in a simple example for its historical utility). In the proposition, unless otherwise
said, assume [a, b] is the domain of any path.

Proposition 3.2. Suppose H(z) is a branch of log on D. Fix z0 ∈ D. Then,
h†(t) = H(γ(t)) is a branch of log along γ. Further, suppose h(t) is a branch of log
along γ. Then, for t0 ∈ [a, b] there is a branch H of log on a neighborhood of γ(t0)
with H(γ(t)) = h(t) for t close to t0.

Even if there is no branch of log on D, the following hold.

(3.3a) There is always a branch h(t) of log along γ.
(3.3b) For h∗(t) any branch of log along γ, h(t) − h∗(t) is constant on [a, b].
(3.3c) h(t) + 2πim, m ∈ Z, gives the complete set of branches of log along γ.
(3.3d) There is a branch H(z) of log on D precisely if for each γ ∈ Π1(D, z0),

h(b) = h(a) for h some branch of log along γ.
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3.3. Proof of Prop. 3.2. If eH(z) ≡ z for z ∈ D, then eH(γ(t)) ≡ γ(t) for
t ∈ [a, b] as in the proposition statement. Thus, h†(γ(t)) is a branch of log along γ.

Now suppose h∗(t) is any branch of log along γ. Then,

eh(t)/eh∗(t) = eh(t)−h∗(t) = γ(t)/γ(t) ≡ 1

for t ∈ [a, b]. So, the continuous function F (t) = h(t) − h∗(t) maps the connected
set [a, b] into the topological subspace 2πi Z of i R. The range of a connected set
under a continuous function is connected. This shows the range of F (t) is a single
point; F (t) is constant on [a, b].

Suppose z0 ∈ C satisfies ez0 = γ(a). The rest of the proof has three parts,
corresponding to patching pieces of branches of log along γ.

3.3.1. Extending a branch of log on a subpath. Suppose [a′, b′] ⊂ [a, b]. Then,
restriction of γ to [a′, b′] produces a new path, γ[a′,b′]. Let ht0(t) be a branch of log
along γ[a,t0] for t0 ∈ [a, b] with t0 < b.

A classical construction produces a branch H(z) of log in any sector

Sθ1,θ2 = {rei θ | θ1 < θ < θ2} with θ2 − θ1 ≤ 2π [9.7a].

Any disk in C∗ is in some sector. Restrict H to a disk around γ(t0) = z0 and
translate it by an integer multiple of 2πi to assume H(z0) = h(t0). From above,
H(γ(t)) is a branch of log along γ restricted to [t0 − ε, t0 + ε] for ε > 0 small. Since
H(z0) = h(t0), these two branches of log are equal on γ[t0−ε,t0]. If t0 + ε ≤ b, this
defines a branch of log along γ[a,t0+ε]:

(3.4) ht0+ε(t) =
{

ht0(t) for t ∈ [a, t0]
H(γ(t)) for t ∈ [t0, t0 + ε].

We say ht0+ε extends ht0 .
3.3.2. Sequences of extensions of branch of log. Suppose t0 < t1 < · · · < b and

hi(t) is a branch of log along γ[a,ti], with hi(a) = z0 for each i. Then, from the first
part of the proof, hi+1 extends hi. As the ti s are increasing and bounded, they
have a limit point, t∗. Define ht∗ by this formula: for t < t∗, ht∗(t) = hi(t) where
t < ti; and ht∗(t∗) = limi hi(ti). Note: The left side is independent of i. The right
side has a limit because it is a Cauchy sequence.

3.3.3. Completing existence of branch of log. §3.3.2 shows there is a maximal
t′ having a branch of log ht′ along γ[a,t′]. Then, if t′ < b, §3.3.1 gives an extension
to γ[a,t′+ε] for some ε > 0. Thus, t′ = b. That completes proving existence of the
extension. Criterion (3.3d) for a branch of log on a domain is a special case of
Lemma 4.12. This depends only on the notion of multiplying paths.

Suppose, as in Prop. 3.2, h is a branch of log along γ. For t ∈ [a, b] there is a
neighborhood Dt of γ(t) and a branch Ht(z) of log on Dt satisfying this property.

(3.5) H(γ(t′)) = h(t′) for t′ close to t.
This matches Def. 4.1: There is an analytic continuation of Ha(z) along γ.

Example 3.3 (Branch of log along a circle). The function t �→ e2πit = γ(t),
t ∈ [0, 1], parametrizes the counterclockwise unit circle. Let ε > 0 be small. As
in [9.7a], Hε(re2πit) = ln(|r|) + 2πt is a branch of log for all z of form re2πit,
0 ≤ t ≤ 1 − ε. So, hε(t) = 2πit is a branch of log along γ[0,1−ε]. Like the proof of
Prop. 3.2, h(t) = 2πit extends hε to be a branch of log along γ.

3.4. Branch of log as a primitive. Let g : D → D′ by w �→ g(w) be
continuous. Assume g(w0) = z0 with w0 ∈ D and γ : [a, b] → D′ has γ(a) = z0.
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Definition 3.4. Consider γ∗ : [a, b] → D with γ∗(a) = w0. Call it a lift
(relative to g) of γ (based at w0) if g(γ∗(t)) = γ(t) for all t ∈ [a, b].

§4.4 has explicit notation for multiplying paths, as in γ ·γ′. Let D be a domain
in C∗; f(z) = 1/z is analytic in D. Suppose γ ∈ Π1(D, z0, z

′) and ∆z′ is a disc in D
about z′. For z ∈ ∆z′ define F1(z) as

∫
γ·γ′

dz
z where γ′ is any path from z′ to z in

∆z′ . The discussion before Def. 5.1 has the precise definition of winding number.

Proposition 3.5. Given γ, F1(z) = F1,γ(z) depends only on the end point of
γ′. Also, dF1

dz = 1
z for all z ∈ ∆z′ . In particular, F1(z) differs by a constant from

a branch of log along γ · γ′. Suppose γ1 and γ2 have the same end points. Then,
F1,γ1 − F1,γ2 = 2πim with m the winding number of γ1 · γ−1

2 about the origin.
Consider ψ : C → C∗ by w �→ ew. Suppose γ : [a, b] → C∗ has beginning point

z0 with ew0 = z0. Then, a branch of log along γ (with initial value w0) is a lift of
γ (starting at w0; relative to ψ). Let D∗ be the connected component of ψ−1(D)
through w0. Then, there is a branch of log on D with value w0 at z0 exactly when
ψ is one-one to D on D∗.

The first part requires Cauchy’s Theorem ([Ahl79, p. 141, Cor. 1], [Con78,
p. 84]). This typifies how integration of analytic functions arises. Abel and Rie-
mann based information on differentials; in Riemann’s Existence Theorem they are
a substantial subplot.

Proposition 3.6 (Cauchy’s Theorem on a disk). Suppose D is a domain in
P1

z and f(z) is analytic on D. Further, assume D is either analytically isomorphic
to C or to a disk. Then,

∫
γ

f(z) dz = 0 for each closed path in D.

Proof of Prop. 3.5. Integration of f(z) = 1/z along paths in C∗ analyt-
ically continues a primitive for f at the initial point. Thus, to prove F1(z) is
independent of γ′ only requires showing the integral is 0 for any closed path γ′ in
∆z′ . This, follows from Prop. 3.6. The remainder follows by plugging in a lift γ∗

of γ: eγ∗(t) = γ(t) for t ∈ [a, b]. By definition γ∗ gives a branch of log along γ. �

4. Analytic continuation along a path

Suppose f(z) is a branch of log on a domain D ⊂ C∗. Since ez is analytic on
C, Def. 3.1 provides analytic continuation of f(z) along any path in C∗. It does so
using an equation ew = z to force the desired extension. The following generalizes
Def. 3.1 (see §6.1). It requires no equation for extending an analytic function.

4.1. Definition of analytic continuation. Suppose f is analytic in a neigh-
borhood Uz0 ⊂ D of z0 and γ : [a, b] → D is a path in D based at z0.

Definition 4.1 (Analytic continuation of f along γ). Let f∗ : [a, b] → C be a
continuous function with the following properties.

(4.1a) f∗(t) = f(γ(t)) for t close to a (in [a, b]).
(4.1b) For each t′ ∈ [a, b], there is a function ht′(z) analytic on a disk Dt′ about

γ(t′) with ht′(γ(t)) = f∗(t) for t near t′ (in [a, b]).

If such an f∗ exists, this definition produces ht′(z). This is the analytic contin-
uation of f to t′. It is an analytic function in some neighborhood of γ(t′). Usually,
however, the important reference is to the end function hb(z), analytic in a neigh-
borhood of γ(b). This we call fγ(z) = fγ , analytic continuation of f (along γ).
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Note: f∗(t) determines all data for an analytic continuation. It is unique: its dif-
ference from another function suiting (4.1) must be constant (hint of [9.8a]). Again,
there is a related definition.

Suppose f̂ : D → C satisfies f̂(z) = f(z) for all z ∈ Uz0 . We call f̂ an analytic
continuation or extension of f to D.

Remark 4.2. Let γ : [a, b] → P1
z be a nonconstant path. Here is an example

of a function analytic at γ(a) with no analytic continuation along γ. Assume
γ(t′) �= γ(a) for t′ close to a and let f be a branch of log(z − γ(t′)) about γ(a).
Algebraic functions, and others, like branches of log, analytically continue along
any path missing some finite set zzz of points on P1

z. Def. 4.5 introduces E(Uzzz, z0),
analytic functions around z0 that are extensible if we avoid zzz.

4.2. Practical analytic continuation. Analytic functions have a power se-
ries expression around each point of their domain. This converges in any disc not
containing a singularity of the analytic function [Ahl79, p. 179, Thm. 3].

4.2.1. Using disks of convergence. In Def. 4.1, for example, consider γ with
range a segment of the real axis. Assume also f∗ is real-valued along γ with
continuous derivatives of all order. Then, an analytic function restricts to f∗ along
γ if and only if f∗ has a Taylor series around each point. This gives a practical
alternative definition of analytic continuation using polygonal paths like γ∗ in the
next lemma. Notation is from Def. 4.1.

Lemma 4.3. The following is equivalent to f having an analytic continuation
along γ. There exists a partition a = t0 < t∗0 < t1 < t∗1 < · · · < t∗n−1 < tn = b of
[a, b], disks Di centered about γ(ti) and fi ∈ H(Di) with these properties.

(4.2a) Di ∩ Di+1 �= ∅ and fi(z) = fi+1(z) for z ∈ Di ∩ Di+1.
(4.2b) γ(t) ∈ Di for t ∈ [ti, t∗i ], γ(t) ∈ Di+1 for t ∈ [t∗i , ti+1], i = 0, . . . , n − 1.
(4.2c) f0(z) = f(z) for z ∈ D0.

Further, let γ∗ be the path following consecutive line segments γ(ti) to γ(t∗i ), then
γ(t∗i ) to γ(ti+1), i = 0, . . . , n − 1. Then, fγ∗ = fγ .

Proof. Suppose we have the pairs (Di, fi), i = 1, . . . , n, and the partition of
[a, b]. This gives an analytic continuation of f along γ by the following formula:

f∗(t) =
{

fi(γ(t)) for t ∈ [ti, t∗i ]
fi+1(γ(t)) for t ∈ [t∗i , ti+1].

Then, f∗(t) provides an analytic continuation from Def. 4.1.
Follow notation of §3.3.1. Inductively consider analytic continuation of f to the

end point of γ[a,ti] (and γ[a,t∗i ]). Set up the induction by showing this is analytic
continuation of f to the end point of γ∗[a,ti]

(and γ∗[a,t∗i ]). The essential point is
fi exists on a disk containing the range of γ on [ti, t∗i ]. So, fi in a neighborhood
of γ(t∗i ) analytically continues fi (from a neighborhood of γ(ti)) along any path
entirely within Di. Then, at the end points of γ and γ∗, fγ∗ = fγ .

Now assume we have an analytic continuation of f along γ. Completing the
lemma requires creating (Di, fi) for a corresponding partition of [a, b]. Since the
range of γ is compact, the distance between γ(t) and γ(t′) is a uniformly continuous
function of (t, t′). So, for d′ > 0 there exists d > 0 with |γ(t) − γ(t′)| < d′ if
|t − t′| < d. Choose d′ with the following property.

(4.3) For each t′ ∈ [a, b], there is a disk of radius no more than d′ around
γ(t′) supporting analytic ht′(z) as in Def. 4.1.
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Compactness of the range of γ produces such a d′. Use d from the above
comment. Partition [a, b] so |ti − t∗i | and |t∗i − ti+1| are at most d. Then, inductively
show this partition has the desired properties. �

Remark 4.4 (Nonsimplicial paths). §4.6 extends Lemma 4.3 to D ⊂ P1
z. There

geodesic paths on P1
z might replace polygonal paths: its pieces are arcs on longitu-

dinal circles. The proof extends with no change.
Lem. 4.3 makes no assumption paths are simplicial. Chap. 3 applies the lemma

to general continuous paths. A simplicial assumption allows integrating general
differential 1-forms or for computing arc length. Still, suppose ω = f(z) dz is an
analytic 1-form in a neighborhood of z0 and γ : [a, b] → C is a (continuous, not
necessarily simplicial) path with beginning point z0.

Let D be any domain containing the range of γ in which f extends analytically
along each path. Lemma 4.3 produces a simplicial (or polygonal) path γ∗ in D
(notice D contains no potential poles of f) along which integration of f is defined.
Let F (z) be an antiderivative of f(z). Analytic continuation of F (z) along γ∗ allows
defining

∫
γ

ω to be F (γ(b)) − F (γ(a)).
4.2.2. The word monodromy. Monodromy isn’t in Webster’s dictionary. It is in

[Ahl79, p. 295] and [Con78, p. 219] in the statement of the Monodromy Theorem
(§8.2 and Chap. 3 Prop. 6.11). The Oxford English Dictionary references exactly
the same theorem. It gives it the following meaning:

The characteristic property: If the argument returns by any path
to its original value, the function also returns to its original value.

We extend that to include regions where a function may not return to its original
value. For this we add group data that accounts for the nonreturn. The loose name
for that structure is monodromy action, though we often drop the last word.

The simplest setup for discussing monodromy starts with these elements:
(4.4a) a domain D and z0 ∈ D
(4.4b) a closed path λ based at z0

(4.4c) f(z) analytic in a neighborhood of z0

(4.4d) f has an analytic continuation around λ

Then, analytic continuation around λ produces a (possibly) new function, fλ ana-
lytic in a neighborhood of z0.

Definition 4.5 (Extensibility). Assume the setup of (4.4) for every closed
path in D. Call such an f extensible in D: (f, D) = (f, D, z0) is extensible. This
is a neologism, differing from the notion f has an extension (is extendible) to D.
Denote the complete set of extensible functions in D (based at z0) by E(D, z0).

By assumption E(D, z0) ⊂ Lz0 . So, field operations like multiplication and
taking ratios make sense. Suppose f, g ∈ E(D, z0). Recall the notation C[z, u, v] for
polynomials in z, u, v. Define C[z, f, g] = R to be {α(z, f, g) with α ∈ C[z, u, v]}.

Lemma 4.6. With the above assumptions, the ring R consists of extensible
functions. For any λ ∈ Π1(D, z0), αλ = α(z, fλ, gλ).

Assume f ∈ E(D, z0) and D is analytically isomorphic to a disk (or to C).
Then, f is extendible (restriction of an analytic function) on D.

Proof. For the first part, show the last result for f +g and fg. Every element
in R is built from such algebraic operations. Now consider the case D is a disk.
Cauchy’s Integral formula for an analytic function says a power series for an analytic
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function converges up to a singularity on its boundary of convergence. Consider
f ∈ E(D, z0) with z0 the center of the disk D.

Suppose the power series for f converges only on a disk of radius smaller than
D. Then, analytic continuation of f to some singular boundary point fails. This is
contrary to f ∈ E(D, z0).

More generally, let β : D → ∆ be an analytic isomorphism of D with a disk.
Then, (f ◦ β−1,∆, β(z0)) extends to F (z), and F (β(z)) extends f . �

Remark 4.7. Webster’s dictionary defines extensible to mean capable of being
extended, whether in length or breadth; susceptible of enlargement. That agrees
with our definition. Still, it has extendible as a synonym of extensible, whereas we
distinguish between the two words.

4.2.3. Meromorphic extensibility. It simplifies many discussions to allow mero-
morphic functions in E(D, z0). Even on Uzzz, in considering f ∈ E(D, z0), we even-
tually remove z′ from zzz if it is only a pole of f . The simplest way is to allow in
E(D, z0) functions f having for each path γ some g ∈ C(z) with g(z)f(z) extensible
along γ as in Def. 4.5. Technical proofs would use extensibility of g(z)f(z) and
analytic continuation to the end point of γ would be (g(z)f(z))γ/g(z). The result,
of course, could have a pole at the end of the path.

In Def. 4.1 there is an auxiliary function f∗ : [a, b] → C: f∗(t) = f(γ(t)), the
values of f along γ. Extending f∗ to allow poles requires allowing maps into P1

z.
For example: If g(z) is a branch of log at z0 = 1, we allow g(z)/(z − 1) in

E(C∗, 1). Unless there is a reason to be careful about poles, most discussions will
proceed as with extensibility of analytic functions. Integrals and primitives of a
function require such care (§4.3). Occasions may need extending this definition to
include infinitely many poles.

4.2.4. Conjugates of f . Assume f ∈ E(D, z0). Even if λ isn’t closed, fλ has
meaning for any path λ in D based at z0. This produces conjugates of f (in D) or
the monodromy range of (f, D, z0):

(4.5) Af (D, z0) = Af (D) = {fλ(z)}λ∈Π1(D,z0).

Regard fλ1 , fλ2 ∈ Af (D) as equal if are the same function near z0. As in [9.8a],
fλ1 and fλ2 are then equal in any neighborhood of z0 where they are meromorphic.
Prop. 7.3 implies conjugate here is exactly as in basic Galois Theory. Suppose
h ∈ K[x] an irreducible polynomial over a field K and h(α) = 0. Then, the full
collection of zeros of h are the conjugates of α.

Recall the Laurent series field Lz0 (about z0). This consists of ratios of power
series convergent around z0. The ring Af (D, z0) is in Lz0 . So we may form the
composite field C(Af (D, z0)) these functions generate. Still, not all elements of
C(Af (D, z0)) are in E(D, z0) unless f is algebraic.

Lemma 4.8. If f ∈ E(Uzzz, z0) is algebraic (as in (1.2)), then 1/f ∈ E(Uzzz, z0).
So, the field C(z, f) that z and f generate in Lz0 is in E(Uzzz, z0).

Proof. This requires showing extensions of f have only finitely many zeros.
Suppose f satisfies an equation m(z, f(z)) with m ∈ C[z, w]. Then, degz(m) bounds
the number of solutions of m(z, 0) = 0. That shows f(z) has only finitely many
zeros among its analytic continuations, so 1/f ∈ E(Uzzz, z0). �

Prop. 7.3, showing equivalence of (1.1) and (1.2), lets Lem. 4.8 apply without
reservation to algebraic functions.
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4.3. A branch of a primitive. Continue notation from §4.1. Suppose F (z)
is a primitive of f(z) in Uz0 :

dF
dz = f(z). This discussion does require care on

extensibility of meromorphic functions as in §4.6. If f is meromorphic in D, and
z′ ∈ D, write f as h1(z) + f1(z) with these properties.

(4.6a) f1 is analytic in a neighborhood of z′.
(4.6b) h1(z) = 1

z−z′ mz′( 1
z−z′ ) with mz′(z) ∈ C[z] (≡ 0 for f analytic at z′).

Then, the residue of f at z′ ∈ D is mz′(0).

Definition 4.9. Consider f ∈ E(D, z0), z′ ∈ D and a path γ : [a, b] → D
based at z0. Denote the restriction γ[a,t] to [a, t] by γt. We say f has no residue
along γ if fγt

has no residue for each t ∈ [a, b].

A (branch of) primitive of f(z) along λ : [a, b] → D is an analytic continuation
F̂λ of F (z) along λ. We also label it by F̂ : [a, b] → D.

Lemma 4.10. Assume f ∈ E(D, z0). Then, f has a primitive in a neighborhood
of z0 when it has no residue at z0. Let γ : [a, b] → D be a path in D along which f

has no residue. Then there exists a primitive F̂ : [a, b] → C of f along γ. Further,
for c ∈ C, there is a unique such F̂ with F̂ (a) = c.

Proof. Get a primitive for f in a neighborhood of z0 from a primitive for
each term in the Laurent series for f around z0. The function zk has a primitive

1
k+1zk+1 if k �= −1. The discussion from §3.4 has done overkill on showing z−1 has
no primitive. That is, f must have 0 as residue at z0 to have a primitive. Further,
by assumption every analytic continuation of f (in D) has this property.

Let D0 be a disk centered at z0 and contained in D. By assumption f(z) has
no residue along any path in D. So, it has a primitive F (z) = F0(z) in this disk;
integrate the power series for f(z) term by term. The primitive is unique up to
addition of a constant.

Now apply the notation of Lemma 4.3. Similarly, there exists Fi(z), a primitive
of fi(z) in Di, i = 1, . . . , n. Since fi = fi+1 in Di ∩ Di+1, Fi(z) and Fi+1 have
equal derivatives on this intersection. Thus, Fi − Fi+1 is a constant on Di ∩ Di+1.
This sets up for an induction. Assume k is an integer for which F0(z), . . . , Fk(z)
give an analytic continuation of F (z) along γ[a,tk]. Let Fk+1 be the function we just
produced, where Fk −Fk+1 = b for z ∈ Dk ∩Dk+1. Now replace Fk+1 by Fk+1 + b.
Continue inductively on k to conclude the result. �

4.4. Continuation along products of paths. Let λ1 : [a, b] → D be a path
where λ1(a) = z0 and λ1(b) = z1. Assume λ2 : [a∗, b∗] → D is another path and
λ1(b) = λ2(a∗). Create a new path λ1 · λ2

def= λ† : [a, b + b∗ − a∗] → D:

(4.7) λ† =
{

λ1(t) for t ∈ [a, b]
λ2(t + a∗ − b) for t ∈ [b, b + b∗ − a∗].

The proof of Lemma 4.12 includes detailed notation for a sequence of analytic
continuations. Use that notation for details of the following lemma. Given a path
λ, denote the path t �→ λ(b − t + a), t ∈ [a, b], by λ−1, the inverse of λ. If λ is
simplicial so is λ−1. Continue notation for the function f and let f1 = fλ1 be
analytic continuation of f along a path λ1.

Lemma 4.11. For paths λ1, λ2 and λ3, assume the end point of λi equals the
beginning point of λi+1, i = 1, 2. Analytic continuation of f1 along λ2, f2 = (f1)λ2 ,
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is the analytic continuation fλ1·λ2 of f along λ1 · λ2. Then, f(λ1·λ2)·λ3 = fλ1·(λ2·λ3)

giving unambiguous meaning to fλ1·λ2·λ3 . Also, fλ·λ−1 = f .
As in §2.3,

∫
λ1·λ2

F dz =
∫

λ1
F dz +

∫
λ2

F dz, Further,
∫

λ·λ−1 F dz = 0.

While λ · λ−1 isn’t the constant path (at λ(a)), Lemma 4.11 lists situations
where it acts as if it is.

Lemma 4.12. Suppose f ∈ E(D, z0). Let λ∗ be any path with beginning point
z0 and end point z1. Let f1 = fλ∗ . There is a one-one map between Af (D, z0) and
Af1(D, z1). Also, f is extendible to D if and only if fλ = f for each λ ∈ Π1(D, z0).

§4.5 has the proof of Lemma 4.12. It says there is an analytic function f̂ on
D restricting to f around z0 exactly when Af (D, z0) has a single element. Then,
monodromy action on (f, D), or (if D is clear, on f) is trivial.

4.4.1. A permutation representation. For f ∈ E(D, z0) and λ ∈ Π1(D, z0),
Lemma 4.11 gives a permutation of Af (D, z0) by h �→ hλ for h ∈ Af (D, z0).
Denote hλ by (h)T (λ) to distinguish T (λ) as a permutation of the set Af (D, z0).
According to Lemma 4.11,

(4.8) ((h)T (λ1))T (λ2) = (h)T (λ1) ◦ T (λ2) = (h)T (λ1 · λ2),

for λ1, λ2 ∈ Π1(D, z0).
That is, analytic continuation gives a homomorphism from the semi-group (set

with multiplication) Π1(D, z0) to permutations on Af (D, z0). From Lem. 4.11,
the permutation T (λ) has T (λ−1) as its inverse permutation. So, the image set of
permutations is a group. Call it the monodromy group Gf,D of (f, D).

Chap. 3 puts an equivalence relation, homotopy , on Π1(D, z0) to produce the
fundamental group π1(D, z0). In particular, from those results T produces a permu-
tation representation of π1(D, z0). This chapter’s elementary examples depend only
on homology classes of Π1(D, z0) (§5 and [9.12]; Chap. 3 §6.2 has the comparison).

4.5. Proof of Lemma 4.12. We show unique analytic continuation to the
end points of each closed path implies f extends analytically to D. First, we
construct the map between Af (D, z0) and Af1(D, z1) based on λ∗ as in the lemma.
Then, Af (D, z0) consists of a single element if and only if Af1(D, z1) does. Then,
we construct F , the extension of f .

4.5.1. Identifying Af (D, z0) and Af1(D, z1). Given h = fλ ∈ Af (D, z0), apply
Lemma 4.11 several times to produce this chain:

(4.9)
hλ∗ = fλ·λ∗ =

fλ∗·(λ∗)−1·λ·λ∗ = (f1)(λ∗)−1·λ·λ∗ ,

since (λ∗)−1 · λ · λ∗ ∈ Π1(D, z1). This gives a map from Af (D, z0) to Af1(D, z1):
Conjugating paths based at z0 by λ∗.

Map in the other direction by conjugating by (λ∗)−1. These maps between
Af (D, z0) and Af1(D, z1) are inverse to each other. That is, conjugating Af (D, z0)
by λ∗ · (λ∗)−1 acts trivially on Af (D, z0) (from in Lemma 4.11). Conclude: Mon-
odromy action on f (in D) is trivial if and only the same holds for fλ∗ .

4.5.2. Extending f to be analytic on D. We prove the last statement of the
lemma. Suppose f extends to f̂ analytic on D. Then uniqueness of analytic con-
tinuation shows fλ(λ(t)) = f̂(λ(t)) for each t near b (λ ∈ Π1(D, z0)).

Now suppose fλ = f for each λ ∈ Π1(D, z0). For z′ ∈ D, assume z is in
a disk neighborhood about z′ entirely contained in D. Set f̂(z) equal to fλ(z)
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with λ : [a, b] → D a path where λ(a) = z0 and λ(b) = z′. Lem. 4.6 says fλ

extends to be analytic in the whole disk neighborhood. So this defines fλ(z). Let
λ∗ : [a∗, b∗] → D be another such path with the same end points. We have only to
show fλ∗(z) = fλ(z).

Then, λ† = λ−1 · λ∗ is a closed path based at λ(b). From §4.5.1, analytic
continuation of fλ around λ† equals fλ(z). It also equals analytic continuation of
fλ along λ−1 followed by analytic continuation of f along λ∗. The result of these
analytic continuations is fλ∗ . This proves the desired equalities.

4.6. Extending analytic continuation to P1
z. Similar definitions work for

meromorphic functions in a domain, including analytically continuing meromorphic
functions. It simplifies results of Chap. 3 to systematically extend paths into P1

z.
Recall: A neighborhood basis of open sets around each point gives the topology on
a space. Around ∞ the neighborhood basis consists of sets of form N ∪{∞} where
N is the complement of any closed set in C.

Example 4.13 (Meromorphic functions). Suppose for some disc ∆z0 about z0,
D ∩ ∆z0 = ∆z0 \ {z0}. That is, z0 is an isolated boundary point of a domain D.
Further, assume f is analytic on D and it extends to a meromorphic function at
z0. That means limz �→z0(z − z0)n+1f(z) = 0 for some n ∈ Z [Con78, p. 109]. The
minimal such n allows expressing f(z) as (z − z0)nh(z) with h holomorphic and
nonzero in a neighborhood of z0. If the minimal n is negative, then f has a pole of
order n. Define F : D ∪ {z0} → P1

z by this formula:

(4.10) F (z) =
{

f(z) for z ∈ D
∞ for z = z0.

Continuity of F is equivalent to continuity of z �→ 1/F (z) around z0. This function
is continuous at z0 (taking the value 0). So it is continuous around z0.

Definition 4.14 (Analytic maps to P1
z). Suppose f : D → P1

z is analytic.
Assume z0 is an isolated boundary point of D and f extends to be meromorphic
in a neighborhood of z0. Then, we say the extension F : D → P1

z is analytic. If
f(z0) = ∞, this means z �→ 1/f(z) (with z0 �→ 0) is analytic in a neighborhood
of z0. Also, suppose ∞ is an isolated boundary point of D on P1

z. Let D′ be the
image of D under z �→ 1/z. Then, f extends analytically to F : D ∪ {∞} → P1

z if
g(z) = f(1/z) extends analytically to D′ ∪ {0} in a neighborhood of 0.

Those functions f : P1
z → P1

z analytic everywhere are the rational functions C(z)
in z [9.3f]. Extending Lem. 4.10 to allow any D in P1

z only requires clarifying what
will be the residue at ∞. This allows integrations of analytic functions f : D → P1

z

along paths for any domain D in P1
z.

Definition 4.15. By definition a function f(z) meromorphic in a neighborhood
of ∞ is in L∞, Laurent series in 1/z: f(z) = g(1/z) with g ∈ L0. The residue at
∞ is the coefficient of z in −g(z)

z2 .
For example, f(z) = 1/z has residue −1 at ∞. So, it has no primitive at ∞.
This chapter’s examples explicitly compute conjugates of special functions f .

Riemann’s Existence Theorem turns this around when D is Uzzz = P1
z \{zzz}. Running

over all algebraic f ∈ E(Uzzz, z0), Chap. 4 describes all possible permutations of the
sets Af (Uzzz, z0). The goal will be to recognize f by the permutations that come from
applying Π1(Uzzz, z0). Then Riemann’s Existence Theorem produces (algebraic) f
realizing a given labeling. It doesn’t, however, give f explicitly; it only exists.
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Given such an f , suppose g ∈ C(z, f) and C(z, g) = C(z, f): f and g are
primitive generators of this field (over z; §1.2.2). §1.2 gives u(w), v(w) ∈ C(z)[w]
with g = u(f) and f = v(g). Here is a particular case of Lem. 4.6.

Lemma 4.16. For λ ∈ Π1(Uzzz, z0), gλ = u(fλ) and fλ = v(gλ).

5. Winding numbers and homology

Winding numbers appear in §3.4. Here is the formal definition for the winding
number of the closed path γ (in C, not passing through z′) about z′:

nz′(γ) =
1

2πi

∫
γ

dz

z − z′
.

This definition alone would justify complex variables; it defines this winding for
any path avoiding z′.

Definition 5.1. Suppose D is a domain in C, z0 ∈ D and γ1, γ2 ∈ Π1(D, z0)
have the same winding numbers about each point in C \ D. We say they are
homologous (in D). A path is homologous to 0 if all winding numbers for points in
C \ D are 0. It is obvious this forms an equivalence relation on Π1(D, z0). Denote
the equivalence classes by H1(D): the (first) homology group of D.

5.1. Extending Def. 5.1. Suppose γ1, γ2 ∈ Π1(D, z0, z1). Extend the defini-
tion of homologous paths: γ1 and γ2 are homologous if the closed path γ = γ1 ·γ−1

2

is homologous to 0. Suppose γ is a closed path in C. Use the notation P1
z \γ for the

complement of the range of γ in P1
z. If z′ ∈ C\γ, we have a winding number nz′(γ)

of γ about z′. If γ1, γ2 ∈ Π1(D, z0), then γ1 · γ2 is homologous to γ2 · γ1. This is
because all winding numbers are from computations of integrals in Lem. 4.11. For
γ a closed path in P1

z denote the complement of the range of γ by P1
z \ γ.

Lemma 5.2. In the previous notation, let U1, . . . , Ur′ be the connected compo-
nents of P1

z \ γ. One of these, say Ur′ includes ∞. Then nz′(γ) is a constant
function of z′ (with γ fixed) as z′ runs over a connected component of P1

z \ γ. So,
if z′ ∈ Ur′ \ {∞}, then nz′(γ) = 0.

Let ni(γ) be the winding number of γ around any point in Ui, i = 1, . . . , r′.
Suppose D ⊂ C is any domain containing the range of γ. Any connected component
of C \ D is in one of the Ui s. Denote the set of integers i with Ui containing a
component of C \ D by ID. Then, the function i ∈ ID �→ ni(γ) determines the
homology class of γ in D.

Proof. This follows immediately by noticing g(z′) =
∫

γ
dz

z−z′ is an analytic
(and therefore continuous) function on P1

z \γ. Its values are in 2πiZ, a discrete set.
So, it is constant on each connected component of P1

z \ γ (proof of Prop. 3.2).
Now suppose z′ ∈ Ur \ {∞}. Then, some big disc ∆′ contains all of (the range

of) γ. Let z′′ be any other point in Ur \ {∞} outside ∆′. A previous observation
shows nz′(γ) = nz′′(γ). Further, g(z) = 1/(z−z′′) is analytic in ∆′. Apply Cauchy’s
Theorem 3.6 to conclude nz′′(γ) = 0.

Finally, consider the function i ∈ ID �→ ni(γ). This determines the winding
numbers of γ on each connected component of C \ D. This, in turn determines the
homology class of γ. �
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Denote the image of γ in H1(D) by [γ]h. We understand that a tuple of
integers from Lemma 5.2 may be our best interpretation. Further, additivity of
winding numbers gives [γ1 · γ2]h = [γ1]h + [γ2]h.

5.2. Homology for domains including ∞. Def. 5.1 doesn’t include defining
homologous paths if a domain in P1

z includes ∞. (This includes allowing the paths
to go through ∞.) Several adjustments allow extending the definition. Chap. 3
has a general approach, one that will not put ∞ in a special place. Here we follow
implications from a standard complex variables course.

5.2.1. Use linear transformations. If z′ ∈ P1
z \ D and ∞ ∈ D, choose a linear

(fractional) transformation α ∈ PGL2(C) mapping z′ to ∞ [9.14]. Since γ1, γ2 are
paths in D, α ◦ γ1 and α ◦ γ2 don’t go through ∞. Now, apply Def. 5.1 to α ◦ γ1

and α ◦ γ2 relative to α(D). To justify this, check that α ◦ γ1 · (α ◦ γ2)−1 being
homologous to 0 doesn’t depend on α [9.14e]. If D = P1

z, declare all closed paths
to be homologous to 0.

There is one obvious problem. Suppose ψD1,D2 : D1 ⊂ D2 is the inclusion
map. Yet, you have already chosen points z′i ∈ C \ Di for reverting homology to a
winding number computation, with z′1 �= z′2. Then, we lose having an explicit map
ψ̄D1,D2 : H1(D1) → H1(D2) induced from paths in D1 also being paths in D2.

5.2.2. Excising ∞. Assume ∞ ∈ D, z0 ∈ D \ {∞} and ∆∞ is some closed disk
about ∞ lying entirely in D. Regard P1

z as an actual sphere (in R3). Assume the
radius of ∆∞ is one unit (see §5.4.1). Let ∆∞,s be the closed disk about ∞ of
radius s, 0 < s ≤ 1. Let D∞ = D\{∞}. Now, H1(D∞) has meaning from Def. 5.1.

Let U1, . . . , Ur be the connected components of C \ D. Each defines a winding
number for γ ∈ Π1(D∞, z0). Use notation from Lemma 5.2:

γ ∈ Π1(D∞, z0) �→ [γ]h = (n1(γ), . . . , nr(γ)) ∈ Zr.

Define H1(D) by extending [γ]h to paths in Π1(D∞, z0) going through ∞. For this,
consider the submodule Mr of Zr that vvvr = (1, 1, . . . , 1) ∈ Zr generates.

Suppose γ ∈ Π1(D, z0) goes through ∞. Apply Lemma 4.3 to replace γ by a
geodesic path γ∗ in D (Rem. 4.4) with these properties.

(5.1a) γ and γ∗ have the same end points.
(5.1b) If f ∈ E(D, z0), then fγ = fγ∗ .

If γ∗ doesn’t go through ∞, precede as below. Otherwise, If γ∗ goes through ∞
then it does so only finitely many times. It is the product of a finite number of
paths γ′ with the property there is a neighborhood of ∞, ∆s0 ⊂ D, which γ′ returns
to and leaves just once. With no loss assume there exists a < t1 < t2 < b with
γ(t) ∈ ∆s0 for t ∈ [t1, t2] and γ(t) �∈ ∆s0 for t outside this interval. Therefore, γ(t1)
and γ(t2) are on the boundary ∂∆s0 of ∆s0 . There are two paths on ∂∆s0 going
at constant speed from γ(t1) to γ(t2). Let τ be one of these. Form a new path, γ∗

from γ using this formula:

(5.2) γ∗(t) =




γ(t) for t ∈ [a, t1]
τ(t) for t ∈ [t1, t2]
γ(t) for t ∈ [t2, b].

Then, [γ∗]h ∈ H1(D∞).
Definition 5.3. In the above, when ∞ ∈ D, define H(D) to be H1(D∞)/Mr.

Denote the canonical map H1(D∞) → H(D) by ψ. Extend to [γ]h: Take ψ([γ∗]h)
to be its image in H(D). Prop. 5.4 completes why this is well defined.
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5.3. Computing H1(D) for explicit domains. The word explicit has only
subjective meaning. It depends on personally interpreting what it means to know
data. Still, consider Uzzz = P1

z \ {zzz} for some set of r points zzz. Then, giving zzz
explicitly has comfortable interpretation from experience.

This generalizes to when P1
z \ D has r connected components, C1, . . . , Cr. Our

treatment tacitly assumes r is finite. Then, interpret giving D explicitly as knowing
simple closed paths bounding each of the Ci s. Such paths might be circles or
polygons with explicit beginning and end points. Given these conditions, computing
the homology class of an explicit path in D uses calculations within our experience.

The next proposition specializes a statement in Chap. 4 with homotopy classes
replacing homology classes. It gives ∞ a special status, that Chap. 4 will not.
Simple examples, like [9.10], illustrate having ∞ play a special role.

Suppose D is a domain in P1
z whose complement C(D) in P1

z has r > 0 con-
nected components C1, . . . , Cr = C(D)1, . . . , C(D)r. Denote this ordering of the
components as JD with the proviso Cr = C∞ is the component containing ∞ if
D ⊂ C. If ∞ ∈ D, add C∞ by including the empty set ∅ as the last position. Write
D∞ for D \ ∞. As in §5.2.1, consider an inclusion map ψD1,D2 : D1 ⊂ D2.

Each connected component of P1
z\D2 is in some connected component of P1

z\D1.
(If ∞ ∈ D2 regard ∅ as C(D2)∞.) This induces a map ψ†D1,D2

: JD2 → JD1 . The
module Mr is from §5.2.2. Recall the definition of a residue of a meromorphic
function f at a point z′ ∈ D from (4.6).

Proposition 5.4. Suppose D is a domain in P1
z where C(D) has r con-

nected components. Then, H1(D) is isomorphic to Zr−1. If ∞ ∈ C(D), then
γ ∈ Π1(D, z0) �→ [γ]h of Prop. 5.2 and Def. 5.3 gives this isomorphism explicitly.
If ∞ ∈ D, this identifies H1(D) with Zr/Mr (isomorphic to H1(D∞)/Mr), also
isomorphic to Zr−1.

Suppose C(D′) has r′ components and D ⊂ D′, with ∞ ∈ C(D′). Then, these
isomorphisms induce Zr−1 → Zr′−1 where n1, . . . , nr−1 �→ m1, . . . , mr′−1 by

mj =
∑

i∈JD′ ,ψ
†
D,D′ (i)=j

ni.

Assume f is meromorphic in D and γ ∈ Π1(D, z0) passes through no residue
of f . Then,

∫
γ

f(z) dz depends only on [γ]h and the residues of f at points in D.

5.4. Proof of Prop. 5.4. Let z0 ∈ D. As above, denote the r connected
components of P1

z\D by C1, . . . , Cr. First assume ∞ ∈ Cr. For each i, 1 ≤ i ≤ r−1,
there is a closed path γi = δi · γ̄i · δ−1

i ∈ Π1(D, z0) with the following description.

(5.3a) δi : [0, 1] → D and γ̄i : [0, 1] → D are paths with γ̄i closed.
(5.3b) δi(0) = z0 and δi(1) = γ̄i(0).
(5.3c) γ̄i has winding number 1 around each point in Ci.
(5.3d) γ̄i has winding number 0 around each point in Cj , j �= i.

5.4.1. Construction of γ̄i. Our construction of γi is similar to that of [Ahl79,
p. 140]. Again use the metric topology on P1

z identifying it with a sphere in R3

with coordinates (r, u, v). So, z0 ∈ P1
z corresponds to (r0, u0, v0) ∈ R3. Each point

of the sphere has a vector pointing outward, perpendicular to the tangent plane
to the sphere at (r0, u0, v0). Further, in any disk on the sphere around (r0, u0, v0),
the boundary of this disk has a well-defined orientation around (r0, u0, v0). We
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take it counterclockwise around the outward normal to the disk at its center. This
orientation applies to any simple closed path in the disk [9.17].

Components of C(D) are closed, disjoint (and bounded). Let d(zi, zj) be
the distance (along the minor arc) between zi ∈ Ci and zj ∈ Cj . The function
1/d(zi, zj) has a minimum on Ci × Cj . Running over all i and j let δ be at most
1/

√
2 times the smallest of these minimums. Form a grid on P1

z of equally spaced
longitudes and latitudes, with spacing at most δ. The closed (spherical) squares
(and triangles) of this grid each meet at most one component of C(D).

Let Q be one of the closed grid squares. Its boundary orientation is counter
clockwise around any outward normal to an interior point of Q [9.17e]. Define
Q̄i to be the union of all Q s meeting Ci. Such a Q meets none of the Cj s with
j �= i. Let γ̄i be the topological boundary of Q̄i. This is the union of bounding
sides — oriented counter clockwise from the paths bounding the Q s — to squares
of Q̄i. Also, Q̄i includes only sides appearing in exactly one Q. Such a side has
three (or two, if the grid element is by chance a triangle) other sides of grid squares
meeting each vertex. Exactly one side is in D and on another square in Q̄i. So,
each vertex has an adjoining segment of γ̄i; γ̄i is a simple closed (oriented) path.

5.4.2. Winding numbers of γ̄i. Choose any square Q∗ in Q̄i and any point
z′ ∈ Q∗ ∩ Ci. The winding number of γ̄i about z′ is

ni(γ̄i) = nz′(γ̄i) =
∑

Q∈Q̄i

nz′(∂Q) = nz′(∂Q∗) = 1.

Similarly, nj(γ̄i) = 0 for j �= i. Winding numbers of the path γi with respect to the
Cj s are the same as for γ̄i. This is from their definition as an integral (5.3); the
integral along δi cancels with the integral along δ−1

i .
Suppose ∞ ∈ C(D). Let γ be any closed path in D. To γ associate the r-tuple

(n1(γ), . . . , nr(γ)) ∈ Zr. Then, the path
∏r

i=1 γni
i is homologous to γ. Thus, the

winding number map is onto Zr−1. This completes Prop. 5.4 for ∞ ∈ C(D).
5.4.3. The case ∞ ∈ D. Consider the map H1(D∞) → H1(D∞)/Mr = H1(D).

The latter is the definition of H1(D). So we comment only on why the image of
γ ∈ Π1(D, z0) depends only on the path γ∗ from (5.2). There were two stages to
forming γ∗. The first replaced γ by a geodesic path where (5.1) gives its relation
to γ. Suppose γ1 and γ2 are two such choices. Then, fγ1 = fγ2 for any f extensible
to all of D. In particular, this applies to f a branch of log( z−zi

z−zj
) with zi ∈ Ci. Its

analytic continuations around γ1 and γ2 are the same. Therefore, if neither γ1 nor
γ2 go through ∞, the winding numbers of γ1γ

−1
2 with respect to all components of

the complement of D are the same.
Then, we adjusted the geodesic path to a new path γ∗ which for certain did

not go through ∞. There were, however, two such choices for γ∗. Label these γ∗1
and γ∗2 . Let δ be the parametrized boundary ∂∆s0 of ∆s0 . Then δ = τ1 · τ2 with τ1

going from γ(t1) to γ(t2) and τ2 going (in the same direction) from γ(t2) to γ(t1).
For simplicity assume δ goes clockwise around ∞ (as in §5.4.1).

Then, γ∗1 = γ[a,t1] · τ1 · γ[t2,b] and γ∗2 = γ[a,t1] · τ−1
2 · γ[t2,b]. Integrals determine

homology classes in H1(D∞). From Lemma 4.11, γ∗2 and

γ′2 = γ[a,t1] · τ−1
2 · τ−1

1 · τ1 · γ[t2,b]

have the same homology class. So, [γ∗2 ]h−[γ∗1 ]h is [τ1 · τ2]h. From Cauchy’s Theorem
3.6, [τ1 · τ2]h is independent of s0. On the other hand, δ bounds the disk complement
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of ∆s0 in the counter clockwise direction. By assumption that disk contains all
components of C(D). So, nz′(δ) = 1 as z′ runs over points in all components of
C(D): [γ∗2 ]h− [γ∗1 ]h = (1, . . . , 1). This shows the images of [γ∗1 ]h and [γ∗2 ]h in H1(D)
are the same. That is, Mr measures exactly the discrepancy in substituting γ∗ for
the original path.

5.4.4. Integrals along homologically trivial paths. Now assume f is meromor-
phic in D. It suffices to show the following. If γ1, γ2 ∈ Π1(D, z0), and γ = γ1 ·γ−1

2 is
homologous to 0, then

∫
γ1

f dz−
∫

γ2
f dz =

∫
γ

f dz depends only on the residues of f

in D. Let Rf be the poles of f for which f has nonzero residues. If ∞ ∈ C(D), and
γ ∈ Π1(D, z0) is homologically trivial, then Cauchy’s Residue Theorem ([Ahl79,
p. 149] or [Con78, p. 112]) says

∫
γ

f dz is
∑

z′∈Rf
nz′(γ)Res′z(f). This is the result

we want, at least if ∞ ∈ C(D). We won’t need to consider the possibility of f
having infinitely many nonzero residues.

A reduction of the Residue Theorem to the case f is analytic in D is algebraic.
Cauchy’s Theorem in this case may be the most important result from first year
complex variables. We state it and a generalization for use later.

Definition 5.5. Suppose u, v : D → C are continuous (though maybe not
analytic). The differential 1-form ω = u(z) dx + v(z) dy is locally exact if for each
z0 ∈ D, there exists Fz0(z) = F (z) in a neighborhood of z0 with these properties.

(5.4a) F (z) has continuous partial derivatives.
(5.4b) ∂F

∂x = u(z) and ∂F
∂y = v(z).

Theorem 5.6. Suppose f is analytic in D, and γ ∈ Π1(D, z0) is homologous
to 0 in D. Then,

∫
γ

f dz = 0. More generally, this holds with any locally exact
differential ω on D replacing f dz [Ahl79, p. 144, Thm. 16].

Thm. 5.6 holds even if ∞ ∈ D [9.13a]. If we only assume f ∈ E(D, z0),
then

∫
γ

f dz, γ ∈ Π1(D, z0), usually depends on more than the residues of f and
[γ]h ∈ H1(D) [9.13d].

6. Branch of solutions of m(z, w) = 0

This section discusses the implicit function theorem. It is the key ingredient
for showing a function satisfying (1.2) satisfies (1.1),

6.1. Branch of inverse of f(z). Suppose f(z) is meromorphic on D and
has range D′. A branch of (right) inverse of f(z) on D′ is a continuous function
g : D′ → D with f ◦ g(z) = z for z ∈ D′.

Definition 6.1 (Branch of inverse of f along a path). Let γ : [a, b] → D be a
path and f ∈ E(D, z0). Let g(z) be a branch of inverse of f(z) in a neighborhood
of z0. Then a branch of (right) inverse of f along γ is an analytic continuation of
g(z) along γ.

We now change the variable z to w, and discuss functions analytic in w. This
sets notation for the full implicit function theorem. Suppose f(w) is analytic in a
neighborhood ∆w0 of w0, and f(w0) = z0. For a given fixed z, assume ∂∆w0 passes
through no zero or pole of f(w) − z (as a function of w). Then,

(6.1) nz =
1

2πi

∫
∂∆w0

f ′(w) dw

f(w) − z
and g(z) =

1
2πi

∫
∂∆w0

wf ′(w) dw

f(w) − z
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count the number nz (resp. the sum g(z)) of zeros of f(w)−z in ∆w0 . By Leibniz’s
theorem, compute the derivative of g(z) by applying ∂

∂z under the integral sign (see
§7.1). So, g(z) is analytic in z for z close to z0.

Lemma 6.2. Suppose f(w)− z0 has exactly one zero (and no poles) in a neigh-
borhood ∆w0 of w0. For z sufficiently close to z0, f(w) − z also has only one zero
(and no poles). Thus, the second expression of (6.1) defines a branch g(z) of the
inverse of f(z) locally.

The proof of the implicit function theorem in §6.2 includes the proof of Lemma 6.2.
6.1.1. Branch of f(z)

1
e along a path. For e a positive integer, we use the inverse

of the eth power map in a general form. This returns to branch of log.
Suppose f is meromorphic in a domain D. Let γ : [a, b] → D be any path whose

range misses all zeros and poles of f(z). Then, define a branch of log(f(z)) along
γ to be a continuous function h(t), for which eh(t) = f(γ(t)), t ∈ [a, b]. Existence
of a branch of log(f(z)) along such γ follows from Prop. 3.2. It is the same as a
branch of log along the path f ◦ γ : [a, b] → f(D).

Define a branch of f(z)
1
e along γ using h(t) a branch of log(f(z)) along γ:

(6.2) eh(t)/e def= Br((f(z))
1
e )(γ(t)).

The left side has a clear meaning. Define the right side to be the value of the
branch at γ(t). Check: The left of (6.2) to the eth power is f(γ(t)), as expected.
As before, there are e such branches.

Applying Prop. 3.2 gives a unique branch h(t) having a specific value h(a) equal
to one of the e th roots of f(γ(a)).

6.1.2. Local inverses of rational functions. Suppose f = f1/f2 ∈ C(w) with
(f1, f2) = 1. Consider the set Xf = {(z, w) ∈ P1

z × P1
w | f(w) − z = 0}. Each point

(z0, w0) on P1
z × P1

w has a basis of open sets; each set in the basis is the product of
an open set around z0 and an open set around w0. Intersect those open sets with
Xf to get neighborhoods of points of Xf . We discuss for which (z0, w0) there exists
g(z) analytic in a neighborhood of z0 satisfying

(6.3) g(z0) = w0 and f(g(z)) = z.
That is, g produces a local parametrization of a neighborhood of (f(w0), w0) by
z �→ (z, g(z)): (z, g(z)) is on Xf because f(g(z)) − z ≡ 0.

There is a global parametrization of Xf by w �→ (f(w), w): f(w) − f(w) ≡ 0.
This parametrization, however, isn’t as a function of z. It is insistent reference to z
as the parameter that gives coherent information about the algebraic function g(z).

Lemma 6.2 says points (z0, w0) with a multiplicity one zero w0 of f(w)−z0 have
neighborhoods projecting one-one to the z-line: (z, g(z)) �→ z. Assume z0 �= ∞.
Then, w0 is a multiplicity one zero of f1(w) − z0f2(w). If this doesn’t hold, then
w0 is a zero of f1(w) − z0f2(w) and its derivative f ′1(w) − z0f

′
2(w) in w. Call it a

critical value. Eliminate z0.
(6.4) Critical values of w0 are zeros of f1(w)f ′2(w) − f2(w)f ′1(w).
In particular, there are at most deg(f1) + deg(f2) − 1 critical values of w0 (or

of z0). [9.4] precisely defines critical values when w0 is a pole of f .
6.1.3. Abel’s application. Apply the chain rule to f(g(z)) ≡ z:

(6.5)
df

dw |w=g(z)

dg

dz
= 1.
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Therefore, dg
dz = 1/ df

dw |w=g(z)
. This is the complex variable variant of how first

year calculus computes an antiderivative of inverse trigonometric functions. Abel
applied this to a (right) inverse of a branch of primitive from the following integral

(6.6)
∫

γ

dz

(z3 + cz + d)
1
2

with c, d ∈ C (Chap. 4 §7.1). Use (6.2) to interpret h(z) dz = dz

(z3+cz+d)
1
2

around

some base point z0: h(z) is a branch of (z3 + cz + d)−
1
2 . Let f(z) be a primitive

for h(z) dz. Apply (6.5) to f(g(z)) = z (special case of (7.3)):

(6.7)
dg(z)
dz

= (g(z)3 + cg(z) + d)
1
2 .

Let zzz{z1, z2, z3,∞}, the three zeros of z3+cz+d and ∞. Analytic continuation
of (z3 + cz +d)−

1
2 and its primitive f(z) = f(z; c, d) produce the collection Af (Uzzz).

First year calculus computes the inverse of a primitive of h1(z) = (z2 + cz + d)−
1
2 ,

recognizing it from the trigonometric function sin(z). This has a unique analytic
continuation everywhere in C. Abel discovered the same was true for the inverse
g(z) = g(z; c, d) of f(z; c, d); it extends everywhere in C. Many conclusions follow.

This example will inspire later topics. For example, dependence of g(z) =
g(z; c, d) on (c, d) usefully distinguishes between algebraic curves defined by w2 −
z3 + cz + d as a function of (c, d) (Chap. 4 §7.1). For each (c, d), g(z; c, d) is to the
exponential function as (6.6) is to a branch of log(z).

6.2. Implicit function theorem. Consider m(z, w) ∈ H(D)[w] (a polyno-
mial in w with coefficients in H(D)). Suppose g(z) is analytic on D and m(z, g(z)) ≡
0. We discuss paths γ → D along which there is an analytic continuation of g(z).
Such paths should exclude z′ having a w′ with

(6.8) m(z′, w′) = 0 and ∂m
∂w (z′, w′) = 0.

Riemann’s Existence Theorem produces the Riemann surface attached to g(z)
(Chap. 4). Data for the Riemann surface include information about all embeddings
of C(z, g(z)) in Puiseux fields. This important, though lesser data, is available from
the proof that Puiseux fields are algebraically closed (§7.3). Given a polynomial
m(z, w) it is theoretically possible, though not always practical, to compute exactly
the Puiseux embeddings of C(z, g(z)) from m.

6.2.1. Branch and critical points. A branch of solutions to m(z, w) along γ is
an analytic continuation of g(z) along γ. Such analytic continuations avoid points
z′ having w′ satisfying (6.8). Prop. 6.4 references h0 ∈ C[z] in the expression

(6.9) m(z, w) = h0(z)wn + h1(z)wn−1 + · · · + hn(z).

If z′ is a zero of h0, m(z′, w) has degree lower than n in w.

Definition 6.3 (Branch point of (m, w)). A point (z′, w′) is critical for (m, w)
if it satisfies (6.8). Call z′ ∈ C a branch point of (m, w) if either there exists w′

with (z′, w′) a critical point or deg(m(z′, w)) < degw(m(z, w)) = n.

Suppose z′ is not a branch point of (m, w). Then, there are exactly n distinct
values w′ with m(z′, w′) = 0. The substitutions z �→ 1/z and/or w �→ 1/w allows
extending the definition of critical points of m(z, w) to include z′ and/or w′ equal
to ∞ (see [9.4] and [9.11]). Use the notation of (6.9) and Uzzz = P1

z \ zzz.
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6.2.2. Algebraic according to (1.2) implies (1.1). Now we see that algebraic by
the equation definition implies algebraic by the analytic continuation definition.

Proposition 6.4. Suppose zzz includes ∞ and all branch points of (m, w). As-
sume (z0, w0) satisfies the first equation of (6.8), but z0 �∈ zzz. Then, there is a g(z)
analytic near z0 with m(z, g(z)) ≡ 0 and g(z0) = w0. For γ ∈ Π1(Uzzz, z0), g(z)
analytically continues along γ and m(z, gγ(z)) ≡ 0 (near the end point of γ).

If m(z, w) ∈ C[z, w] is irreducible, then zzz is a finite set. There are exactly n
branches of solutions of m(z, w) along any γ ∈ Π1(Uzzz, z0) (and exactly n elements
of Ag(Uzzz)). Conclude: Xm = {(z, w) ∈ C × C | m(z, w) = 0, z ∈ Uzzz} is connected
and g is algebraic according to (1.1).

The proof takes up §7.1. Then we get complete equivalence between (1.1) and (1.2).

7. Equivalence of the two definitions of algebraic

We show (m, w) has only finitely many branch points if m ∈ C[z, w].

Lemma 7.1. Assume m ∈ H(D)[w] and degw(m) = n > 0. Suppose there is
no domain D′ ⊂ D in which all z′ ∈ D′ are branch points. Then, the branch points
of (m, w) have no accumulation point in D. Further, if m ∈ C[z, w], either m and
∂m
∂w have a common factor, or (m, w) has only finitely many branch points.

Proof. Suppose the lemma is false, and z′ is such an accumulation point. Let
∆z′ ⊂ D be a disk around z′. So, in this disk there is a sequence of pairs (zj , wj),
j = 1, 2, . . . with these properties:

(7.1) wj is a multiple zero of m(zj , w) and limj �→∞ zj = z′.
Let Rz′ be the ring of power series in z convergent in a neighborhood of z′. Then,
Rz′ is a principle ideal domain.

Regard m and ∂m
∂w as polynomials in w with coefficients in Rz′ . Apply the

Euclidean algorithm [9.11]. It produces the greatest common divisor m1(w) of m
and ∂m

∂w in the form a(z, w)m+b(z, w)∂m
∂w = m1(z, w), a nonzero polynomial. These

polynomials in w have coefficients in H(D′) with D′ a neighborhood of z′.
If degw(m1) ≥ 1 for each z′ ∈ D′, a zero w′ of m1(z′, w) gives a common zero

of m(z′, w) and ∂m
∂w (z′, w). This is contrary to our assumption. So degw(m1) = 0

and the zj s are zeros of m1, an analytic function of z, accumulating at z′. So, m1

is identically zero contrary to a previous observation.
Apply the Euclidean algorithm to the case m ∈ C[z, w]. Conclude: If m and

∂m
∂w have no common factor, then m1 is a polynomial in z, and all branch points
are zeros of it. Thus, there are only finitely many such zeros. �

7.1. Proof of Prop. 6.4. Assume (z0, w0) is not a critical point of (m, w).
Let g(z) be 1

2πi

∫
C

w ∂m
∂w (z, w) dw/m(z, w) for each z close to z0 with C a counter

clockwise circle suitably close to w0. We show there are neighborhoods, Uz0 of z0

and Uw0 of w0, with Uz0 × Uw0 free of critical points of (m, w).
To do this, extend Lemma 7.1. Simplify notation by taking z0 = 0 and w0 = 0.

Then, m(0, w) �= 0 for 0 < |w| < r1. As z �→ 0, m(z, w) �→ m(0, w) uniformly with
respect to w. So, there exists r < r2 < r1 with |m(z, w) − m(0, w)| < |m(0, w)| for
|z| < r2 and |w| < r. By Rouche’s Theorem [Con78, p. 125], m(z, w) and m(0, w)
have the same number of zeros in |w| < r. So, m(z, w) has a single zero in this
region and g(z) gives it.
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With C fixed and z close to (but not equal) z0, apply ∂
∂z under the integral

giving g(z) to compute its derivative. The partial derivative of w ∂m
∂w (z, w)/m(z, w)

exists and is continuous. Thus, Leibniz’s rule [Con78, p. 68] says this gives dg
dz ,

showing it is analytic.
Now consider analytic continuation of g(z) along any path in Uzzz. This is the

same as the proof of Prop. 3.2 starting at §3.3.1. The key ingredient was analytically
continuing g(z) beyond the end point of any given path. We have the tools now for
that. If γ : [a, b] → Uzzz is any path, there is a neighborhood of γ(b) and g1(z) analytic
in this neighborhood with g1(γ(b)) the value of the extension of g(z) to the end
point. As in that proof, since m(γ(t), g1(γ(t))) ≡ 0 for t close to b, m(z, g1(z)) ≡ 0
for all z with g1(z) defined.

This leaves showing that as γ runs over Π1(Uzzz, z0), gγ runs over all n branches
g1, . . . , gn of solutions of m(z, w) around z0. Suppose, however, it runs over only
the subset g1, . . . , gt with t < n. Consider

(7.2) M(z, w) def=
∏t

i=1(w − gi(z)) =
wt − G1(z)wt−1 + G2(z)wt−2 + · · · + (−1)tGt(z).

Each Gi(z) is a symmetric polynomial Si(w1, . . . , wt) in w1, . . . , wt evaluated at
(g1, . . . , gt). So, Gi ∈ E(Uzzz, z0) (Lem. 4.6).

By assumption, for γ ∈ Π1(Uzzz, z0), g1,γ , . . . , gt,γ is a permutation of g1, . . . , gt.
Thus, Gi,γ = Si(g1,γ , . . . , gt,γ) = Si(g1, . . . , gt) (Lem. 4.6). So, AGi

(Uzzz) contains
a single element, i = 1, . . . , t. Apply Riemann’s removable singularity theorem
[Ahl79, p. 124] exactly as in the proof of Cor. 7.5. Conclude: Singularities of Gi

in P1
z are at worst poles. So Gi is a rational function in z: M(z, w) ∈ C(z)[w].
Plug in g1(z) = g(z), M(z, g(z)) ≡ 0. Therefore, M is an irreducible polynomial

for g(z) over C(z) of degree t < n. This is contrary to the function field being of
degree n. This contradiction proves the transitivity statement and concludes the
proof of Prop. 6.4. The n elements of Ag(Uzzz) give the n values w′ satisfying
m(z0, w) = 0. So, as λ runs over closed paths for which gλ(z0) = w′, this connects
all the points of Xm lying over z0. Therefore, analytic continuation along the
connected set Uzzz connects all the points of Xm. For future use, here is the lemma
hidden in this argument.

Lemma 7.2. Suppose f(z) is analytic in a neighborhood of z0 �∈ zzz with zzz the
branch points of m(z, w) ∈ C[z, w] and m(z, f(z)) ≡ 0. Let g ∈ C(z, f(z)) and
assume gλ = g for each λ ∈ Π1(Uzzz, z0). Then, g ∈ C(z).

7.2. The converse and integrals along paths. Assume f ∈ E(Uzzz, z0). If
f satisfies (1.1) we see it satisfies a nontrivial polynomial equation. Let f1, . . . , fn

be the conjugates of f . Apply to f1, . . . , fn the argument in (7.2) for g1, . . . , gt.
Proposition 7.3. The definitions (1.1) and (1.2) are equivalent.
Assume m(z, g(z)) ≡ 0, as in Prop. 6.4. Analytic continuation of g(z) along

γ : [a, b] → Uzzz produces t �→ h(t), continuous; h(t) is one of the n distinct values
w′ of m(γ(t), w′) = 0. For n1, n2 ∈ C[z, w], let n1(z, w)/n2(z, w) = n(z, w). Define
the integral of n(z, g(z)) along γ:

(7.3)
∫

γ

n(z, g(z)) dz
def=

∫ b

a

n(γ(t), h(t)) dt.

Avoid paths through zeros of n2 to assure the integral exists.
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7.3. Pz′ is algebraically closed. Let ∆z′ be a closed disk in P1
z centered at

z′. Denote ∆z′ \ {z′} by ∆0
z′ . We show analytic continuations of f(z) ∈ E(∆0

z′ , z0)
depend only on analytic continuation of f on a circle about z′. This will show Pz′

is algebraically closed. Let δ be the counter clockwise circle about z′ through z0.

Proposition 7.4. If λ ∈ Π1(∆0
z′ , z0) has winding number nz′(λ) = e(λ), then

fλ = fδe(λ) .

Prop. 7.4 gives the complete theory of Riemann surface covers of a punctured
disk (in Chap. 3). The proof of Prop 7.4 is in §7.4.

Corollary 7.5. As in Prop. 7.4, assume f ∈ E(∆0
z′ , z0) is algebraic over Lz′ .

Let e = ef be the minimal positive integer with fδe(z) = f(z) (near z0). Then,
f ∈ Pz′,e and Lz′(f)/Lz′ is isomorphic to Pz′,e/Lz′ . In particular, the Puiseux
expansion field Pz′ is algebraically closed. Algebraic functions in Pz′,e consist of
composites h(α(z)) with h algebraic in Lz′ and α(z) in the set {(z − z′)1/e}∞e=1.

Proof. If f(z) is algebraic over Pz′ , then it satisfies an equation of degree n
with coefficients in Pz′ . There are only a finite number of coefficients. With no loss
assume these are in Pz′,e′ for some e′; f is algebraic over Pz′,e′ . We want to show
f ∈ Pz′,e′e for some e.

Replace ue′ = (z−z′)1/e′
by z−z′ everywhere in the equation for f(z) to revert

this to where f is algebraic over Pz′ . Or, use this usual algebra observation: If f is
algebraic over Pz′,e′ , since Pz′,e′ is algebraic over Lz′ , the degree of f is finite over
Lz′ , equal to [Pz′,e′(f) : Pz′,e′ ][Pz′,e′ : Pz′ ] (§1.2).

Suppose f ∈ E(∆z′ , z0). Also, m(f(z)) ≡ 0 for z ∈ ∆z′ with m(w) ∈ Lz′ [w] and
λ ∈ Π1(∆z′ , z0). Then, fλ is another zero of m(w) [9.8c]. Let degw(m(w)) = n.
Then fλe = f for some integer e ≤ n. Choose e minimal. Then, use δ as in
Prop. 7.4. It shows e is the minimal integer with fδe = f .

For simplicity, assume z′ = 0 (∆z′ = ∆0) with w0 a solution of we
0 = z0. Let

∆1 be the preimage of ∆0 by the map ψ : u → ue: ∆0
1 the preimage of ∆0

0. Finally,
let δ1 be the counter clockwise circle through w0 around 0 in ∆0

1. Then,

f ◦ ψδ1(u) = fδe(ψ(u)) = f(ψ(u)).

Apply Prop. 7.4 to (f ◦ψ, ∆0
1, w0) to conclude f ◦ψγ = f ◦ψ for γ ∈ Π1(∆0

1, w0).
Lemma 4.12 implies f ◦ ψ is analytic in ∆0

1. Replace z by ue in the coefficients of
m(w). Let L0,u be convergent Laurent series in u around u = 0. This gives
m1(w) ∈ L0,u[w] and m1(f ◦ ψ(u)) ≡ 0. So, as u �→ 0, f ◦ ψ(u) goes to one of
finitely many values on the Riemann sphere.

Apply Riemann’s removable singularity theorem [Ahl79, p. 124]: f ◦ψ extends
to an analytic function ∆1 → C ∪ {∞}. That is, f ◦ ψ is analytic in u with ue = z.
As in [9.9g], this embeds the function field C(z, f(z)) into Pz′,e. As f(z) has e
conjugates over Lz′ , [Lz′(f(z)) : Lz′ ] is at least e. As Lz′(f(z)) is a subfield of
Pz′,e, with [Pz′,e : Lz′ ] = e, the two fields are equal. This concludes the proof. �

7.4. Proof of Prop. 7.4. Let λ ∈ Π1(∆0
z′ , z0) have winding number nz′(λ)

around z′. The proof is in parts for later use. They consist of preliminary notation
and description; explicit contraction of λ to a path having range the points of δ; and
an observation on analytic continuation around such a path. Lemma 4.3 assures
fλ = fλ∗ with λ∗ a polygonal path. So, with no loss assume λ is polygonal.
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7.4.1. Notational simplifications. The range of λ is compact, and it does not
include z′. So, there is a minimal distance r0 between z′ and the range of λ. Let
A be an annulus around z′ with inner radius r′ < r0 and outer radius R′ giving
the boundary of ∆z′ . For simplicity assume z′ �= ∞ and the disk ∆z′ is in the
complex plane, rather than on the Riemann sphere. Since circles go to circles by
stereographic projection, the only adjustment to use the Riemann sphere would be
to compose the description of the sets here with stereographic projection. Also, for
simplicity, assume z0 − z′ = r0e

2πθ0 has θ0 = 0.
7.4.2. Description of A. The point zv = z′ + r0e

2πiv lies on δ. We also use
z−v = z′ + r′e2πiv and z+

v = z′ + R′e2πiv. The points of the line segment cut by a
ray from z′ to z+

v meet A in the set

Lv = {zv − s(z−v − zv) | s ∈ [−1, 0]} ∪ {zv + s(z+
v − zv) | s ∈ [0, 1]}.

Thus the annulus is the union of the points on Lv, v ∈ [0, 1]. Reference the point
on Lv corresponding to s ∈ [−1, 1] by Lv(s).

7.4.3. Contraction of A to δ. Define Γ : A × [0, 1] → A by

Γ(Lv(s), u) =
{

zv − (1 − u)s(z−v − zv) for s ∈ [−1, 0]
zv + (1 − u)s(z+

v − zv) for s ∈ [0, 1].

Finally, for each u ∈ [0, 1] we have a path γu : [a, b] → A:

t �→ γu(t) = Γ(γ(t), u).

Note: γ0(t) = γ(t) and γ1(t) has range in the points of δ. Further, γ1(t), being
the contraction of a polygonal path to δ changes direction but finitely many times.
Take f as in the statement of Prop. 7.4. Conclude easily: fγ1 = fδe1 with e1 the
winding number of γ1 around z′.

7.4.4. fγu
constant in u ∈ [0, 1]. For u ∈ [0, 1] consider the continuous function

f∗u(t) giving analytic continuation (according to Def. 4.1) along γu. Let hu,t be the
analytic function with restriction to γu(t′) giving f∗u(t′) for t′ close to t.

Lemma 4.3 says for (u′, t′) close to (u, t), hu,t restricts to γu′(t′) to give f∗u′(t′).
Since f∗u′(t′) is a composition of two continuous functions γu′(t′) and hu,t, it is
continuous. Thus, f∗u(b) is a continuous function of u. As f∗u(b) is in the discrete
set of end values of the analytic continuations of f in ∆0

z′ , it is constant in u.
Since z0 is not a branch point of the algebraic function f , the end value f∗u(b)

determines fγu
. So, fγ1 = fγ , to conclude the proof of the proposition.

7.5. Ramification indices, branch cycles and inertia groups. Consider
L/C(z), a finite extension. Let z′ ∈ P1

z and let µ : L → Pz′ be an embedding of L
into Puiseux expansions about z′. As in [9.9], let ζe = e2πi/e for e ≥ 1 an integer.

Definition 7.6. The ramification index of (L, z′, µ) is the minimal integer
e = e(L, z′, µ) for which Pz′,e contains µ(L).

7.5.1. A crucial automorphism. Let L̂ be the Galois closure of L/C(z). Cor. 7.5
says there is an integer ê giving an embedding ψ : L̂ → Pz′,e fixed on C(z). Here is
how ψ produces a conjugacy class in G(L̂/C(z)) depending only on z′. Let gz′ be
the automorphism of Pz′,ê mapping (z − z′)1/ê to ζ−1

ê (z − z′)1/ê. This is restriction
of a topological generator of the group of the whole algebraic closure.

Denote invertible integers modulo e by (Z/e)∗. Consider compatible sequences
of integers me ∈ Z/e∗, e ≥ 1: mee′ mod e = me for all integers e, e′. Denote this
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collection Ẑ∗. Similarly, Ẑ is the compatible collection of me ∈ Z/e. Then, Ẑ is a
topological ring whose (multiplicative) units are Z∗ [FJ86, Chap. 1].

Remark 7.7 (Use of the p-adics). Here is a reminder of the algebra for writing
elements of Ẑ∗. First: Consider only e that are powers of a particular prime p.
Then, the compatible sequences {m′

pk}∞k=1 analogous to Ẑ is Zp, the p-adic integers.
These satisfy m′

k ∈ Z/pk, with m′
k+1 = m′

k mod pk with k = 1, . . . . The direct
product of the Zp s over primes p is Ẑ. The direct product of the units Ẑ∗p of Ẑ

is Ẑ∗. Symbolically write elements of Ẑ∗p as series a0 + a1p + a2p
2 + · · · . Here

1 ≤ a0 ≤ p− 1 and 0 ≤ ai ≤ p− 1 are arbitrary. Without this procedure, excluding
1 and -1, it might be hard to list any elements of Ẑ∗.

Lemma 7.8. The automorphism gz′ maps Pz′,e into itself for each e. Its effect
on Pz′,ee′ extends its effect on Pz′,e.

Let σ be any automorphism of Pz′ fixed on Lz′ . The effect of σ on Pz′,e is the
same as gme

z′ for some me ∈ (Z/e)∗. So, σ corresponds to an element of Ẑ∗.

Proof. This requires checking the effect of gz′ on generators of the field ex-
tensions. By definition, gz′(z − z′)1/ee′

= ζ−1
ee′ (z − z′)1/ee′

. Put both sides to the
power e′ and then apply gz′ . As gz′ is a field automorphism,

(gz′((z − z′)1/ee′
))e′

= gz′(((z − z′)1/ee′
)e′

) = gz′((z − z′)1/e).

Yet, (gz′((z − z′)1/ee′
))e′

= (ζ−1
ee′ (z − z′)1/ee′

)e′
. As ζe′

ee′ = ζe (by definition), this
concludes the first part.

Powers of gz′ give the group of the degree e extension Pz′,e/Lz′ [9.9d]. So, σ
restricted to Pz′,e equals gme

z′ for some me ∈ (Z/e)∗. Let σe be restriction of σ to
Pz′,e. Compatibility of these me s is from σe being restriction of σee′ to Pz′,e. �

7.5.2. Embeddings and branch cycles. Continue the discussion starting §7.5.1.
Restrict gz′ to L̂. Since L̂/C(z) is Galois and gz′ fixes C(z), this gives an automor-
phism gz′,ψ of L̂. Denote this element of G(L̂/C(z)) = G by gz′,ψ. It depends on ψ,
the choice of the embedding. Call it the branch cycle attached to the pair (z′, ψ).

Lemma 7.9. For z′ ∈ P1
z, [L̂ : C(z)] distinct embeddings ψ : L̂ → Pz′,ê leave

C(z) fixed. As ψ runs over such embeddings, gz′,ψ runs over a conjugacy class in G.
Suppose f(z), meromorphic about a nonbranch point z0, satisfies m(z, f(z)) ≡ 0,
m ∈ C[z, w]. So, z′ ∈ P1

z produces a conjugacy class Cz′ of G = G(L̂/C(z)). With
zzz the branch points of (m, w), for each z′ �∈ zzz, Cz′ = {1}.

Let δ be a clockwise (closed) circle around z′ ∈ zzz bounding a closed disk ∆z′ .
Assume ∆z′ (excluding possibly z′) contains no other branch point of (m, z) and
z0 ∈ ∆z′ . Let f1, . . . , fn be a complete list of conjugates of f . Denote analytic
continuation of fj around δ by fj,δ. Then, for some choice of ψ, gz′,ψ maps this
set to f1,δ, . . . , fn,δ.

Proof. Cor. 7.5 produces one embedding, ψ : L̂ → Pz′,ê. Let α run over the
automorphisms of L̂ fixed on C(z). Then, ψ ◦ α : L̂ → Pz′,ê runs over [L̂ : C(z)]
embeddings of L̂ into the algebraic closure of Lz′ fixed on C(z). Galois theory says
this is the exact number of embeddings possible. So we have listed them all.

Consider the effect on gz′,ψ of composing ψ with α. The new automorphism is

gz′,ψ◦α = (ψ ◦ α)−1 ◦ gz′ ◦ (ψ ◦ α) = α−1gz′,ψα.
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That is, gz′,ψ◦α runs over the conjugacy class of gz′,ψ in G as α runs over G.
Regard elements f1, . . . , fn as in Lz0 . Let h(z) be a branch of (z − z′)1/ê

defined in this neighborhood of z0. Giving an embedding of L̂ (fixed on C(z))
into Pz′,ê is equivalent to giving an embedding of L̂ mapping f1, . . . , fn into power
series g1(h(z)), . . . , gn(h(z)) in h(z), g1, . . . , gn ∈ L0. Analytic continuation of
g1(h(z)), . . . , gn(h(z)) around δ maps gi(h(z)) to gi(ζ−1

ê h(z)). This is the effect of
restriction of gz′ on the embedding of the fi s in the Puiseux expansions. �

7.5.3. Branch cycles and inertia groups. Choosing ζ−1
ê (rather than ζê) in the

definition of gz′ is convenient (later). This assures δ in Lem. 7.9 is a clockwise
path. The conjugacy class Cz′ in Lem. 7.9 is crucial to precise formulations of
Riemann’s Existence Theorem. This is the branch cycle conjugacy class attached
to z′. Using G ≤ Sn, disjoint cycle data (Chap. 3 §7.1) for elements of Cz′ is
sufficient for some applications, though not for the more serious.

Definition 7.10 (Inertia groups). The branch cycle gz′,ψ in Lem. 7.9 generates
a group, Iz′,ψ of G(L̂/C(z)). This is the inertia group attached to the embedding
ψ. The notation Iz′ refers to any choice of the groups conjugate to Iz′,ψ. Points
z′ ∈ P1

z for which Iz′ is nontrivial are the branch points of L/C(z).
7.5.4. Two definitions of branch points. There are now two definitions of branch

points. Def. 7.10 gives it for the function field L/C(z) and §6.2 for the pair (m, z).
They are related though they may not be equal [9.11].

Proposition 7.11. Suppose m(z, f(z)) ≡ 0 and L = C(z, f(z)). If z′ ∈ C is a
branch point of L/C(z), then it is also a branch point of (m, z).

Proof. Suppose z′ is a branch point of L/C(z). Then, there is an embedding
ψ : C(z, f(z)) → Pz′,e where the image of f is not in Lz′ . In particular, the power
series ψ(f) and gz′(ψ(f)) in (z − z′)1/e have the same value after substituting 0
for (z − z′)1/e. Since (w − ψ(f(z))(w − gz′(ψ(f))) divides m(z, w) (in Pz′ [w]), this
shows m(z′, w) has multiple zeros. �

8. Abelian functions from branch of log

A branch of log isn’t an algebraic function. Still, it allows explicit construction
of all the algebraic functions we call abelian, the topic of this subsection.

8.1. Further notation around extensible functions. Let E(Uzzz, z0) be the
extensible (meromorphic) functions on Uzzz (as in Def. 4.5; given by elements of Lz0).
Denote algebraic elements of E(Uzzz, z0) (as in Def. 1.1) by E(Uzzz, z0)alg.

Definition 8.1. Let G be a finite group having a specific property P ∗. Say
an element f ∈ E(Uzzz, z0)alg has property P ∗ if its monodromy group Gf (§4.4.1)
has this property. This allows referring to abelian, nilpotent (Gf is a product of its
p-Sylow subgroups), solvable or primitive functions.

Example: Suppose [C(z, f) : C(z)] = n. Then, f is primitive if Gf is a primitive
subgroup of Sn (Chap. 3 Def. 7.9). Equivalently, by the Galois correspondence,
there is no field properly between C(z) and C(z, f) [9.5]. Later chapters show this
is a very important concept. Unfortunately, the word primitive appears in many
guises in mathematics (already in this chapter). It has even more meanings in the
Webster’s dictionary. The closest to our meaning here is this: not derived; as a
primitive verb in grammar. So, C(z, f) is an extension not (even partially) derived
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from any other proper extension of C(z). Note that this is different in English than
it being generated by a single element over C(z) (primitive generator). Denote the
abelian (resp. nilpotent) functions in E(Uzzz, z0)alg by E(Uzzz, z0)ab (resp. E(Uzzz, z0)nil).

8.2. Abelian monodromy. For e ∈ Z and γ : [a, b] → D a path whose range
misses all zeros and poles of f(z), (6.2) defines branch of f(z)

1
e along γ.

Here is data for abelian functions of index e:

• distinct points zzz = z1, . . . , zr in P1
z: branch points

• ∆z0 , a disk neighborhood of z0: base point
• an integer e: index
• a branch gi,j of log( z−zi

z−zj
) in ∆z0 , 1 ≤ i < j ≤ r

Denote the field C(z, egi,j/e, 1 ≤ i < j ≤ r) by Le,zzz: The field of abelian functions
(on P1

z) ramified over zzz of index dividing e. It is a subfield of Lz0 . Any f ∈ Le,zzz

defines an analytic f : ∆z0 → P1
z according to notation of §4.6. If some zi = ∞

replace z − zi by 1 in the definition. In particular, when zr = ∞, gi,r is a branch of
log(z − zi), i = 1, . . . , r − 1. This definition includes all algebraic functions having
abelian monodromy group. It will give a valuable comparison in Chap. 4. There is
a similar definition of algebraic functions on D with any domain D replacing P1

z.
8.2.1. Galois group of Le,zzz. A complete description of Le,zzz depends only on

homology classes of paths in Π1(Uzzz, z0).

Corollary 8.2. Assume γ1, γ2 ∈ Π1(Uzzz, z0) are homologous and f is an al-
gebraic abelian function on Uzzz corresponding to the data (8.2). Then, the analytic
continuations fγ1 and fγ2 (back to z0) are equal. Monodromy from Π1(Uzzz, z0) in-
duces a faithful action of H1(Uzzz)/eH1(Uzzz) on Le,zzz and therefore on C(z,Af (Uzzz, z0))
(§4.2.2). In particular, Le,zzz/C(z) is Galois with group H1(Uzzz)/eH1(Uzzz). For
f ∈ Le,zzz/C(z), C(z,Af (Uzzz, z0))/C(z) is Galois with group a quotient of this group.

Proof. For simplicity assume zr = ∞. Take γ ∈ Π1(Uzzz, z0) and

f(z) = m1(eg1,γ(z)/e, . . . , egr−1,γ(z)/e)/m2(eg1,γ(z)/e, . . . , egr−1,γ(z)/e),

where gj,γ denotes analytic continuation of gj around γ. Let mj be the winding
number of γ about zj . Analytic continuation of gj around γ adds 2πimj to gj

(Prop. 3.5). Since γ1 and γ2 have the same winding numbers around each zj , this
proves the effect of their analytic continuations on f are the same.

Note that Le,zzz/C(z) is the composite of the field extensions C(z, egj(z)/e)/C(z).
Apply [9.9] using (egj(z)/e)e = z − zj . Conclude: C(z, egj(z)/e)C(z) is Galois with
group Z/(e). From [9.5d], the composite of these fields is Galois, with group a
subgroup of Z/(e) × · · · × Z/(e). The image of H1(Uzzz)/eH1(Uzzz) produces field au-
tomorphisms of Le,zzz. We know these explicitly. Let a closed path λ have respective
winding numbers (a1, . . . , ar−1) around (z1, . . . , zr−1). If e does not divide aj , then
monodromy action of λ on gj is nontrivial. So the automorphism group is all of
(Z/e)r−1. This shows the result. �

8.3. Deeper into the Monodromy Theorem. Consider m ∈ C[z, w] and
D a domain in P1

z. It is a fundamental to decide when some branch of solutions of
m(z, w) = 0 is a meromorphic function on all of D. Riemann’s Existence Theorem
gives a satisfactory answer to versions of this question.
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8.3.1. Simple connectedness. Call a domain in C simply connected if there is
at most one connected component in P1

z \ D. Chap. 3 has the usual definition of
a simply connected topological space. For open subsets of P1

z these definitions de-
scribe the same sets. The following is an application of Cauchy’s Residue Theorem
for later comparison with the general Monodromy Theorem.

Theorem 8.3 (Monodromy Theorem). Suppose D ⊂ C \ {z1, . . . , zr} is simply
connected. Assume f has no residues in D. Then f(z) has a primitive (antideriv-
ative; §2.5) F (z) on D. Suppose zzz contains the zeros and poles of f(z). Apply this
to df

dz /f to conclude there is a branch of log(f(z))) on D.

8.3.2. Homological triviality versus simple connectedness. Being simply con-
nected has another characterization: the winding number of any closed path in D
relative to any point z′ outside of D is 0. That is, D is simply connected if all
paths in D are homologous to 0. Beware! If D is not simply connected, some paths
may be homologous to 0, though not trivial for our applications. For example,
any function that isn’t abelian has a nontrivial analytic continuation around some
path homologous to 0. For, however, abelian functions, most questions use just
the Monodromy Theorem in Prop. 7.4. For example, suppose m(z, g(z)) ≡ 0, and
C(z, g(z))/C is an abelian extension (g is abelian). Then, we can characterize those
D that aren’t simply connected on which g is extendible. It is tougher to be so
precise about antiderivatives for even abelian functions g along paths in D.

8.4. Primitive tangential base points. Let f ∈ E(Uzzz, z0)alg and z′ ∈ zzz.
Suppose λ in Uzzz goes from z0 to z1. Analytic continuation of f produces fλ ∈
E(Uzzz, z1). Consider λ a restriction map. Applying λ restricts f to fλ ∈ Lz1 .

How about using a path to restrict f to a function around z′? That is, let λ
be a path with end point close to z′. Can we consider fλ restriction of g ∈ Pz′?
The simple answer is No!, unless fλ extends to an analytic function around z′. It
is valuable, however, to add data to Pz′ so the answer will be Yes!

Choose an open disk D′ in Uzzz, with z′ on its boundary. Let ge(z) be a branch
of (z − z′)1/e on D′, one for each positive integer e. This always exists from (6.2).
Further, we ask the system of these be compatible:

(8.1) For all integers (e, e′, e′′) satisfying ee′ = e′′, ge′′(z)e′
= ge(z).

Call this collection {ge}∞e=1 = G(D′, z′) a system of branches on (D′, z′). The
following is a slight enhancement of Lem. 7.8.

Proposition 8.4. Given G(D′, z′), any system of branches on (D′, z′) corre-
sponds one-one with elements of Ẑ (§7.5.1). Precisely: {me} ∈ Ẑ �→ {ζme

e ge(z)}∞e=1.
Let D′′ ⊂ D′ be any (open) disk tangent to z′. Restriction of G(D′, z′) to

D′′ defines a system of branches G(D′′, z′). Let vvv be the direction from z′ along a
geodesic on Uzzz toward the center of D′. (Consider Uzzz a subset of the sphere with
its metric; geodesics being great circles.) Containment orders disks tangent to z′

with vvv pointed into the disk. There is a maximal element

G(vvv, z′, Uzzz) = G(vvv, z′) = G(Dvvv, z′) :

Take Dvvv the largest disk in Uzzz having radius along vvv and tangent to z′.

So, the set of branch systems satisfying (8.1) is a homogeneous space for Ẑ.
That is, an action of the group Ẑ on one of them gives all. You still, however, need
one choice G(D′, z′) to get the process going.
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Definition 8.5. Call G(vvv, z′) = v̂vv a primitive (or naive) tangential base point:
v̂vv has an underlying point z′, direction vvv and system of branches on Dvvv.

From Cor. 7.5, elements in Pz′,e have the form f∗ = h((z−z′)1/e) with h ∈ Lz′ .
Define restv̂vv(f∗) to be h(ge(z)). For any simply connected subspace Y of Uzzz, denote
paths in Uzzz from z0 with endpoint in Y by Π1(z0, Y ).

Proposition 8.6 (Tangential Base Point Restriction). Assume f ∈ E(Uzzz, z0)
and γ ∈ Π1(z0, Dvvv). There is a unique f∗ ∈ Pz′ with restv̂vv(f∗) = fλ.

Proof. Uniqueness of f∗ is clear. Existence is from Cor. 7.5. Here are details.
Let δ be a clockwise circle bounding a disk ∆z′ with center z′ with ∆z′ \{z′} ⊂ Uzzz.
Assume δ meets Dvvv. Connect the end point of λ to some point on δ by a path lying
entirely in Dvvv. From Cauchy’s Theorem (Prop. 3.6), there is a unique function g
defined by a power series on Dvvv that restricts to fλ. So, any analytic continuation
of fλ along a path in Dvvv equals g. Thus it depends only on the end point of this
path. Assume with no loss λ ends on δ.

Let e = ef be the order of the monodromy action of δ on fλ. Then, Cor. 7.5
says fλ is f∗ = h(gef

(z)) with h holomorphic in the disk δ bounds. �

Example 8.7 (Deligne tangential base points). Take z′ = 0 and vvv any direction
0 ≤ θ < 2π on Cz represented by eiθ. Define ge(z) to be eiθ/e times the unique
branch of (e−iθz)1/e taking positive real values along the direction vvv from 0: [De89,
§15] or [Ihar91, p. 103].

8.5. Describing all algebraic abelian functions. Suppose f(z) is algebraic
and C(z, f)/C(z) is a Galois extension with abelian Galois group G. Assume zzz
contains the branch points of f and the ramification indices at all points of zzz divide
some integer e. Each z′ ∈ zzz produces an inertia group Iz′ (Def. 7.10). More
explicitly it produces a well defined conjugacy class Cz′ in G (Lem. 7.9). Since,
however, G is abelian, this conjugacy class is an element gf,z′ ∈ G.

Theorem 8.8. Under the above hypotheses, gf,z′ , as z′ runs over zzz, determines
the field extension C(z, f). Further, two other properties hold.

• 〈gf,z′ , z′ ∈ zzz〉 = G: generation
•

∏
z′∈zzz gf,z′ = 1 : product-one condition

Conversely, suppose given G and elements gz′ ∈ G for each z′ ∈ zzz satisfying
(8.8). Then, there exists algebraic f (given as above by branches of log) satisfying
gf,z′ = gz′ for z′ ∈ zzz. Another algebraic function f∗ produces the same data if and
only if C(z, f∗) = C(z, f).

Proof. There is a standard reduction for showing the field is determined by
the data gf,z′ , z′ ∈ zzz. Write G as

∏u
i=1 Gi where Gi is cyclic of some prime power

order. Every finite abelian group has this form ([Isa94, p. 90], see [9.15]). Then,
C(z, f) is the composite of field extensions Li/C(z) with group Gi, i = 1, . . . , u.
Further, any subextension C(z) < M < Li is Galois with group a quotient of
Gi. So, it is cyclic of prime power order. So, with no loss assume C(z, f)/C(z)
is Galois with group isomorphic to Z/pt for some integer t and prime p. List zzz
as z1, . . . , zr, then list the group data as (g1, . . . , gr) with gi = gf,i attached to zi.
Since G = Z/pt, identify gi with an integer ni ∈ Z/pt.

It is easy to produce a cyclic extension that has exactly this attached data.
For simplicity, assume zr = ∞. Then, for any z0 not in zzz, let h(z) =

∏r−1
i=1 hi(z)ni
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with hi a branch of (z − zi)
1

pt in a neighborhood of z0. The lemma is done if
C(z, h(z)) = C(z, f(z)). Both fields embed in Pzi and the action of gzi restricts to
both fields the same way. Any function in the fixed field of all the gi s is extensible
over the whole Riemann sphere, as in §7.1. So such a function is a rational function
in z. Therefore, the fixed field of 〈g1, . . . , gr〉 in C(z, f(z)) is trivial. Apply [9.5d]
to the composite of the two fields and conclude they are equal.

Consider the generation condition. Assume 〈gf,z′ , z′ ∈ zzz〉 = H is a proper
subgroup of G. If f1 ∈ C(z, f) is in the fixed field of H, then f1,λ = f1 for all
λ ∈ Π1(Uzzz, z0). Lem. 7.2 implies f1 ∈ C(z). So C(z) is the exact fixed field
of H and H = G. The product-one condition appears by recognizing gf,z′ as
restriction of the ge,z′ for the field Le,zzz. Apply the product of the ge,z′ to generating
functions in Le,zzz = C(z, egi,j/e, 1 ≤ i < j ≤ r) (from (8.2)). It comes to showing
ge,zj

ge,zi
(egi,j/e) = egi,j/e. With no loss take zi = 0 and zj = ∞ [9.10a]. �

The full version of Riemann’s Existence Theorem generalizes the generation
and product-one conditions (8.8) to C(z, f(z)) where f is any algebraic function.
When G is abelian, the product-one condition is independent of the order of the
elements gf,z′ . Keep your eye on the analysis that goes into tracking the order of
elements appearing in the product-one condition when G is not abelian. This is
what produces the significant action of the Hurwitz monodromy group in Chap. 5.
Further, the converse holds in generality. Without, however, the abelian condition
producing the algebraic function f is more mysterious.

Suppose G and G∗ are abelian groups and gggzzz and ggg∗zzz∗ satisfy the conditions of
(8.8). Consider two triples G = (G,zzz,gggzzz) and G∗ = (G∗, zzz∗, ggg∗zzz∗) as in Thm. 8.8.
Assume zzz is a subset of zzz∗. For this discussion, if z′ ∈ zzz∗ \zzz regard gggzzz as having the
identity element at z′. Also, assume there is a homomorphism α : G∗ → G taking
g∗z′ to gz′ for z′ ∈ zzz∗. Regard α = αG∗,G as a map from G∗ to G.

Corollary 8.9. The projective system {G, αG∗,G} of triples with maps has a
limit consisting of a group Gab and elements gab

z′ running over z′ ∈ P1
z. Then, Gab

identifies with the maximal abelian quotient of the absolute Galois group of C(z).
Also, gab

z′ acts trivially on any abelian algebraic function in Lz′ and identifies with a
generator of the automorphisms of Pz′/Lz′ in its restriction to the abelian algebraic
functions in Pz′ (Cor. 7.5).

Call the group Gab, the Galois group of the maximal abelian extension of C(z).
A collection {gab

z′ }z′∈P1
z

will be a canonical system of generators of Gab. Any g ∈ Gab

acts on the abelian algebraic functions in Pz′ for any z′. This action is also the
restriction of an automorphism of Pz′/Lz′ . So monodromy action on a branch of
log(z − z′) determines this restriction element as a multiple of gab

z′ ∈ Ẑ.

9. Exercises

Some exercises remind of basic Galois Theory. Use char(K) to denote the
characteristic of a field K: The minimal positive integer n for which n times the
identity in K is 0 (if such an integer exists, or 0 otherwise).

9.1. Substitutions and the chain rule. Consider more on (2.7c) as the
defining property of analyticity.
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(9.1a) For a path λ : [a, b] → C, compose it with any analytic function h : C → C
to give h ◦ λ : [a, b] → C, another path. If g and h satisfy (2.7c), show

d
dt (g ◦ h)(λ(t0)) = d

dt (g(h(λ)))(t0) = dg
dw |w=h(λ(t0))

d
dt (h ◦ λ)|t=t0

= dg
dw (h ◦ λ|t=t0)

dh
dz (λ(t0))dλ

dt (t0).

(9.1b) Show: Existence of f ′(z0) requires only checking (2.5) for λ : [−1, 1] → D
by t �→ z0+tv with v �= 0. That is, check directional derivative rule (2.7b).

(9.1c) Conclude, if in (2.7c) two of g ◦ h, g, h are analytic, then so is the third.
With m(z, w) = wk − h(z) and w(t) and z(t) (nonconstant) rational functions

with w(t)k ≡ h(z(t)) for all t, consider indefinite integrals for I(z) =
∫

h(z)
1
k dz.

(9.2a) Substitute z(t) for t. Rewrite I(z) as an antiderivative for dz(t)
dt /w(t).

Apply this with k = 2 and h(z) = z2 + az + b using [9.3d].
(9.2b) Ex. [9.10f] shows [9.2a] won’t work often, not even with k = 2 and

deg(h) = 3 having no repeated roots. Show it does work for any h with
at most two distinct zeros, but arbitrary degree.

(9.2c) Calculus uses a different substitution: w(t) and z(t) are trigonometric in
t with w(t)2 = z(t)2 + az(t) + b. Result: The square root expression dis-
appears; replaced by a function. Why choose transcendental over rational
functions? Hint: Consider the antiderivative as a function of z.

9.2. Rational functions and field theory. Suppose K is any field. Con-
sider u(z) = P1(z)/P2(z) in K(z). Follow the notation of §1.2.1.

(9.3a) Show P1(w)− zP2(w) is irreducible. Hint: Factor it as m1(z, w)m2(z, w).
Then compute the degree in z of each factor.

(9.3b) Suppose m ∈ K[z, w], degz(m) = 1 and m(z, f(z)) ≡ 0 for some f(z)
analytic on a domain D. Show K(z, f(z)) = K(f(z)).

(9.3c) If M ≤ L1 ≤ L2 is a chain of fields, transitivity for degrees says [L2 :
M ] = [L1 : M ][L2 : L1]. Use it to show deg(u1(u2(z))) = deg(u1) deg(u2)
for u1, u2 ∈ K(z) \ {0}.

(9.3d) Suppose M is a field and char(K) �= 2. Assume m(z, w) ∈ K[z, w] of
total degree 2 is irreducible, z0, w0 ∈ K, m(z0, w0) = 0 and w′ is a zero
of m(z, w) in K(z). Show K(z)(w′) is isomorphic to K(t) for some t ∈
K(z)(w′). Hint: With t and s variables, let z0 + s = z and w′ = w0 + ts.
Solve for s as a function of t in m(z,′ w) = 0.

(9.3e) Show z0, w0 ∈ K is necessary for the existence of t in (9.3d).
(9.3f) The fundamental theorem of algebra follows from knowing a function f(z)

bounded and analytic on C is constant. How does this imply every analytic
function P : P1

z → P1
w (§4.6) by z �→ P (z) is an element of C(z)?

Now consider parametrizations by rational function curves. Use §6.1.2 with
f = f1/f2 ∈ C(w) and (f1, f2) = 1. Parametrize Xf near (z0, w0) if w0 is not a
zero of the Wronskian f1(w)f ′2(w) − f2(w)f ′1(w) of f1, f2 and f2(w0) �= 0.

(9.4a) Use Def. 4.14 to show this includes when w0 is a zero of f2 (z0 = ∞).
(9.4b) Extend a) to w0 = ∞. Show an analytic parametrization of a neighbor-

hood by (z, g(z)) exists if and only if |deg(f1) − deg(f2)| ≤ 1.
(9.4c) Suppose f(g(z)) ≡ z for g(z) analytic in a neighborhood of z0. With

these extensions, show the maximal number of branch points for C(z, g(z))
(§6.2) is 2(deg(f)− 1) with equality occurring for some rational functions
f of degree n for any positive integer n.
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(9.4d) Suppose w0 is a zero of f1(w)f ′2(w) − f2(w)f ′1(w) of multiplicity ew0 − 1
and f(w0) = z0. Apply the Cor. 7.5 proof to find ew0 distinct functions
g(u) analytic around 0 with g(0) = w0 and f(g(u)) − z0 − uew0 ≡ 0?

(9.4e) Extend d) to have either z0 or w0 is ∞. Conclude for f ∈ C(z) \ C:

2(deg(f) − 1) =
∑

ew0 − 1.

9.3. Galois theory of composite fields and using group theory. Sup-
pose L1/K and L2/K are two field extensions. Given a field L containing both
L1 and L2, there is an immediate minimal field L1 · L2 in L containing them both
[Isa94, Chap. 18].

(9.5a) Suppose M/K is Galois: Its group of automorphisms G(M/K) = G fixed
on K has order [M : K]. Consider K < L < M , a chain of fields. Suppose
L = L1, . . . , Ln are the fields conjugate to L/K. Show L1 · Li = L1,
i = 1, . . . , n, if and only if L/K is Galois (G(M/L) is a normal subgroup;
closed under conjugation from G).

(9.5b) Let T : G → Sn be the permutation representation of G on cosets of
G(M/L) (as in a). Show there is j �= 1 with L1 = L1 · Lj if and only if
(1)T (g) = 1 ⇔ (j)T (g) = j for each g ∈ G.

(9.5c) The following notation holds for the next two subexercises. Suppose Mi/K
is Galois with group Gi, i = 1, 2. Consider the group G defined as follows:

{g = (g1, g2) ∈ G1 × G2 | g1(α) = g2(α), α ∈ M1 ∩ M2}.

Show G acts as automorphisms of M1 · M2.
(9.5d) Show |G| = [M1 ·M2 : K], and so M1 ·M2/K is Galois with group G. Hint:

Apply the Fundamental Theorem of Galois Theory [Isa94, Thm. 18.21]
to the fixed field of G.

(9.5e) Conclude M1 · M2 doesn’t depend (up to isomorphism over K) on what
field they both sit inside if both extensions are Galois.

(9.5f) Assume char(K) is p (a prime or 0). Suppose K has at most one extension
of degree n for any integer n > 0 (or if p > 0, prime to p). Show extensions
of K of degree prime to p are Galois with cyclic group.

We warmup in interpreting field theory with group theory. Let K = C(z).
If f is algebraic over K denote K(f) by Lf , and the Galois closure of Lf/K by
L̂f . Suppose mi ∈ C[z, w], of degree ni in w, is the irreducible polynomial for a
function fi (algebraic according to (1.2)) over K, i = 1, 2. Denote G(L̂fi

/K) by

Gi, i = 1, 2. As in [9.5d], regard G
def= G(L̂f1 · L̂f2/K) as a subgroup of Sn1 × Sn2 .

Let πi : G1 × G2 → Gi be projection on the ith factor.

(9.6a) For H a subgroup of G1 × G2, let ker(πi(H)) be the kernel of projection
of H on Gi. For H ≤ G1 × G2 with πi(H) = Gi, i = 1, 2, let AH be
〈ker(π1(H)), ker(π2(H))〉. Show H = {(g1, g2) | ψ1(g1) = ψ2(g2)} with
ψi : Gi → G1 × G2/AH = GH : H is the fiber product of ψ1 and ψ2.

(9.6b) Consider L/F and F/M algebraic field extensions, with ψ : F → M̄ an
embedding of F in the algebraic closure of M . Galois theory depends on
the Extension Theorem [Isa94, Thm. 17.30]: There exists an embedding
ψ′ : L → M̄ extending ψ. Explain why this shows πi(G) = Gi, i = 1, 2.
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(9.6c) Let G2(1) = G(L̂f2/Lf2). Consider π−1
2 (G2(1)), the biggest subgroup of

G projecting to G2(1). Show m1 is irreducible over Lf2 if and only if
π1(π−1

2 (G2(1))) is transitive.
(9.6d) Let f (1), . . . , f (n) be the conjugates of f (1) = f with f algebraic over K

of degree n. Denote G(L̂f/K(f (i))) by G(i). Show: K(f (1)) contains f (i)

if and only if G(1) = G(i).

9.4. Branch of log and Puiseux expansions. Assume D ⊂ C∗ is a domain.
(9.7a) A classical domain D supporting a branch of log on D is any (subdomain of

a) sector: Sθ1,θ2 = {rei θ | θ1 < θ < θ2} under the condition θ2 − θ1 ≤ 2π.
Give the branches of log on Sθ1,θ2 .

(9.7b) If H1(z) and H2(z) are two branches of log in D and H1(z0) = H2(z0) for
z0 ∈ D, show H1(z) = H2(z) for z ∈ D.

(9.7c) Prop. 3.2 shows there exists a branch gλ of log along any path in D. If
for any λ ∈ Π1(D, z0), gλ(1) = gλ(0), show there is a branch of log on D.
Hint: Let G(z) be gλ(b) with λ : [a, b] → D so λ(a) = z0, λ(b) = z and gλ

is a branch of log along λ with gλ(a) = w0 (fixed). Apply Lem. 4.11.
(9.7d) Show there is a branch of log in a domain D if and only if each closed

path in D has winding number 0 about the origin.
(9.7e) Consider γ1, γ2; [0, 1] → P1

z with these properties: γ1(0) = γ2(0) = 0,
γ1(1) = γ2(1) = ∞, and for t ∈ (0, 1) γ1(t) �= γ2(t), and γi(t) ∈ C∗,
i = 1, 2. Let D be any component ([9.17e]: there are two) of C∗ \{γ1, γ2}.
Show there is a branch of log in D.

Assume f(z) is analytic near z0 and algebraic according to (1.2): m(z, f(z)) ≡ 0
for some nonzero m ∈ C[z, w].

(9.8a) Why can we assume m(z, w) is irreducible in the ring C[z, w]? How does
this same observation show the ring of analytic functions on a (connected)
domain D is an integral domain. Hint: h(z) analytic on D and zero at a
set with a limit point in D is identically zero [Ahl79, p. 127].

(9.8b) Assume (f, D, z0) is extensible. As in (1.1), why does h(z) ∈ Af (D) also
satisfy m(z, h(z)) ≡ 0. Conclude: f(z) satisfies (1.1b).

(9.8c) Note in b) for given D, the conclusion requires only that m(z, w) has
coefficients meromorphic on D (not necessarily on P1

z).
(9.8d) Use §6.1 to complete showing f(z) satisfies (1.1).
(9.8e) Suppose f(z) is a branch of log on D. Show it satisfies neither of the

properties (1.1a) or (1.1b). Yet, it does satisfy (1.1c).
(9.8f) If g : D1 → D is analytic and f(g(z)) ≡ z, show g(z) satisfies (1.2).
(9.8g) Suppose f ∈ H(C). Let zzz = {∞}. Then, f satisfies (1.1a) and (1.1b).

Suppose f is not a polynomial function. Show it doesn’t satisfy (1.1c).
Hint: Apply the Caseroti-Weierstrass theorem [Con78, p. 109].

Consider how branches of log closely tie to Puiseux expansions. Use notation
of §1.3 for the field Lz′ around z′. For integer e > 1 create a copy Pz′,e of Lz′ by
replacing z − z′ by a new variable ue. Set e2πi/e = ζe.

(9.9a) Why is Lz′ a field?
(9.9b) Suppose e | e∗: t = e∗/e. Map Pz′,e to Pz′,e∗ by substituting ut

e∗ for ue.
Show this map extends to a field homomorphism.

(9.9c) Identify Pz′,e with its image in Pz′,e∗ . Form the union, the ring of Puiseux
expansions Pz′ , over all e. Why is it a field?
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(9.9d) Show Pz′,e is a Galois extension of Lz′ with group Z/(e). Hint: A gener-
ator acts by ue �→ ζeue.

(9.9e) Suppose z0 �= z′. Let h(z) be a branch of log(z − z′) in a neighborhood
D of z0. Show fe(z) = eh(z)/e is a branch of solutions of we = z − z′. So
f(z) is an algebraic function.

(9.9f) If e > 1, show fe(z) is not the analytic continuation of a function in Lz′ .
(9.9g) Consider ϕ : P1

w → P1
z by w �→ we + z′. Form g(w) = fe ◦ ϕ and show it

is an analytic continuation of some function (of w) around 0.
We may equally consider Puiseux expansions at ∞. Denote the Laurent series

around ∞ by L∞: expressions (1/z)nh(1/z) with n an integer and h(z) convergent
near z = 0. As in [9.9], form a copy P∞,e of L∞ by replacing 1/z by ue.
(9.10a) Follow [9.9] to form P∞, the analog of Pz′ . Analytically continue a branch

of z1/e counterclockwise on a circle around ∞. Hint: Apply z �→ 1/z; it
is the same as continuing z−1/e clockwise around the origin.

(9.10b) For f(w) ∈ C[w] of degree n with leading coefficient 1, write f(w) =
wn+an−1w

n−1+· · ·+a0, let m(z, w) = f(w)−z. Show there is g(z) ∈ P∞
of form z

1
n +

∑∞
j=0 bjz

− j
n with f(g(z)) ≡ z.

(9.10c) Let Lf be C(z, g(z)), g from b). Let L̂f/C(z) be the splitting field of
Lf/C(z). Show there is g ∈ G(L̂f/C(z)) acting as an n-cycle on conju-
gates of g(z). Hint: Apply 1/z

1
n �→ ζn1/z

1
n .

(9.10d) Consider f, h ∈ C[w] with deg(h) = m. Apply [9.6c] to L̂f and L̂h.
Show the group of L̂f · L̂h/C(z) contains σ of order nm/ gcd(n, m) with
restriction of σ to L̂f an n-cycle and its restriction to L̂h an m-cycle.

(9.10e) If (deg(f),deg(h)) = 1, show f(w)−h(u) is irreducible. Hint: Irreducibil-
ity is equivalent to [K(w) : K] = deg(w) with K = C(u). Use that d)
shows [K ′(w) : K ′] = deg(w) with K ′ = C((1/u)).

(9.10f) Suppose in d) (with (deg(f),deg(h)) = 1), Lf · Lh is pure transcendental
(equals C(t)). Show for some choice of t there are polynomials g(t), k(t)
of respective degrees m and n with f(g(t)) = h(k(t)).

(9.10g) Apply f) to f(w) = w2 and h(u) = u3 − au− b where h has distinct zeros.
Show Lf ·Lh is not pure transcendental. Hint: Zeros of g(t)2 are multiple.

Critical points over z ∈ C appear in (6.8). Now consider z = ∞. With
m ∈ C[z, w] of degree n and m = h0(z)wn + h1(z)wn−1 + · · · + hn(z), assume h0

has z0 as multiplicity t zero. When h0 is constant call m integral (over z).
(9.11a) Write t = kn + t0 with 0 ≤ t0 < n. Show there is an integral polynomial

m1(z, w) ∈ C[z, w] satisfying m1(z, (z − z0)k+1w) ≡ (z − z0)n−t0m(z, w).
(9.11b) Suppose K is a field and P1, P2 ∈ K[w]. The Euclidean algorithm gives

the greatest common divisor of P1 and P2. Write P1 = R0, P2 = R1. Form
the remainder R2 of the division R1|R0. Inductively form successive re-
mainders, R3, . . . , Ru, until the next stage remainder is 0. Do an induction
to produce A(w), B(w) ∈ K[w] with A(w)P1(w) + B(w)P2(w) = Ru(w).

(9.11c) Continue b): Use that C[z] has unique factorization to clear denominators
on A(w)P1(w) + B(w)P2(w) = Ru(w). Suppose Pi = Pi(z, w) ∈ C[z, w],
i = 1, 2, have no common factor in w. Find A(z, w), B(z, w) ∈ C[z, w] and
M(z) ∈ C[z] \ {0} with A(z, w)P1(z, w) + B(z, w)P2(z, w) = M(z).

(9.11d) Result c) applies with any unique factorization domain replacing C[z].
Comment on how it applies to K = Lz′ .
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(9.11e) We outline examples where critical points of (m, w) (m(z, f(z)) ≡ 0) prop-
erly contain critical points of C(z, f)/C(z). Let gz0 be the conjugacy class
of the branch cycle for m at z0. Suppose e = ez0 is the order of gz0 . Show,
if m(ue + z0, w) = m1(u, w) is irreducible, then u = 0 is a branch point of
m1(u, w) but not a branch point of C(u, f(ue + z0)).

(9.11f) Apply [9.10e] to give examples of e) by taking h ∈ C[w] of degree prime
to e, so h(w) − ue is irreducible.

9.5. Elementary permutations from Π1(D, z0). Let ∆z′ be a disk about
z′ and ∆0

z′ = ∆z′ \ {z′}. Choose z0 ∈ ∆0
z′ .

(9.12a) Suppose h(t) is a branch of log(z − z′) along λ : [a, b] → C −\{z′}. Then,
what path is h(t) a branch of log along?

(9.12b) Suppose f(z) = (z −z′)h(z) is analytic in ∆z′ with h(z) �= 0 for any point
in ∆z′ . Show a branch F (z) of f(z)

1
e exists at any point in ∆∗z′ . Further,

show there is an embedding of the field C(z, F (z)) into Pz′,e.
(9.12c) Let gj(z) be a branch of (z − zj)1/ej , j = 1, . . . , r analytic in a neighbor-

hood of z0. With f(z) =
∏r

j=1 gj and λ : [a, b] → C a path with winding
number mj around zj , explicitly relate f(z) and fλ(z).

Consider how analytic continuation easily forces us into groups that are not
abelian. Follow Thm. 5.6 notation.

(9.13a) Show the conclusion of the case ∞ ∈ D as in §5.4.4 follows.
(9.13b) Recall the semi-direct product M ×s H of groups of H and M with ψ :

H → Aut(M) a homomorphism into the automorphisms of M . Then,
(m, h) · (m′, h′) def= (m · ψ(h)(m), h · h′) defines multiplication on M × H.
Consider M0 = Z3, and H0 = Z/3 where 1 ∈ H0 maps (m1, m2, m3) ∈ M0

to (m2, m3, m1). Show M0 ×sH0 is not abelian.
(9.13c) Let f(z) be a branch of z1/3 around z0 �= 0. For a �∈ {0,∞, z0}, consider

h = 1
f(z)2(f(z)−a) ∈ C(z, f(z)). Find zzz ⊂ P1

z so (h, Uzzz) is extensible. Find
the image of the permutation representation of Π1(Uzzz, z0) on Ah(Uzzz).

(9.13d) Let H(z) be a primitive for h (in d)) around z0. Show the image of the
permutation representation of Π1(Uzzz, z0) on AH(Uzzz) is M0 ×sH0 from b).
Hint: Substitute w with w3 = z.

9.6. Fractional transformations and the elementary divisor theorem.
Recall: For any ring R and integer n ≥ 1, PGLn(R) is GLn(R)/〈R∗In〉 and
PSLn(R) = SLn(R)/SLn(R) ∩ 〈R∗In〉. Several nonabelian subgroups of PGL2(C),
like PGL(R) and PSL2(Z) appear often in complex variables. We contrast their dif-
ferent appearances. Let T be the translations {α ∈ PGL2(C) | α(z) = z+a, a ∈ C}.
Let M be the multiplications {α ∈ PGL2(C) | α(z) = bz, a ∈ C∗}. Finally, con-
sider τ : z �→ 1/z.

(9.14a) Show each α ∈ PGL2(C) has is one of a′(z − z1), a′(z − z1)/(z − z2) =
a′(1+(z2−z1)/(z−z2)), or a′/(z−z2). Why is α ∈ PGL2(C) a composition
of elements from M, T and τ : M, T and γ generate PGL2(C).

(9.14b) Give an α ∈ PGL2(C) mapping R to the boundary of the unit circle.
(9.14c) Elements of PGL2(C) mapping R ∪ {∞} to itself are in PGL2(R). What

is the subgroup of these mapping the upper half plane H (Chap. 3 §3.2.2)
into itself? Hint: z �→ 1/z does not.
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(9.14d) Combine with b) to describe elements of PGL2(C) mapping R ∪ {∞} to
the unit circle. Which map H to the inside of the circle?

(9.14e) Which f ∈ C(z) map the unit circle into the unit circle. Hint: f ∈ C(z)
mapping R → R has zero and pole set closed under complex conjugation.

Let R be a principal ideal domain, M a finitely generated free R module,
and N an R submodule of M . The Elementary Divisor Theorem (EDT [Jac85,
p. 192]): There is a basis vvv1, . . . , vvvm of M and elements a1, . . . , am ∈ R with nonzero
elements of a1vvv1, . . . , amvvvm a basis of N . If a1, . . . , at are the nonzero ai s, then we
may choose a1, . . . , at so ai|ai+1, i = 1, . . . , t.
(9.15a) Consider an abelian group quotient A of Zn. Apply EDT to show A is

isomorphic to ⊕n
i=1Z/(ai) for some integers a1, . . . , an ∈ Z.

(9.15b) Show in a), if A is a finite group and a1|a2| · · · |am are positive integers,
then the a1, . . . , an are unique.

(9.15c) SL2(Z) (2 × 2 matrices over Z of determinant 1) acts on M2 = Z2 taking
one basis to another. If N is a subgroup of M2 of index n, then SL2(Z)
maps it in an orbit of index n subgroups. Apply EDT to count N ≤ M2

of index n = pk (p a prime). Hint: Start with N for which M/N is cyclic.
(9.15d) Each N from c) defines a subgroup ΓN of PSL2(Z): the image of the

stabilizer in SL2(Z) of N . If n = p is a prime, and U is the biggest normal
subgroup of PSL2(Z) in ΓN , show PSL2(Z)/U = PSL2(Z/p).

Let ∆ be the open unit circle. Denote the linear fractional transformations
that map ∆ → ∆ by PGL2(∆). Form

(w3 − w1)(w − w2)/(w2 − w1)(w − w3) = L(w) = L(w1, w2, w3, w)

for w1, w2, w3 ∈ C. This problem follows a treatment from [Spr57, §9.2]
(9.16a) Use [9.14]. Show PGL2(C) fixes L(w):

L(w1, w2, w3, w) = L(α(w1), α(w2), α(w3), α(w)), for α ∈ PGL2(C).

(9.16b) Suppose w1, . . . , w4 ∈ C are on a circle in that order. Show: L(w4) > 1.
Conclude: With w1, w2, w3 fixed, w �→ L(w) maps the interior of the disk
bounded counterclockwise by w1, w2, w3 to the upper half plane H.

(9.16c) Suppose w2, w3 ∈ ∆. Let Cw2,w3 be the unique circle containing w2 and
w3 meeting the unit circle at right angles (at two points). Why is Cw2,w3

unique? Hint: Use α ∈ PGL2(C) taking the unit circle to the real line.
(9.16d) Let w1 be the point on Cw2,w3 ∩ ∂∆ closest to w2. Similarly, w4 is the

other point of intersection closest to w3. Define the distance d(w2, w3) to
be 1

2 log(L(w1, w2, w3, w4)). When w2 = 0 and w3 = rei θ express this as
a function of r.

(9.16e) Notice βw2(w) = w−w2
1−w̄2w is in PGL2(∆) and it maps w2 �→ 0. Use this to

express d(w2, w3) as 1
2 log

( 1+|βw2 (w3)|
1−|βw2 (w3)|

)
.

9.7. Metrics on P1
z, ∆ and more generally. The metric topology on P1

z

identifies it with the sphere around the origin in R3. Use coordinates (r, u, v):
z0 ∈ P1

z �→ (r0, u0, v0) ∈ R3. The unit sphere has this analytical description:
{(r, u, v) | r2 + u2 + v2 = 1} = S.
(9.17a) From vector calculus, this implicit description of S gives a unit normal

direction to S at (r0, u0, v0). It is a unit vector N(r0,u0,v0), (from the origin)
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in the direction of the gradient of f(r, u, v) = r2 + u2 + v2. Compute two
such vectors. Which suits the definition of outward normal vector?

(9.17b) Let T(r0,u0,v0) be points on the plane through (r0, u0, v0) tangent to the
sphere. There are two possible definitions of T(r0,u0,v0). Suppose the
range of (x, y) �→ (r(x, y), u(x, y), v(x, y)) = H(x, y) is a neighborhood
of (r0, u0, v0); H is differentiable in a neighborhood of the origin and
H(0, 0) = (r0, u0, v0), and ∂H

∂x (0, 0) and ∂H
∂y (0, 0) are linearly independent

vectors in R3. Apply the chain rule to show

T†(r0,u0,v0)

def= {(r0, u0, v0) + x
∂H

∂x
(0, 0) + y

∂H

∂y
(0, 0) | (x, y) ∈ R2}

is independent of the choice of H.
(9.17c) The second definition of T(r0,u0,v0) is

T††(r0,u0,v0)

def= {(r, u, v) | ((r, u, v) − (r0, u0, v0)) · N(r0,u0,v0) = 0}.

Use the expression f(H(x, y)) ≡ 0 to show T††(r0,u0,v0)
= T†(r0,u0,v0)

.

(9.17d) Let γ : [a, b] → S be a simple closed path. Suppose dγ
dt exists and is

nonzero at t0 ∈ [a, b]. Define the direction to the left of γ at t0 to be the
unit vector uuu1 for which det(uuu1 |Nγ(t0) | dγ

dt (t0)) is positive.
(9.17e) The complement S \γ of a simple closed path has two components U1 and

U2: The Jordan curve Theorem. For simplicial γ this is easy (Chap. 4
[11.3]). Assume t0 as in d). Give meaning to this: γ has positive orienta-
tion relative to U1. Hint: Interpret uuu1 being parallel to U1.

We explore d(w2, w3) from [9.16], to prove the triangle inequality and to find
its differential distance tensor. Use U(z) = 1+|z|

1−|z| .

(9.18a) Use [9.16e] and find β(w) ∈ PGL2(∆) with β(w2) = 0, β(w1) = a > 0
to reduce d(w1, w3) ≤ d(w1, w2) + d(w2, w3), w1, w2, w3 ∈ ∆ to showing
U( z−a

1−az ) ≤ U(a) · U(z) with a ∈ [0, 1) and z ∈ ∆.
(9.18b) Write z = beiθ. Show U( z−a

1−az ) is maximum in θ when z is real. Conclude
the inequality of a). Hint: U(w) is increasing in |w| and z−a

1−az maps the
circle of radius b on a circle with real center.

(9.18c) Use [9.16e] to compute the differential distance S(x, y, dx, dy) by consid-
ering w1 = x + i y close to w2. Show S(x, y, dx, dy) to be | dx+idy

1−(x2+y2) |.
(9.18d) Apply α ∈ PGL2(C) mapping the upper half plane H to ∆. Define a dis-

tance on H by pulling back two points and using the value of the distance
on ∆. Show this depend on the particular choice of α. Show geodesics on
H are half-circles perpendicular to the real axis.

(9.18e) Use d) to show the metric on H has differential distance element |dx+idy|
y .

Consider [9.18] from the differential distance tensor view:

F∆ = | dx + idy

1 − (x2 + y2)
| = h(x, y)

√
dx2 + dy2

with h(x, y) = |1 − (x2 + y2)|−1/2. Recover this metric’s geodesics, circles perpen-
dicular to the boundary of ∆, by applying the Euler-Lagrange variational principle
from f). Consider F 2 = yyy · Q(xxx)(yyy) in (2.3a): Q(xxx) is an n × n positive defi-
nite symmetric matrix. Tensor notation replaces yyy by dx1, . . . , dxn. Classically,
F 2 =

∑
1≤i,j≤n qi,j(xxx) dxi ⊗ dxj (with qi,j = qj,i) for a 2-tensor.
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(9.19a) Suppose γ and λ are a pair of paths with γ(t0) = λ2(t0) = xxx0. Define:

F 2(
dγ

dt
(t0),

dλ

dt
(t0)) =

∑
i,j

qi,j(xxx0)
dγi

dt

dλj

dt
.

Show F 2( dγ
dt (t0),

dλ
dt (t0))

F ( dγ
dt (t0),

dγ
dt (t0))F ( dλ

dt (t0),
dλ
dt (t0))

has absolute value at most 1. So, it

has the form cos(θ(γ, λ)). Show θ(γ, λ), the angle between γ and λ at xxx0,
is independent of their parametrizations.

(9.19b) Apply Ex. 9.1. Show
∑

i,j

∫ b

a

√
qi,j(γ(t)) dγi

dt
dγj

dt dt is independent of how
we parametrize the range of γ assuming γ : [a, b] → Rn is one-one.

(9.19c) Let H : R2 → Rn by (u1, u2) �→ (h1(u1, u2), . . . , hn(u1, u2)) = hhh(uuu) be
a one-one (differentiable) map. Define H∗(F 2), pullback of F 2 on the
range of H, as

∑
1≤i,j≤n qi,j(hhh(uuu)) dhi ⊗ dhj : dhi(uuu) = ∂hi

∂u1
du1 + ∂hi

∂u2
du2.

Suppose γ : [a, b] → H(R2). Show
∫

γ
F =

∫
H−1◦γ

√
H∗(F 2) from b).

(9.19d) Consider H∗(F 2) in c) when n = 2. Call H isothermal coordinates if
H∗(F 2) is h(u1, u2)(du1 ⊗ du1 + du2 ⊗ du2). Use n = 2 to factor F 2 to

(A(xxx) dx1 + B(xxx) dx2) ⊗ (A(xxx) dx1 + B̄(xxx) dx2)

(B̄(xxx) is the complex conjugation of B(xxx)). Suppose k(xxx) (complex val-
ued) gives k(xxx)(A(xxx) dx1 + B(xxx) dx2) with the form du1 + idu2. Show
(u1(xxx), u2(xxx)) gives isothermal coordinates.

(9.19e) Produce k(xxx) near any (x0
1, x

0
2), as in c). Outline: Take real and imagi-

nary parts. Rewrite: dui = ∂ui

∂x1
dx1 + ∂ui

∂x2
dx2. Finding k comes to this.

Suppose M1(xxx), M2(xxx) are real valued and differentiable. Then, there is
k1(xxx) and M∗(xxx) with k1(M1(xxx) dx1 +M2(xxx) dx2) of form dM∗(xxx). Then,
M1(xxx) dx1 +M2(xxx) dx2 = 0 defines {(x1, x2 | M∗(x1, x2) = 0}, an implicit
surface, near (x0

1, x
0
2). Find k1.

(9.19f) We assume the situation of [9.18]. Let γ = γ1 + i γ2 : [0, 1] → ∆ be a
path from z0 to z′0. Minimize

∫
γ

F∆ =
∫ 1

0
S(γ1(t), γ2(t), dγ1

dt , dγ2
dt ) dt over

all such γ. The Euler-Lagrange variation produces two partial differential
equations, one for x, d

dt
∂S
∂ẋ = ∂S

∂x , and a similar one for y. Solve to show
F∆ geodesics are circles perpendicular to the boundary of ∆.



CHAPTER 3

COMPLEX MANIFOLDS AND COVERS

Chap. 4 replaces the field C(z, f(z)) generated by an algebraic function f(z)
over C(z) by a geometric object, a 1-dimensional complex manifold (Riemann sur-
face) that maps to the Riemann sphere P1

z. To prepare for this idea requires building
some manifolds, and developing intuition for basic examples. We use fundamental
groups to create new 1-dimensional complex manifolds from the space Uzzz with zzz a
finite subset of P1

z.
Chap. 5 collects various Riemann surfaces into families. The parameter spaces

for these families — one point in the space for each member of the family — are
manifolds called moduli spaces. Chap. 4 has a prelude, the moduli space classically
called the j-line: P1

j \ {∞}. We use it for more general families than do classical
texts on Riemann surfaces. Our moduli spaces may have arbitrarily high complex
dimension. Still, their construction uses covering spaces (coming from fundamental
groups) of open subsets of projective spaces. This chapter builds an intuition for
using group theory to construct these spaces.

1. Fiber products and relative topologies

There is so much topology and we have so little space for it despite the need for
some special constructions. The treatment is expedient and not completely classical
to emphasize some subtle properties of manifolds.

1.1. Set theory constructions. For X and Y sets, the cartesian product of
X and Y is the set

X × Y = {(x, y) | x ∈ X, y ∈ Y }.
Let {Xα}α∈I be a collection of subsets of the set X indexed by the set I. The
union of {Xα}α∈I is the set of x ∈ X for which x ∈ Xα for some α ∈ I. Denote this⋃

α∈I Xα. The complement of Xα in X, X \ Xα, is {x ∈ X | x /∈
⋃

α∈I Xα}. The
intersection of {Xα}α∈I is the set of x ∈ X with x ∈ Xα for each α ∈ I. Denote
this

⋂
α∈I Xα.

Definition 1.1. For X1 and X2 sets, Yi ⊂ Xi, i = 1, 2, let f : Y1 → Y2 be
a one-one onto function. The sum of X1 and X2 along f is the disjoint union of
X1\Y1, Y2, and X2\Y2. Denote this X1

⋃
f X2. Along with this, we have maps

fi : Xi → X1

⋃
f X2, i = 1, 2: with f2(x2) = x2 for x2 ∈ X2, f1(x1) = x1 if

x1 ∈ X1\Y1, and f1(x1) = f(x1) for x1 ∈ Y1. Call f1 and f2 the canonical maps.
Example 1.2 (The set behind a non-Hausdorff space). Consider

Xi = {(t, i) ∈ R2 | −1 < t < 1}, i = 1, 2, with

Yi = Xi\{(0, i)}, i = 1, 2, and f : Y1 → Y2 by f(t, 1) = (t, 2) for (t, 1) ∈ Y1. Then,
X1

⋃
f X2 is the disjoint union of X2 and the point (0, 1) (see Def. 1.4 and Ex. 2.4).

81
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Definition 1.3 (Set theoretic fiber products). Let fi : Xi → Z be two func-
tions with range Z, i = 1, 2. The fiber product X1 × ZX2 consists of

{(x1, x2) ∈ X1 × X2 | f1(x1) = f2(x2)}.
Denote the natural map back to Z by f1 ×Z f2. Suppose Xi ⊂ Z and fi : Xi → Z
is inclusion, i = 1, 2. Then, identify X1 × ZX2 with X1 ∩ X2.

Suppose X1 = X2 = Z = C, and f1 and f2 are polynomials. Then, X1 × ZX2

is the subset of (x1, x2) ∈ C2 defined by f1(x1) = f2(x2). Define the ith projection
map, pri : X1 × ZX2 → Xi by pri(x1, x2) �→ xi, i = 1, 2.
The fiber product is an implicit set: an equation describes it.

The ball of radius r about xxx0 ∈ Rn is the basic open set {xxx ∈ Rn | |xxx−xxx0| < r}.
When necessary denote this B(xxx0, r). Open sets of Rn are either empty or are
(arbitrary) unions of basic open sets. Closed sets are complements (in Rn) of open
sets. Bounded sets are those contained in some basic open set. The collection of
open sets, U , in Rn therefore satisfies the axioms for a topology: U contains the
empty set and the whole space, and it is closed under taking arbitrary unions and
finite intersections.

Definition 1.4 (Relative topology I). Let X be a subset of Rn. Denote the
collection of sets X ∩ U for U open subset in Rn by UX . Then UX gives the
relative topology on X. For x1, x2 ∈ X, two distinct points, B(x1, r/3) ∩ X and
B(x2, r/3) ∩ X are disjoint open neighborhoods of the respective points x1 and x2

if r = |x1 − x2|. Thus, in this relative topology, X is a Hausdorff space.
Suppose X (resp. Y ) is a topological space with open sets UX (resp., UY ). Let

f : X → Y be a function with domain a subset of X. Then f is continuous (for
the relative topology) if for each U ∈ UY ,

f−1(U) = {x in the domain of f | f(x) ∈ U} is in UX .

For U open in Y , denote restriction of f to f−1(U) by fU : f−1(U) → U . If f is
continuous, so is fU .

The concept of relative topology generalizes to data {(Xα, ϕα)}α∈I on a set X
with the following properties:

⋃
α∈I Xα = X; ϕα : Xα → Rn is a one-one map into

Rn; and ϕβ ◦ ϕ−1
α : ϕα(Xα ∩ Xβ) → ϕβ(Xα ∩ Xβ) is a continuous function for each

α, β ∈ I. We call the functions {ϕβ ◦ ϕ−1
α }α,β∈I transition functions.

Definition 1.5 (Relative topology II). Let X and {(Xα, ϕα)}α∈I be as above.
Consider subsets of X that are unions of ϕ−1

α (U) with U running over open sets of
ϕα(Xα), α ∈ I. Denote this collection of sets by UX . The topology on X from UX

is the relative topology on X induced from the topologizing data {(Xα, ϕα)}α∈I .
For x ∈ X and U an open set containing x, U is a neighborhood of x.

1.2. Extending topologies from Rn. Two sets of topologizing data on X,
{(X ′

α′ , ϕ′α′)}α′∈I′ and {(Xα, ϕα)}α∈I , are equivalent (the same, or give the same
topology) if each defines the same open sets on X.

Consider X and Y , topological spaces with respective data {(Xα, ϕα)}α∈I and
{(Yβ , ψβ)}β∈J . A one-one map f : X → Y is a (topological) embedding if the
topologizing data from {(f−1(Yβ), ψβ◦f)}β∈J is equivalent to {(Xα, ϕα)}α∈I . Note:
Ex. 2.4 has a space with no embedding in Rn (for any n). It isn’t Hausdorff. Yet,
each point has a neighborhood embeddable as an open interval in R1.

Associate to each subset Y of a topological space X the closure Ȳ of Y in X:
Ȳ (a closed set) is the points x ∈ X with each neighborhood of x containing at
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least one point of Y . If each neighborhood of x contains a point of Y distinct from
x, then x is a limit point of Y .

Compact subsets of Rn are those both closed and bounded. The Heine-Borel
covering theorem [Rud76, p. 40] characterizes these sets through the concept of an
open covering. A collection U = {Uα}α∈I of open subsets of Rn is an open cover of
Y if Y ⊆

⋃
α∈I Uα. Then Y has the finite covering property if for each open cover

U there is a finite collection {Uαi
}t

i=1, α1, . . . , αt ∈ I, covering Y .

Theorem 1.6 (Heine-Borel). The finite covering property is equivalent to com-
pactness for subsets of Rn.

Thus, for any topological space X, without reference to the concept of bounded
set, one says a subset Y is compact if it has the finite covering property.

A subset Y of a topological space X is disconnected if there are two nonempty
open sets U1 and U2 of Y (in the relative topology) with U1 ∩ U2 empty and
U1

⋃
U2 = Y . If Y is not disconnected call it connected (in X). For any x ∈ X,

there is a maximal connected set Ux containing x. So, each topological space
decomposes into a union of disjoint connected components. If f : Y → X is
continuous, the image of any connected subset of Y is a connected subset of X.

2. Functions on X from functions on Rn

There are several points to make about Def. 1.5. First it includes many topolo-
gies as our next example illustrates.

Example 2.1. Let X be any set whose points, xα, are indexed by α ∈ I. Let
Xα = {xα} and ϕα : {xα} → {000}, α ∈ I, where 000 is the origin of Rn. The relative
topology on X is the discrete topology.

By using another target space Y with a well-known topology on it (like the
p-adic numbers Zp, replacing Rn), we could include p-adic topologies, too. Still,
it does not include all the topologies significant to modern mathematics even for
spaces we consider as manifolds. Later we will extend it to Grothendieck topologies.
It is appropriate for that example to notice we don’t need a topology on X to start
the process (§2.1).

Further, the point of topologizing data is to pull back functions (differentials,
and other objects) from Rn so X has local functions (differentials, etc.) just like
those of Rn. Since Rn also has the notion of real analytic, differentiable and
harmonic functions, transition functions also allow us to pull those back, to identify
such functions on X. For these definitions, however, to be meaningful, they must
be locally independent of which function we use for pullback. This requires the
transition functions also have these respective properties (§3).

When n = 2m is even, suppose the following two conditions hold.

(2.1a) We have chosen a fixed R linear map L = Ln : Rn → Cm.
(2.1b) Using L, the transition functions are analytic from Cm → Cm.

These conditions allow identifying a set of functions in a neighborhood of any point
on X as analytic (§3.1.2).

Finally, there is a warning. Local function theory immediately challenges us
to identify global functions and differentials on X through their local definitions.
There is an immediate first problem to assure a simple property we expect from
functions in Rn. If a function f in a neighborhood of x ∈ X has good behaviour
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as x′ ∈ X approaches x, then it should have a unique limit value (see §2.2 on the
Hausdorff property).

2.1. Defining a topological space from its atlas. Def. 1.5 shows we don’t
need X to start with a topology. It inherits one from its topologizing data. So, it
is reasonable to ask if we need an a priori space X at all.

2.1.1. Equivalence relations define topological spaces. For example, suppose
{Uα}α∈I is a collection of open sets in Rn, and for some subset (β, α) ∈ I × I, there
are invertible continuous maps ψβ,α : V α

β → V β
α , with V β

α open in Uα (resp. V α
β

open in Uα). Can we form an X so that {ψβ,α}α,β∈I are the transition functions
for its topological structure? Almost!

Let X be the disjoint union ∪̇α∈IUα modulo the relation RI on this union
defined by x ∈ Uα ∼ x′ ∈ Uβ if ψβ,α(x) = x′. If RI is an equivalence relation,
then the equivalence classes form a set X and on it a topological structure. On
this space, of course, the open sets do look like those of Rn (in contrast to Ex. 2.1).
The following lemma keeps track of the definitions.

Lemma 2.2. The relation RI is an equivalence relation if and only if the fol-
lowing properties hold:

(2.2a) ψα,α is the identity map; ψα,β = ψ−1
β,α; and

(2.2b) ψγ,β ◦ ψβ,α = ψγ,α wherever any two of the maps are defined.

Suppose RI is an equivalence relation. Then the inverse of the natural inclusion
maps Uα → X are functions ϕα giving transition functions ϕβ ◦ ϕ−1

α = ψβ,α.

2.1.2. Quotient topologies. Suppose X is a topological space with topologizing
data {(Xα, ϕα)}α∈I . Let f : X → Y be any surjective map. Then, there is a
topology on Y with open sets UY the images by f of all sets in UX . We can’t,
however, expect topologizing data on Y by pushing down the functions ϕα without
extra conditions. It usually makes sense to write f for restriction of f to any subset
V ⊂ X. The argument here, however, requires tracking the domain, and so we
write fV .

Let J be the subset of I for which fXβ
: Xβ → Y is one-one for β ∈ J . Let

UX,Y be {Xβ}β∈J and assume UX,Y is a cover of X. With no loss assume the
coordinate chart for X contains only sets from UX,Y . The hypothesis provides
coordinate functions ψα : f(Xα) → Rn by setting ψα = ϕα ◦ f−1

Xα
on f(Xα).

From Lem. 2.2 we want an equivalence relation on ∪̇α∈Jψα(f(Xα)) that re-
produces the set Y as equivalence classes: y ∈ ψα(f(Xα)) ∼ y′ ∈ ψβ(f(Xβ)) if
ψβ,α(y) = y′. So, the problem is to define ψβ,α, using that f−1

Xα
is different from

f−1
Xβ

on f(Xα) ∩ f(Xβ). If f(Xα ∩ Xβ) = f(Xα) ∩ f(Xβ), then it is consistent to
define ψβ,α as ψβ ◦ ψ−1

α = ϕβ ◦ ϕ−1
α . More generally, an additional hypothesis is

essentially necessary and sufficient if we use the full set UX,Y .

Lemma 2.3. Suppose in addition to the above, for each pair Xα, Xβ ∈ UX,Y

with f(Xα) ∩ f(Xβ) �= ∅, there exists Xβ′ ∈ UX,Y with
(2.3) f(Xβ′) = f(Xβ) and f(Xα ∩ Xβ′) = f(Xα) ∩ f(Xβ′).

Then, the topologizing data on X provides topologizing data on Y .

Proof. Apply f to UX,Y get UY . Suppose f(Xα) ∩ f(Xβ) �= ∅. Then, choose
(Xβ′ , ϕβ′) and form ψβ,α by replacing f−1

β by f−1
β′ . �
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2.2. Rn-like behavior requires Hausdorffness. Here is the problem with a
space that isn’t Hausdorff. Suppose f : [0, 1) → X is a continuous function, every-
thing of a path except the end point. Manifolds in this book appear as extensions
of open subsets of Rn. So, the only thing that should prevent us from extending our
path (continuously) to f∗ : [0, 1] → X is that there is no point f∗(1) ∈ X giving
a continuous f∗. If there are several possible choices f∗(1) giving a continuous
function f∗, these extending points would have more exotic neighborhoods than do
points in Rn. In practice, the use of Hausdorff is to assure in theorems of Chap.
Chap. 4 that there is a unique manifold solution to many existence problems.

Example 2.4 (Continuation of Ex. 1.2). As in Ex. 1.2, let ϕi : Xi → R1 by
ϕi(t, i) = t, i = 1, 2. The relative topology on X1

⋃
f X2 is not Hausdorff [9.1].

Figure 1. An undecided function.

f(x)=(x,0), −1≤x<0, f(0)=?

−1 −.5 0
| | |

??
•

• •

There is a topological formulation of the possibility that we could end a path
in two different points. That is, (f, f) : [0, 1) → X × X has topological closure
not in the diagonal ∆X = {(x, x) | X] × X}. That is, if f∗(1) and f†(1) are two
different ways to extend f to a path on [0, 1], then (f∗(1), f†(1)) is in the closure
of ∆X . Conveniently, the exact property that prevents this situation is that X is
Hausdorff [9.1b].

Lemma 2.5. X is Hausdorff if and only if ∆X is closed in X × X [9.1d].

Here is a classical fact. If f : X → Y is continuous and one-one and Y is
Hausdorff, then the restriction of f to any compact subset of X is a homeomorphism
onto its image. This uses that the image of a compact set is compact; then Hausdorff
assures that the image of the compact set (and all closed subsets of it) is closed. It
is, however, common to have such an f where the inverse image of some compact
sets are not compact. For example, let f : C∗z → Cz be the identity map. Then,
the inverse image of the unit disk is not compact (compare with [9.1e]). Call a map
f : X → Y proper if the inverse image of compact sets is compact.

3. Manifolds: differentiable and complex

Let X be a topological space with topologizing data {(Xα, ϕα)}α∈I (relative to
Rn). We add conditions to define differentiable and complex manifolds. Classical
cases of the latter include the Riemann sphere, the complex torus and algebraic
sets defined by m ∈ C[z, w] with nonzero gradient everywhere.

Definition 3.1. Let X be a Hausdorff space with {(Xα, ϕα)}α∈I as topologiz-
ing data. Assume ϕα maps Uα to an open connected subset of Rn for each α ∈ I.
Call X an n-dimensional (topological) manifold.

In this case, replace the open sets Xα by the notation Uα. Call {(Uα, ϕα)}α∈I a
coordinate system or atlas. An individual member ϕα : Uα → Rn is a (coordinate)
chart. Ex. 2.4 shows the Hausdorff condition isn’t automatic.
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3.1. Manifold structures. Let f : Rn → R be a continuous function defined
on an open set U . For xxx0 ∈ U and vvv ∈ Rn, the directional derivative of f at xxx0 in
the direction vvv is the limit

lim
t→0

f(xxx0 + tvvv) − f(xxx0))
t

def=
∂f

∂vvv
(xxx0),

if it exists. If eeei = vvv is the vector with 1 in the ith coordinate and 0 in the other
coordinates, denote the directional derivative by ∂f

∂xi
(xxx0). Then

∇f(xxx0)
def=

( ∂f

∂x1
(xxx0), . . . ,

∂f

∂xn
(xxx0

)
)

is the gradient of f at xxx0.

Lemma 3.2. [Rud76, p. 218] Suppose ∂f
∂xi

exists and is continuous near xxx0 for
i = 1, . . . , n. Then, for each vector vvv, ∂f

∂vvv (xxx0) exists and equals ∇f(xxx0) · vvv.
Call a function satisfying the hypotheses of Lemma 3.2 differentiable at xxx0. A

function fff = (f1(xxx), . . . , fm(xxx)) from Rn to Rm is differentiable at xxx0 if each of
the coordinate functions fi(xxx) is differentiable at xxx0. While it is not absolutely
necessary, our manifolds often have transition functions with continuous partial
derivatives of all orders: smoothly differentiable.

Assume g : Rm → R is a composite of Rm H−→Rn f−→R. Let yyy0 ∈ Rm. Suppose
each coordinate function from H(yyy) = (h1(yyy), . . . , hn(yyy)) of H is differentiable at
yyy0 and f is differentiable at H(yyy0). Write J(H)(yyy0) for the matrix whose ith row
is ∇hi(yyy0). As a slight generalization of Lem. 3.2, ∇g(yyy0) exists and equals

(3.1) = ∇f(H(yyy0)) · J(H)(yyy0).

3.1.1. Differentiable functions. Let X be an n-dimensional manifold. Denote
an atlas for it by {(Uα, ϕα)}α∈I .

Definition 3.3. Call X a differentiable manifold if each transition function
ϕβ ◦ ϕ−1

α is smoothly differentiable on its domain of definition.

For any x ∈ Uα on a chart of a differentiable manifold X, define the (smoothly)
differentiable functions on Uα to be C∞(Uα) = {f ◦ ϕα | f ∈ C∞(ϕα(Uα))}.
This definition should be independent of the chart: We declare that restricting a
differentiable function to an open subset of Uα still gives a differentiable function.
This, however, must be compatible with the definition of differentiable using any
other coordinate chart (Uβ , ϕβ) which also contains x.

Lemma 3.4. Suppose x ∈ Uα ∩ Uβ, and f ◦ ϕα is restriction of a differentiable
function to an open neighborhood W of x in Uα ∩ Uβ. Then, f ◦ ϕα = g ◦ ϕβ for
some differentiable function g defined on ϕβ(W ).

Proof. Write f ◦ ϕα as f ◦ ϕα ◦ ϕ−1
β ◦ ϕβ and take g as f ◦ ϕα ◦ ϕ−1

β . This is
defined on ϕβ(W ). As the composite of two differentiable functions f and ϕα ◦ϕ−1

β ,
g is differentiable from (3.1). �

Definition 3.5 (Global differentiable functions on X). If X is a differentiable
manifold, then a function f : X → R is differentiable if its restriction to each Uα

in a coordinate chart is differentiable.
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3.1.2. Complex functions. Decompose a complex number zi into its real and
complex parts as xi + i yi. This produces (as in (2.1)) a natural one-one map:

L = Ln : R2n → Cn by (x1, y1, . . . , xn, yn) �→ (z1, . . . , zn).

Topologize Cn so L (and its inverse) are continuous. Identify Cn and R2n to consider
any differentiable function: g : R2n → R as a function g ◦ L−1 : Cn → R. Further,
a pair u and v of differentiable functions with a common domain U from R2n → R
produces a differentiable function f : Cn → C on U :

zzz �→ u ◦ L−1(zzz) + iv ◦ L−1(zzz).

Call f : Cn → C analytic at zzzo = (z1,0, . . . , zn,0) if each complex partial derivative

∂f

∂zi
(zzz′) = lim

zi→z′
i

(f(z′1, . . . , z
′
i−1, zi, z

′
i+1, . . . , z

′
n) − f(zzz′))

zi − z′i

exists and is continuous, i = 1, . . . , n, with zzz′ near zzz0. We say fff = (f1(zzz), . . . , fm(zzz))
from Cn to Cm is analytic at zzz0 if each coordinate function fi(zzz) is analytic at zzz0.
Analytic functions behave for differentiation (or integration) as if each zi ranging
over a 2-dimensional set were a single real variable. [9.4] explores how changing
the particular linear identification Ln affects this definition. In the first half of the
1800’s, researchers realized the geometry underlying this definition could character-
ize special recurring collections of integrals. A motivating problem (Chap. 4) was
whether the integrals of these functions were serious new functions. By, however,
defining — as in Def. 3.6 — analytic manifolds, Riemann replaced complicated sets
of functions by geometric properties.

To match with previous notation, if U be an open connected subset of Cn,
denote the analytic functions on U by H(U). The natural quotient field M(U)
of H(U) (Lem. 3.9), the field of meromorphic functions on U , consists of ratios
from H(U) with nonzero denominators. When n = 1, at each point of U any
meromorphic function takes a well-defined value in P1

z. Simple examples like z1
z2

at
(0, 0) show this is not true for n ≥ 2 [9.11e].

Definition 3.6. Let X be a 2n-dimensional manifold with atlas {(Uα, ϕα)}α∈I

where ϕα : Uα → Cn. Call X an analytic (or complex) n-dimensional manifold if
each transition function ψβ,α = ϕβ ◦ϕ−1

α is analytic on ϕα(Uα∩Uβ). So, an analytic
manifold is differentiable. A Riemann surface is a 1-dimensional complex manifold.

For any x ∈ Uα on a chart U of an analytic manifold X, define analytic
(resp. meromorphic) functions on Uα to be HU (Uα) = {f ◦ ϕα | f ∈ H(ϕα(Uα))}
(resp. MU (Uα) where we replace f analytic by f meromorphic). Exactly as previ-
ously, Lem. 3.4 has a version for analytic or meromorphic functions. What changes
if we adjust the atlas {(Uα, ϕα)}α∈I in simple ways?

Definition 3.7. Assume X = XU is an n-dimensional analytic manifold, and
hα : Cn → Cn is one-one, differentiable, but not necessarily analytic, on ϕα(Uα) for
each α ∈ I. Topologies of X from {(Uα, ϕα)}α∈I = U or {(Uα, hα ◦ ϕα)}α∈I = Uhhh

are the same. Call hhh a coordinate adjustment and Uhhh the adjustment of U by hhh.
Then, hhh is an analytic adjustment if transition functions for Uhhh are analytic.

Only special coordinate adjustments are analytic. Even if hhh is an analytic
adjustment, unless all the hα s are analytic themselves, the functions we call analytic
(or meromorphic) on an open set Uα of XU are usually different from those on the
same open set of XUhhh

. For example, suppose I = {α} and Uα = D is an open set in
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C. Then, the functions H(D,h)(D) = {f ◦h | f ∈ H(D) we call analytic on {(D, h)}
are the same as H(D) if and only if h is analyic.

If D is simply connected (and not all of Cz), then Riemann’s Mapping Theorem
says H(D, h) is isomorphic as a ring to the convergent power series on the unit disk
in Cz. [Ahl79, p. 230] says this if h is the identity, though composing with h−1

for any diffeomorphisms is a ring isomorphism. A nontrivial case of adjustments is
where all the hα s are the same (see [9.4c]). We explore this further in Chap. 4 §??.
In the next observation (see §5.2.1 for the definition of ∂

∂z̄ ) denote range variables
for ϕα : Uα → Cn by zα,1, . . . , zα,n.

Lemma 3.8. That XUhhh
is an analytic manifold is equivalent to

(3.2) hβ ◦ϕβ ◦ϕ−1
α ◦h−1

α is analytic on hα◦ϕα(Uα∩Uβ) for all (α, β) ∈ I2:
∂
∂z̄α,i

applied to each of its matrix entries is 0, i = 1, . . . , n.
If the {hα}α∈I are all analytic, then HU (Uα) = HUhhh

(Uα) for all α ∈ I.
Suppose XU and XUhhh

are both analytic manifolds. Lem. 3.8 shows the local
analytic functions change unless hhh consists of analytic functions. We regard the
complex structures as the same if and only if both XU and XUhhh

have the same
analytic functions in a neighborhood of each point. A special case appears often
in the theory of complex manifolds. It is when all the functions hα are complex
conjugation (Chap. 4 Lem. ??). Notice: Complex conjugation reverses orientation
in C by mapping clockwise paths around the origin to counterclockwise paths.

3.1.3. A tentative definition of algebraic manifold. For complex manifolds, a
coordinate chart allows us to define global meromorphic functions as a collection
gα ∈ M(Uα) for which gα = gβ on any points of Uα ∩ Uβ where both make sense.
Our major study treats families of compact Riemann surfaces. Often each family
member appears explicitly with a finite set of points removed, using Riemann’s
Existence Theorem to produce such surfaces as covers of Uzzz. Meromorphic functions
mean for us functions meromorphic on some compactification of this manifold. This
includes that the functions are ratios of holomorphic functions at those points that
might not be included in the initial presentation. For example, global meromorphic
functions on Uzzz refer to elements of C(z). They are among the ratios of algebraic
functions on Uzzz, so they have no essential singularities as we approach zzz.

Understanding manifolds which have a coordinate description is important to
the goals of this book. When we deal with compact complex manifolds, global
coordinate functions live inside the field of global meromorphic functions. Our first
tentative definition of algebraic excludes some manifolds that everyone considers
algebraic. Still, it is simple, close to the general meaning of algebraic and it leads
naturally to that definition.

Lemma 3.9. Suppose XU is a connected topological space and an analytic man-
ifold. Then, the (global) meromorphic functions on X = XU form a field, C(X).

Proof. Add (resp. multiply) functions of form f1(ϕα) and f2(ϕα) by com-
puting the value at x ∈ Uα as f1(ϕα(x)) + f2(ϕα(x)) (resp. f1(ϕα(x))f2(ϕα(x))).
Quotients, too, are obvious for they will also be ratios of holomorphic functions
at each point. We need only to see that C(X) is an integral domain. If, however,
f1(ϕα(x))f2(ϕα(x)) = 0 for x ∈ Uα, then f1(zzz)f2(zzz) = 0 for zzz on the open set
ϕα(Uα). Chap. 2 [9.8a] shows either f1(ϕα) or f2(ϕα) is 0 on Uα. �

A goal for compact Riemann surfaces is to understand adjustments well enough
to be able to list the isomorphism classes of fields C(XUhhh

), the function field of
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XUhhh
, as hhh varies. How can we describe the complete set of function fields up to

isomorphism? This book shows how to apply various answers to many seemingly
unrelated problems.

Suppose x1, x2 ∈ X and f ∈ C(XU ) are holomorphic in a neighborhood of x1

and x2 and takes different values there. We say f separates x1, x2. If for each pair
of distinct points x1, x2 ∈ X there is an f ∈ C(XU ) separating them, we say C(XU )
separates points. Suppose XU has complex dimension n, x ∈ XU is in a coordinate
chart ϕα : Uα → Cn and there are n functions f1, . . . , fn ∈ C(XU ) all holomorphic
in a neighborhood of x. If the Jacobian of f1, . . . , fn — determinant of the matrix
with (i, j)-entry of ∂fi◦ϕ−1

α

∂zj
, i = 1, . . . , n, j = 1, . . . , n — is nonzero at ϕα(x), we

say f1, . . . , fn separate tangents at x.
Definition 3.10. An n-dimensional compact complex manifold X (with topol-

ogizing data U) is P1-algebraic if there is a collection f1, . . . , fN ∈ C(XU ) so the
following conditions hold.

(3.3a) For each x ∈ XU , there is a collection ε1, . . . , εN ∈ {±1} (dependent on
x) so that f ε1

1 , . . . , f εN

N are all holomorphic at x.
(3.3b) Among f ε1

1 , . . . , f εN

N there are n that separate tangents at x.
(3.3c) Given distinct x1, x2 ∈ X, one from f1, . . . , fN separates x1 and x2.

Note: In (3.3c), if fi is holomorphic at x, and fi(x) = 0, we include ∞ as the
value of 1/fi(x). Algebraic manifolds are the analytic manifolds XU most significant
to us (P1-algebraic manifolds are a special case; see §4.1.2). There are 2-dimensional
analytic manifolds with function fields consisting only of constant functions. Our
examples will be complex torii. The phrase abelian variety (Chap. 4§??; usually
with a extra structure called a polarization) is the name for a complex torus that
is algebraic. Chap. 4 analyzes all analytic structures on a dimension one complex
torus by corresponding them precisely to the isomorphism class of their function
fields. This topic starts in § 3.2.2.

There are two distinct generalizations: To compact Riemann surfaces and to
abelian varieties. The former are P1-algebraic while the latter are not in general.

3.2. Classical examples. We discuss two natural first cases of compact com-
plex manifolds.

3.2.1. The Riemann sphere P1
z. Let X be the disjoint union of the complex

plane C and a point labeled ∞. Here is a coordinate chart:

U1 = C, ϕ1 : U1 → C by ϕ1(z) = z; and
U2 = (C\{0}) ∪ {∞}, ϕ2 : U2 → C by ϕ2(∞) = 0 and

ϕ2(z) = 1
z for z ∈ C\{0}.

Chap. 2 used the Riemann sphere. It embeds in R3. So it is Hausdorff. Then, X
is a complex manifold: ϕ2 ◦ ϕ−1

1 (z) = ϕ1 ◦ ϕ−1
2 (z) = 1

z on C\{0} are analytic.
If a complex manifold is compact, some atlas for it contains only finitely many

elements. The Riemann sphere required only two (one wouldn’t do, would it?).
3.2.2. Complex torus. An atlas for our next example will require four open sets.

Let ω1 and ω2 be two nonzero complex numbers satisfying the lattice condition: ω2
ω1

is not real. Consider the lattice ω1 and ω2 generate:

(3.4) L(ω1, ω2) = {m1ω1 + m2ω2 | m1, m2 ∈ Z}.
The lattice condition guarantees the natural quotient map C → C/L(ω1, ω2) has
open sets that are like open sets in C [9.6c]. According to Lem. 2.3, the manifold
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structure on C automatically gives the manifold structure on C/L(ω1, ω2). Use the
chart {(U ′i , ϕ′i)}i∈{0,1,2,3} of Fig. 3 with ϕ′i the inclusion of U ′i in C. This assures
satisfying the Lem. 2.3 condition: Each z ∈ C has an i = iz for which z ∈ U ′i and
the natural map C → C/L(ω1, ω2) is one-one on Ui.

The resulting complex manifold C/L(ω1, ω2) depends only on L(ω1, ω2). Among
the many choices we can make of ω1, ω2 generating this lattice, it is traditional to
choose them satisfying special conditions. Elements of the group SL2(Z) act on
ω1, ω2 to give all pairs of basis elements Chap. 2 [9.15c]. Further, for a ∈ C∗ the
scaling C → C by z �→ az induces a homomorphism C/L(ω1, ω2) → C/L(aω1, aω2)
of abelian groups. At the level of coordinate charts, the same scaling gives the map.
So, it induces an analytic isomorphism (for precision use Def. 4.1). With no loss
take a = 1/ω1, to change the basis of the lattice to 1, ω2/ω1. The ratio ω2/ω1 = τ
aptly indicates the shape of the parallelogram (3.6). This starts a typical normaliza-
tion for the complex structure. If we could uniquely indicate the complex structure
by τ , that would be an excellent way to parametrize them. The problem is that the
complex structure depends only on the lattice L(1, τ) generated by 1 and τ . Many
values of τ giving the same L(1, τ). For example, here are three obvious changes:

(3.5a) If necessary, replace {1, τ} by {1,−τ} to assume �(τ) is in the upper half

plane H def= {τ ∈ C | �(τ) > 0}; or
(3.5b) replace {1, τ} by {1, τ +n} for some integer n to assume 0 ≤ ((τ) < 1; or
(3.5c) scale by −1/τ to replace {1, τ} by {1,−1/τ}.

Changes from (3.5) generate a group, PSL2(Z) (< PSL2(R); §8.2), acting on τ ∈ H.

Lemma 3.11. Together, (3.5) permits restricting a τ representing a given com-
plex torus (up to isomorphism) to the narrow strip in H over the closed interval
[0, 1) ⊂ R lying within the closed unit circle around the origin.

Transition functions restrict on each connected component of an intersection
of charts to be translation in the complex plane. Topologically this is the same as
a torus in R3. Topologists deal with torii, too, though they concentrate especially
on the topological space in which the torii sit (see [9.5] for the point of Fig. 2). We
care most about this additional complex structure, while they rarely distinguish
between one complex torus and another. See §7.2.3 for additional comments on
attempts to draw pictures in R3.

Figure 2. These two torii could unknot in R4.

Here is the set behind the manifold:

(3.6) X = {t1ω1 + t2ω2 | 0 ≤ ti < 1, i = 1, 2}.
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Standard open parallelograms in C represent each of four coordinate charts in Fig. 3,
Ui, i = 0, 1, 2, 3, that do lie in X.

Figure 3. Four open sets sort of covering a torus
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✂
✂
✂
✂

✏✏✏✏✏U ′1 ↘

↖
U ′2U ′3 →

← U ′0

ω2

ω1

Let U0 = {t1ω1 + t2ω2 | 0 < ti < 1, i = 1, 2}, with ϕ0 : U0 → C the identity
map. The corresponding U ′0 is equal to U0 in Fig. 3. On the other hand, consider

U1 = {t1ω1 + t2ω2 | 1
3

< t2 <
2
3

and either 0 ≤ t1 <
1
3

or
2
3

< t1 < 1},

and ϕ1 : U1 → C by

ϕ1(t1ω1 + t2ω2) =
{

t1ω1 + t2ω2 for 0 ≤ t1 < 1
3

(t1−1)ω1 + t2ω2 for 2
3 < t1 < 1.

.

Form the corresponding U ′1 by translating a pieces of the range of ϕ1.
The remaining charts are similar (though slightly more complicated):

U2 = {t1ω1 + t2ω2 | 1
3 < t1 < 2

3 and either 0 ≤ t2 < 1
3 or 2

3 < t1 < 1},
ϕ2(t1ω1 + t2ω2) =

{
t1ω1 + t2ω2 for 0 ≤ t2 < 1

3
t1ω1 + (t2−1)ω2 for 2

3 < t2 < 1.

U3 = {t1ω1 + t2ω2 | 0 ≤ t1 < 1
2 or 1

2 < t1 < 1, 0 ≤ t2 < 1
2 or 1

2 < t2 < 1}, and

ϕ3(t1ω1 + t2ω2) =




t1ω1 + t2ω2 for 0 ≤ t1, t2 < 1
2 ,

(t1−1)ω1 + t2ω2 for 1
2 < t1 < 1, 0 ≤ t2 < 1

2 ,
t1ω1 + (t2−1)ω2 for 0 ≤ t1 < 1

2 , 1
2 < t2 < 1,

(t1−1)ω1 + (t2−1)ω2 for 1
2 < t1, t2 < 1.

To see X is a 1-dimensional complex manifold check the transition functions
ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj). For each i and j, ϕi(Ui ∩ Uj) is the union of
a finite number of connected open sets. For example,

ϕ0(U0 ∩ U1) = U ′1\
{

t2ω2 | 1
3

< t2 <
2
3

}
.

On each connected component of ϕi(Ui ∩ Uj), ϕj ◦ ϕ−1
i is translation by one of the

complex numbers δ1ω1 + δ2ω2 where δk is 0 or ±1, k = 1, 2.
With this manifold structure, X is the complex torus with periods ω1 and ω2.

3.3. Manifolds from algebraic functions. Let m ∈ C[z, w] be an irre-
ducible polynomial. Denote the branch points of m by zzz with z0 ∈ Uzzz = P1

z \zzz as in
Chap. 2 Def. 6.3. Assume f(z) is analytic in a neighborhood of z0 and it satisfies
m(z, f(z)) ≡ 0. Chap. 2 started with two definitions of algebraic functions Def. 1.1
and Def. 1.2. They characterize the same set of functions (Chap. 2 Prop. 7.3).

Riemann’s Existence Theorem starts by attaching to each algebraic function
a unique (up to analytic isomorphism) compact complex manifold of dimension
1. The next two examples are the first step in that construction, producing an



92 3. COMPLEX MANIFOLDS AND COVERS

open subset of the final manifold. We introduce some algebraic geometry using as
an excuse showing how to construct explicit manifold compactifications in special
cases. We expect coordinates for the abstract compactification of a general Riemann
surface to be somewhat mysterious.

3.3.1. An unramified cover of Uzzz. Consider first the set

X [0] = X0
f = {(z, w) ∈ C × C | z �∈ zzz, m(z, w) = 0}.

Proposition 3.12. The projection map prz : X [0] → Uzzz by (z, w) �→ z
produces a natural atlas on X [0] making it a connected complex manifold. For
λ ∈ Π1(Uzzz, z0, z1) (Chap. 2 §1.1), naturally identify the manifolds X0

f and X0
fλ

.

Proof. To simplify the construction, assume ∞ ∈ zzz. As usual, apply an
element of PGL2(C) to zzz to arrange that situation (Chap. 2 §5.2.1; see Lem. 4.3).

Use the implicit function theorem (Chap. 2 §6.2) as follows. For (z′, w′) ∈ X [0],
let ∆z′ be the open disk centered at z′ of radius the minimum distance from z′ to a
point of zzz. Then, for some one-one analytic function fz′,w′(z) the following holds.

(3.7) The points (z, fz′,w′(z)) are on X [0] and fz′,w′(z′) = w′.

For each (z′, w′) let Uz′,w′ be the range of z �→ Fz′(z) def= (z, fz′,w′(z)) on
∆z′ . The inverse of Fz′ is prz, projection of a pair (z, w) onto its z-coordinate.
Compatible with the definition of manifold, here denote prz by ϕz′,w′ . Then, Fz′

parametrizes the neighborhood Uz′,w′ of (z′, w′) and ϕz′,w′ maps it into Cz. If
V = Uz′,w′ ∩ Uz′′,w′′ is nonempty, then ϕz′′,w′′ ◦ ϕ−1

z′,w′ is the identity map on the
overlap of ∆z′ ∩ ∆z′′ .

That gives an atlas. As it is a subspace of the Hausdorff space C × C, X [0] is
Hausdorff. So, it is a connected (from Chap. 2 §6.4) complex manifold. Let λ be a
path as in the statement of the proposition. The point set of X0

f consists of pairs
(z′, x′) ∈ C × C of the form (z′, fγ(z′)) with γ : [a, b] → Uzzz with γ(a) = z0 and
γ(b) = z′. As X0

fλ
is connected, we can write any point on it as the endpoint of

(z, fλ·γ) for some λ. So, X0
fλ

is the same subset of points in C × C. �

Note: Each z′ ∈ Uzzz has a neighborhood ∆z′ with this property.
(3.8) prz restricted to each connected component Uz′,w′ of pr−1

z (∆z′) is a home-
omorphism with ∆z′ .

This is a stronger property than prz being an immersion. It means prz : X [0] → Uzzz

is an (unramified) cover according to Def. 7.12. The inverse image by prz of small
closed disks around z′ are closed disks around points lying over z′. That is, the
preimage of a compact set is compact, and prz is a proper map [9.1d].

Remark 3.13 (Finite atlas). The atlas of Prop. 3.12 contains an infinite number
of elements. For a manifold that adds one complication §3.2.1 and §3.2.2 don’t have.
This came about to include a deleted neighborhood of (zi, w

′) with zi ∈ zzz and w′

a solution of m(zi, w
′). That’s because we chose disks on Cz as the domain for the

Fz′ parametrization. To remedy this choose other simply connected sets, including
traditional slit disks given by scaling, translating and rotating

{z ∈ C | |z| < 1} \ {0 ≤ ((z) < 1}.

Chap. 4 §2.4 has further justification for these charts.
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3.3.2. Further compactification and use of equations. Chap. 4 Thm. 2.6 shows
there is a unique compact complex manifold, up to analytic isomorphism (Def. 4.1),
extending X [0] (and also the analytic map to P1

z). To get it we must compatibly
add points and analytic disk neighborhoods to match with the analytic structure on
X [0]. Using the equation m(z, f(z)) ≡ 0 often allows adding further points (zi, w

′)
to X [0] and their local analytic functions to extend the complex manifold structure.
The simplest such extension includes those points (zi, w

′) where, even though zi is
a branch point, ∂m

∂w (zi, w
′) �= 0. That is, consider

X [1] =
{

(z, w) ∈ C × C | m(z, w) = 0,
∂m

∂w
(z, w) �= 0

}
.

The variable for a local chart around w′ is w. Prop. 3.15 gives the details.
Example 3.14. Suppose h ∈ C[w] of degree n > 1 produces h : P1

w → P1
z. Let

zi be a branch point of m(z, w) = h(w) − z and let gzi
∈ Sn be a representative

of the conjugacy class attached to zi (Chap. 2 Lem. 7.9). Then, there is a one-one
correspondence between the following sets. Chap. 2 [9.4]:

(3.9a) Points (zi, w
′) over zi for which z �→ (z, fzi,w′(z)) (3.7) parametrizes a

neighborhood of (zi, w
′).

(3.9b) Disjoint cycles of length 1 in gzi
.

Example: Consider h1(w) = w(w−1)(w−2). Use notation from Chap. 2 Lem. 7.9.
The group attached to an algebraic f1(z) satisfying h1(f1(z)) − z ≡ 0 is S3.

Branch cycles gz1 and gz2 at the two branch points z1, z2 have the shape (1)(2)
(§7.1.1): disjoint cycles of length 1 and 2. So each branch point has two points
above it. Then, for each zi there are two solutions wi,1 and wi,2 of h(w)−zi. Select
wi,1 so that dh

dw (wi,1) �= 0 and dh
dw (wi,2) = 0, i = 1, 2. Adding (zi, wi,1) to X [0]

produces an open set on which prz maps one-one to P1
z. This does not hold for the

point (zi, wi,2). So, X [1] has exactly one point on it over each of z1 and z2.

For any h(w) in Ex. 3.14, X [1] will have missing points in that the map prz

is not proper over some points zi ∈ zzz (§2.2). For f analytic in several variables
z1, . . . , zn in a neighborhood of a point zzz0, we call

∇f(zzz0)
def=

( ∂f

∂z1
(zzz0), . . . ,

∂f

∂zn
(zzz0)

)
the complex gradient of f at zzz0. Now consider a set (usually) larger than X [1]:

X [2] = {(z, w) ∈ C × C | m(z, w) = 0, ∇(m)(z, w) �= 0}.
Proposition 3.15. A natural atlas makes X [2] into a complex manifold.

Proof. Since X [2] is a subspace of C × C it is Hausdorff. From Prop. 3.12 we
have only to add (zi, w

′) lying over zi ∈ zzz sitting in X [2] to their neighborhoods in
X [1]. Change the w′ coordinate by an element of PGL2(C) to assume none of the
finitely many w′ s is ∞.

By assumption ∇(m)(zi, w
′) �= 0, though by definition ∂m

∂w (zi, w
′) = 0. There-

fore, ∂m
∂z (zi, w

′) �= 0. Apply the implicit function theorem to find a disk ∆w′ ⊂ Cw

and hzi,w′(w) analytic on ∆w′ with the following properties.

(3.10a) The points (hzi,w′(w), w) are on X [1].
(3.10b) The radius of ∆w′ is the minimum distance from w′ to any branch point

of m∗(w, z) def= m(z, w) (switch the variables z and w).
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Similar to the proof of Prop. 3.12, let Vzi,w′ be the range of w �→ (hzi,w′(w), w) on
∆w′ . Then the coordinate map at (zi, w

′) is prw by (z, w) �→ w.
The essence of producing the manifold structure is to check the transition

functions. The key check occurs when the intersection a neighborhood of (zi, w
′)

meets a neighborhood of (z′′, w′′) with z′′ �∈ zzz. For example:

prw ◦ pr−1
z : z �→ (z, fz′′,w′′(z)) �→ fz′′,w′′(z)

is analytic. Similarly, so is

prz ◦ pr−1
w : w �→ (hzi,w′(w), w) �→ hzi,w′(w).

That concludes the proof of the lemma. �

4. Coordinates and meromorphic functions

Here we define analytic maps between complex manifolds. In many areas of
mathematics, being able to compare all objects of study with a core of special
cases can help. For example, it is helpful to know that all finite groups have a
Jordan-Hölder series of finite simple groups and that this collection of finite simple
groups (including their multiplicities) is an invariant of the group. Still, even an
expert on the classification of finite simple groups can’t be confident of a complete
understanding of the finite group from knowing its Jordan-Hölder series.

For certain compact complex manifolds, knowing how to use their meromorphic
functions can help decide how such a manifold fits among all related manifolds.
That is a rough statement of how we use coordinates on compact complex manifolds.
This subsection uses explicit (though only partial) compactification of Riemann
surfaces of algebraic functions to illustrate how coordinates give defining equations.

4.1. Comparing analytic spaces. We define maps between analytic spaces,
and then emphasize the significance of such maps to P1.

4.1.1. Maps between spaces. Let Xi be a differentiable (resp., complex) mani-
fold of dimension ni with topologizing data {(Uαi

, ϕαi
)}αi∈Ii

. Consider a function
f : X1 → X2 and the functions

(4.1) ϕα2
◦ f ◦ ϕ−1

α1
: ϕα1(Uα1 ∩ f−1(Uα2)) → ϕα2(f(Uα1) ∩ Uα2)

for (α1, α2) ∈ I1 × I2.
Definition 4.1 (Analytic map). Call f differentiable (resp. analytic) if the

functions of (4.1) are differentiable (resp. analytic) on their domains. For X1 ⊆ Rn

and X2 ⊆ Rm, this is equivalent to f being differentiable as usual. If f is one-one
and onto, call f a differentiable (resp. analytic) isomorphism between X1 and X2.

The phrase isomorphism in Def. 4.1 implies there is a differentiable (resp. an-
alytic) g : X2 → X1 inverse to f . That is the gist of our next statement.

Lemma 4.2. Let X and Y be differentiable manifolds. Assume f : Y → X
is a differentiable map, and in a neighborhood Uy of some point y ∈ Y , one-one.
Then, there exists differentiable g : f(Uy) → Uy that is an inverse to f . So, if f is
one-one and onto, it has differentiable inverse. If we replace the word differentiable
by analytic, there is an analogous result.

Proof. Both statements are consequences of the inverse function theorem.
This says that a local inverse exists and is differentiable. There is an inverse function
to a one-one onto map (§2.2), so the differentiability is all we need. The definition
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of differentiable (or analytic) function reverts this result to one about f : Rn → Rn

(or for f : Cn → Cn) for some integer n.
Chap. 2 §6.1 discusses the inverse function theorem for one complex variable.

The full inverse function theorem is an inductive procedure for several complex
variables. See [C89, p. 72] or [Rud76, p. 224] for the general case. For differentiable
functions, equation (3.1) says that an inverse g to f : Rn → Rn would have Jacobian
matrix J(g)(yyy) = J(f(xxx))−1 at yyy = f(xxx). This is a differential equation for g =
(g1(yyy), . . . , gn(yyy)), given f . The case when f is real analytic is much more likely
for our use, and that has easier proofs in the literature. �

4.1.2. P1-algebraic spaces. Let ϕ : X → Y be an analytic map of complex
manifolds. If U is an open subset of Y , denote the restriction of ϕ over U by
ϕU : ϕ−1(U) → U . Then, composing holomorphic functions on an open set U ⊂ Y
with ϕ produces a map ϕ∗ : H(U) → H(f−1(U)). In particular, if both spaces
are connected, and ϕ is onto, this induces an injection ϕ∗ : C(X) → C(Y ), an
embedding of the function field of Y into that of X.

Chap. 2 Def. 4.14 includes the definition of analytic maps from a domain on
P1

w to P1
z, a special case of Def. 4.1. More generally, for any complex manifold X,

a nonconstant analytic map ϕ : X → P1
z is a meromorphic function on X (repre-

sented by z). Chap. 2 Lem. 2.1 guarantees a nonconstant map of compact Riemann
surfaces is surjective. This also applies to ϕ, even if X (compact) has larger dimen-
sion, for again these functions come locally from power series expressions and so
give an open map. Further, if X is a compact Riemann surface, Chap. 4 Thm. 2.6
shows any meromorphic function on X extends to give an analytic map from X to
projective 1-space. Chap. 4 Lem. 2.1 shows the following points. If X is compact
(and ϕ is nonconstant), then ϕ has a degree, |ϕ−1(z′)| for z′ ∈ P1

z not in a finite set
of values where this cardinality is a smaller number. Further, if we count points in
ϕ−1(z′) with appropriate multiplicity for their appearance in the fiber, the degree
is independent of z′ ∈ P1

z.
Many compact complex manifolds of dimension at least 2 (example: Pn, n ≥ 2,

[9.11e]), have the following property. Though they have many nonconstant mero-
morphic functions, none are represented by an analytic map to P1

z. The compact
complex manifolds that are P1-algebraic are exactly those that embed in (P1)N for
some integer N . That is, they have sufficiently many functions represented by an
analytic map to P1, the gist of condition (3.3a).

A virtue of the definition P1-algebraic is its simplicity, this use of special ele-
ments of the function field giving maps to P1. Still, Chap. 4 §6.1.1 extends this, as
is traditional, to say a manifold is algebraic if it embeds in PN for some N . The
effect of that is to show why a set of basic principles forces extending P1-algebraic
manifolds to include PN as algebraic. We hope this adds historical perspective on
what was less than a century ago a complicated issue. Witness this [Mu66, p. 15]
quote on going directly from affine space to projective space:

Among others, Poncelet realized that an immense simplication
could be introduced in many questions by by considering “projec-
tive” algebraic sets (cf. Felix Klein, Die Enwicklund der Mathe-
matik, Part I, p. 80–82). Even to this day, . . . projective algebraic
sets play a central role in algebro-geometric questions: therfore
we shall define them as soon as possible.
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Mumford’s quote, and the total acceptance of it in [Har77], shouldn’t deny the
natural way that P1-algebraic spaces and fiber products illuminate special mero-
morphic functions arise in providing coordinates.

In practice, on many intensely studied algebraic manifolds, you can choose a
finite set, f1, . . . , fm, of global meromorphic functions to construct the manifold,
whose points we can then see as given by the values of f1, . . . , fm at the given
point. From these, it is theoretically possible to construct anything else you would
expect attached to the manifold from f1, . . . , fm. Still, much classical algebraic
geometry spends great time on using coordinates (embeddings in projective space)
of special types to make these constructions. For many applications, however, this
is a too-detailed reliance on specific use of coordinates. We hope discussions in this
chapter help the reader see why coordinates are necessary, though one shouldn’t
insist on seeing them explicitly at all stages.

We especially study families of compact Riemann surfaces with each family
member appearing with an attached equivalence class of maps to P1

z. What, how-
ever, is the analogy, so important to individual measurements, for comparing dif-
ferent function fields (Lem. 3.9) associated to different complex manifolds? Where
would we expect such comparisons to arise? Comparing Riemann surfaces is pos-
sible if there is an efficient labeling of function field generators. The easiest event
is if all these Riemann surfaces embed naturally in a space with global coordinates
that restrict to give coordinates on the individual surfaces. §4.2 gives examples of
how coordinates can help compactify some Riemann surfaces.

An easy way to get new analytic maps from old appears if ϕ : X → P1
z is

a meromorphic function. Let α ∈ PGL2(C). Then α ◦ ϕ : X → P1
z is a new

meromorphic function.
For Ex. 3.14, Prop. 3.15, produces X [2] analytically isomorphic to Cw. We

already knew this was a manifold. The proof of Props. 3.12 and 3.15 simplifies
because ∞ ∈ zzz. The following lemma removes that assumption [9.1b].

Lemma 4.3. Let Ui ⊂ P1
z, i = 1, 2 be domains. Let ϕ : X → U1 ∪ U2 denote

projection of a manifold for an algebraic function onto the z coordinate. With
αi ∈ PGL2(C), i = 1, 2, assume αi ◦ ϕUi

: ϕ−1(Ui) → α−1
i (Ui) is a manifold from

the construction of Prop. 3.15, i = 1, 2. Then, X is a complex manifold extending
the manifold structure on ϕ−1(Ui).

Assume X is a manifold from Prop. 3.15. Let ϕ : X → U ⊂ P1
z be the algebraic

function giving projection onto the z coordinate. Riemann’s Existence Theorem
(Chap. 4) produces a unique compact complex manifold X̄ containing X as an
open subset. We do this by extending ϕ to an analytic map ϕ̄ : X̄ → P1

z. This is
an abstract approach to compactification. It will help to see preliminary examples
that relate compactifications and coordinates. In §4.2 we give these.

4.2. Compactifications and fiber products. Continue the notation for m
and its branch points zzz from §3.3. Denote

{w′ ∈ P1
w | (z′, w′) ∈ X [0], z′ �∈ zzz} by Upr−1

z (zzz).

To further compactify we might embed the subset X [0] of Uzzz × Upr−1
z (zzz) into a

compact space Z; then take the closure X of X [0] in Z. (Or apply to the already
extended spaces X [1] or X [2].) As a closed subspace of compact space, X is compact.
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4.2.1. Local holomorphic functions from equations. We note especially that
equations give more than an (implicit) description of a point set. Using the implicit
function theorem, they often give local parametrizing functions. In this section we
use spaces Z to compactify that give natural local equations around points of the
closure of X [0]. Such equations help decide which points of the closure have ex-
tensions to the analytic structure on X [0] (or just manifold structure). This is an
aspect of saying such Z provide global coordinates.

We need a notation for holomorphic functions compatible with §1.3 for the
Laurent field Lz′ . We use Lh

z′ for the ring of functions, with each holomorphic in
some disk (dependent on the function) about z′: power series

∑∞
n=0 an(z − z′)n,

convergent in some neighborhood of z′. For a general space X and point x ∈ X,
the notation would be Lh

X,x. For the holomorphic elements of Pz′,e use Ph
z′,e.

We’ve been giving examples of point sets {(z, w) | m(z, w) = 0} in C × C
using just one equation. Defining algebraic functions f(z1, . . . , zn) in several vari-
ables is easy: Consider Xm = {(z1, . . . , zn, w) | m(z1, . . . , zn, w) = 0}, and we
say m algebraically defines f(z1, . . . , zn), holomorphic in the variables z1, . . . , zn,
if m(z1, . . . , zn, f(z1, . . . , zn)) ≡ 0. Also, the notation above extends to consider
Lh

z′
1,...,z′

n
. Suppose m(z′1, . . . , z

′
n, w′) = 0, for (z′1, . . . , z

′
n, w′) ∈ Cn+1. Assume also

that m defines f(z1, . . . , zn) algebraically, and f(z′1, . . . , z
′
n) = w′. Then, we say the

local holomorphic (or analytic) functions around (z′1, . . . , z
′
n, w′) consists of elements

of the ring Lh
z′
1,...,z′

n
. This ring is invariant under analytic change of variables.

The next definition extends this to consider local holomorphic functions even
with no a priori algebraic function f satisfying m. Recall the residue class map
rcz′

1,...,z′
n,w′ : C[z1, . . . , zn, w] → C by (z1, . . . , zn, w) �→ (z′1, . . . , z

′
n, w′). This is a

ring homomorphism, and we record this in the form of the following. The comple-
tion of the ring C[z1, . . . , zn, w]/(m) at (z′1, . . . , z

′
n) is

Lh
z′
1,...,z′

n
[z1, . . . , zn, w]/(m(z1, . . . , zn, w)) def= Lh

Xm,z′
1,...,z′

n
.

Definition 4.4. Analytic functions on Xm around (z′1, . . . , z
′
n, w′) are elements

of the localization of Lh
Xm,z′

1,...,z′
n

at w = w′:

Lh
Xm,z′

1,...,z′
n,w′

def= {u/v | u ∈ Lh
Xm,z′

1,...,z′
n
, v ∈ C[z1, . . . , zn, w],

with u(z′1, . . . , z
′
n, w′) �= 0.

Lemma 4.5. Assume z′1, . . . , z
′
n, w′ is on Xm. Then rcz′

1,...,z′
n,w′ factors through

C[z1, . . . , zn, w]/(m); even through Lh
Xm,z′

1,...,z′
n,w′ . This defines the value, rc(s), of

s ∈ Lh
Xm,z′

1,...,z′
n,w′ at (z′1, . . . , z

′
n, w′). Assume the lead coefficient of m(z, w) is in-

vertible in Lh
z′
1,...,z′

n
. Use Wm for the set of distinct w′ = w solving m(z′1, . . . , z

′
n, w) =

0 (allowing multiple zeros). There is a natural injective homomorphism

Lh
Xm,z′

1,...,z′
n

→ ⊕w′∈WmLh
Xm,z′

1,...,z′
n,w′ .

Definition 4.6 (Local holomorphic functions). Suppose m(z′1, . . . , z
′
n, w′) =

0, for (z′1, . . . , z
′
n, w′) ∈ Cn+1 and there are but finitely many solutions w to

m(z′1, . . . , z
′
n, w′) = 0. Then, the local holomorphic (or analytic) functions that m

defines consist of elements of Lh
Xm,z′

1,...,z′
n,w′ [z1, . . . , zn, w]/(m(z1, . . . , zn, w)) = R.

We say this defines a manifold neighborhood if R is isomorphic to the convergent
power series around a point of Cn.
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It is appropriate to say R is the restriction of local holomorphic functions on Cn+1

to the set Xm around (z′1, . . . , z
′
n, w′). Further, the definition works as well if several

equations, m1, . . . , mu, instead of just one, define the set.
4.2.2. P1

z × P1
w compactification. Since Z = P1

z × P1
w is a product of compact

spaces, it is compact. Further, the compactification of X [0], if it is a manifold, suits
the definition for P1-algebraic in (3.3).

The natural manifold structure on Z has four open sets in its atlas following
Ex. 3.2.1. Label these Ui,z × Uj,w, 1 ≤ i, j ≤ 2: U1,z = Cz and U2,z = C∗z ∪ {∞},
etc. The atlas gives an isomorphism of each of the four opens sets Ui,z × Uj,w with
C × C, by a map we call ϕi,j . Let X̄ be the closure of X [0] in Z. We describe
the part of X̄ lying inside Ui,z × Uj,w by an algebraic equation. Then a previous
procedure allows checking points at which X has a manifold structure.

Start with X̄ ∩U2,z ×U2,w, and leave the other open sets as analogous. On the
open subset C∗ × C∗ ⊂ U2,z × U2,w, ϕ2,2 acts as

(z, w) �→ (1/z, 1/w) = (z′, w′).

An equation in (z′, w′) describes ϕ2,2 applied to X∩(U2,z×U2,w) = X2,2: ϕ2,2(X2,2)
is the closure of {(z′, w′) | m(1/z′, 1/w′) = 0} in Cz′ × Cw′ . Get the closure points
by allowing z′ or w′ to go to 0. To include those limit values, multiply m(1/z′, 1/w′)
by the minimal powers of z′ and w′ to clear the denominators.

Example 4.7 (Continuation of Ex. 3.14). Continue with m(z, w) = h(w) − z
and deg(h) = n. The set ϕ2,2(X2,2) is {(z′, w′) | z′h∗(w′) − (w′)n = 0} where
h∗(w′) = h(1/w′)(w′)n. Check that X1,2 and X2,1 have no new points beyond those
already in X1,1. Still, X2,2 has a new point, corresponding to (z′, w′) = (0, 0). The
gradient of z′h∗(w′) − (w′)n at zero is (h∗(0), 0) �= (0, 0). So, there is a manifold
neighborhood of this point [9.10a].

4.2.3. Tensor products and fiber products of P1 covers. We combine two cases
of Ex. 4.7. Suppose m(z, w) = h(w)−g(z), a variables separated equation. Rename
z to a variable w′, and use z for the value h(w). Rewrite m(z, w) as m(w′, w).

Consider (w′, w) ∈ Cw′ × Cw satisfying m(w′, w) = 0. Call this Xm. Denote
the Riemann surface for a function w′(z) (resp. w(z), as in Ex. 4.7) of z satisfying
h(w′(z)) ≡ z (resp. g(w) = z) by Xw′ (resp. Xw). There is a map ϕw′ : Xw′ → P1

z

by w′ �→ h(w′) = z. Similarly for a map ϕw.
Compare with Def. 1.3: Xm as a set is the same as the fiber product of these

two maps. Now apply the P1
w′ × P1

w compactification to m(w′, w). The resulting
set is X̄w′ ×P1

z
X̄w = X̄m. (In our example, X̄w′ = P1

w′ and X̄w = P1
w.) This is the

fiber product (over P1
z) of the compactifications of Xw′ and Xw from Ex. 4.7.

Now consider points of X̄m to decide what are the natural local analytic func-
tions in a neighborhood within one of the four charts for P1 × P1:

(4.2) Xi,j = Ui,z × Uj,w, 1 ≤ i, j ≤ 2.

For (w′0, w0) ∈ X̄m. Let ew′
0

(resp. ew0) be the ramification index (Chap. 2 Def. 7.6)
of w′0 over h(w′0) = z0 (resp. w0 over g(w0) = z0). New cases are with ew′

0
= e′ > 1

and ew0 = e > 1.
Local holomorphic functions in a neighborhood of (w′0, w0) that come from the

coordinates w′ and w are analytic in the solutions w′ of h(w′) = z expanded about
w′0 and in the solutions w of g(w) = z expanded about w0. As usual, use ζd for the
complex number e2πi/d. Assume R is a ring, and S1 and S2 are two R algebras.
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Then the tensor product S1 ⊗R S2 is the natural direct sum of R algebras. That
is, it is an R algebra T with R algebra homomorphisms ψi : Si → T , i = 1, 2
(ψ1 : s1 ∈ S1 �→ s1 ⊗ 1, etc.) and any such homomorphism will naturally factor
through the map to S1 ⊗R S2. As in Chap. 2 Cor. 7.5: [e1, e2] is the least common
multiple of e1 and e2; u(z) = (z − z′)1/[e1,e2] is a choice of [e1, e2]th root of z − z′ (a
generator of Pz′,[e1,e2]); and ζd = e2πi/d. Our first lemma is a famous consequence
of the Euclidean algorithm.

Lemma 4.8. Assume K is a characteristic 0 field and f ∈ K[x] is
∏u

i=1 gi(x)ri

with g1, . . . , gu irreducible and distinct monic polynomials over K. Then the natural
map µ : K[x]/(f(x)) → ⊕u

i=1K[x]/(gei
i ) by h(x) �→ (h mod (ge1

i ), . . . , h mod (ge1
i )

is an isomorphism.

Proof. Check that the kernel of µ trivial. So this linear vector space map,
injects a space of dimension deg(f) into one of the same dimension

∑u
i=1 ei deg(gi).

Conclude: µ is onto. �

Proposition 4.9. Suppose U is an open subset of P1
z, and ϕ : X → U is an

analytic map of Riemann surfaces. For x′ over ϕ(x′) = z′ with ramification index
ex′/z′ = e, Lh

X,x′ is a natural Lh
P1

z,z′ algebra that identifies with Ph
z′,e.

Let ϕi : Xi → U be two such maps, with x′i ∈ Xi over z′ having ramification
index ei, i = 1, 2. Let d = (e1, e2). Then, the ring of local holomorphic func-
tions about (x1, x2) on X1 ×P1

z
X2 = Y is Lh

X1,x′
1
⊗Lh

P1z
z′ Lh

X2,x′
2
. So ue1/d = u2

(resp. ue2/d = u1) is an e2th (e1th) root of (z−z′). Then, Lh
Y,(x1,x2)

naturally iden-
tifies with Lh

P1
z,z′ [u1 ⊗ 1, 1⊗ u2] = R (with (u1 ⊗ 1)e1 = z ⊗ 1 = (1⊗ u2)e2 according

to the rules of tensoring over Lh
P1

z
z′). This ring has a single maximal ideal. There

is an injective homomorphism

µ : Lh
P1

z,z′ [u1 ⊗ 1, 1 ⊗ u2] → ⊕d
j+1Lh

P1
z,z′ [x, y]/(xe1/d − ζj

dye2/d, z = ye2)

by u1 ⊗ 1 �→ x and 1 ⊗ u2 �→ y in each coordinate. Each summand on the right of
(4.9) is an integral domain whose quotient field naturally identifies with Pz′,[e1,e2].

Then, R is an integral domain if and only if d = 1, and the image of µ in each
summand is a proper subring of the summand unless one of ei/d is 1. Conclude:
Restricting local holomorphic functions on X1 × X2 defines an analytic manifold
structure around (x′1, x

′
2) if and only if one of the ei s is 1. Yet, the image of µ

generates the quotient field of each summand.

Proof. According to Def. 4.1, by rewriting ϕ using local analytic coordinates
zx′ and zz′ around x′ and z′, we get a very simple normal form. A local analytic
change of variables identifies zx′ with one of the solutions of ue = zz′ . Chap. 2
Cor. 7.5 shows this when ϕ is given by an algebraic function. Chap. 4 (proof of
Lem. 2.1) shows it is not dependent on a priori knowing ϕ is algebraic. That gives
the first paragraph in the lemma.

Now consider ϕi, i = 1, 2, in the statement of the lemma. From above, identify
an analytic coordinate around xi(z) around x′i with (z − z′)1/ei and the map ϕi

with the eith power map, i = 1, 2. The only relations among u1 ⊗ 1 and 1 ⊗ u2 are
generated by (u1 ⊗ 1)e1 = z ⊗ 1 = (1 ⊗ u2)e2 and the kernel of the map µ is in the
ideal generated by this relation.

If d > 1, then (u1 ⊗ 1)e1/d − ζj
d(1 ⊗ u2)e2/d divides (u1 ⊗ 1)e1 − (1 ⊗ u2)e2 = z.
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Replace Lh
P1

z,z′ by Lz′(y) = K, a field (leaving x as a variable). Then applying
Lem. 4.8 to µ actually gives an isomorphism. The corresponding summands on the
right side of (4.9) would be fields identified with the quotient fields of the summands
on the right side of the actual (4.9). So, to finish the result we have only to show the
quotient field of the summand Lh

P1
z,z′ [x, y]/(xe1/d − ζj

dye2/d, z = ye2) identifies with
Pz′,[e1,e2], though the summand itself is a proper subring of the locally holomorphic
functions in (z − z′)1/[e1,e2] [9.11b]. �

Now apply Prop. 4.9 to (4.2).
Corollary 4.10. Restricting local holomorphic functions on P1

w′ × P1
w to

the fiber product P1
w′ ×P1

z
P1

w compactification gives an analytic manifold structure
around (w′0, w0) if and only if (e′w0

, ew0) = 1.
Remark 4.11 (simplifying the use of Prop. 4.9). Riemann’s Existence Theorem

gives a unique compact manifold by completing a cover of Uzzz. In so doing, it com-
putes precisely what to expect when you take the fiber product of two ramified
covers of P1

z (over of any other Riemann surface). Chap. 4 §3.3.2 shows the combi-
natorial result of getting d distinct points on the correctly compactified fiber product
(ramified of order [e1, e2] over z′) over the pair (x′1, x

′
2) is built transparently into

the use of branch cycles. Since, however, fiber products (and tensor products) are
so important, Prop. 4.9 gives a relatively simple example readers may return to for
help with other examples.

4.3. Pn compactifications. Denote the origin in Cn+1 by 0. There is an
action of C∗ on Cn+1 \ {0}. Given a nonzero vector vvv = (v0, . . . , vn) ∈ Cn+1 and
α ∈ C∗ form the result of scalar multiplication α · vvv = (αv0, . . . , αvn). Projective
n-space is a quotient definition like that of a complex torus: Pn = Cn+1 \ {0}/C∗.
Mapping vvv to the set equivalent to vvv gives Γn : Cn+1 \ {0} → Pn.

4.3.1. An atlas on Pn. In this form, it can be convenient (though cumber-
some) to label Pn as either Pn

v1/v0,...,vn/v0
(inhomogeneous coordinates) or Pn

v0,...,vn

(homogenous coordinates). The extra notation means we have added data for a
standard set of coordinate functions for Pn. Algebraic geometry texts might refer
to a manifold analytically isomorphic to this manifold as Pn. Still, there is a signif-
icance to adding specific coordinates as Chap. 5 does. To practice this distinction
try [9.11e]. Taking n = 1 and v1/v0 = z gives the notation for P1

z from Chap. 2.
Standard coordinates on Pn produce standard transition functions for its man-

ifold structure. Typical of forming an object by an equivalence relation, each point
of Pn is a set in Cn+1. As some coordinate is not 0, such a point has a repre-
sentative with some coordinate equal 1. If you tell which coordinate that is, the
representative will be unique.

Let Ui be the points with representative having 1 in the ith position. Each
point of Pn has a representative in Ui for some i. Projecting Ui onto coordinates
different from the ith gives a coordinate chart ϕi : Ui → Cn, i = 0, . . . , n. If vvv is
any other representative of a point in Ui, first scale it by 1/vi before this projection.

Lemma 4.12. The atlas {Ui, ϕi}n
i=1 makes Pn a compact dimension n complex

manifold. The map Cn+1 \ {000} → Pn is a map of analytic manifolds.

Proof. An explicit computation of the transition function

ϕj ◦ ϕ−1
i : Cn

v0,v1,...,vi−1,vi+1,...,vn
→ Cn

v0,v1,...,vj−1,vj+1,...,vn
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is easy. If i = j it is the indentity. Otherwise, it maps (v0, v1, . . . , vi−1, vi+1, . . . , vn)
to 1/vj(v0, v1, . . . , vj−1, vj+1, . . . , vn) (with vi = 1). It is analytic on ϕi(Ui ∩ Uj).

To see Pn is compact, use the standard absolute value |v| on C. Let Cn+1
c be

the vectors vvv with maxn
i=0(|vi|) ≤ 1. This is a closed bounded subset of Cn+1. So,

by the Heine-Borel compactness theorem, it is compact. Every point of Pn has a
representative in Cn+1

c : Scale it by the largest nonzero entry. Now use that the
image of a compact set under a continuous map is compact. An alternate could
use this characterization of compactness: Infinite sequences of points in a separable
metric space have convergent subsequences [9.10b].

The diagonal in Pn × Pn is the image of a compact subset of the diagonal in
Cn+1 × Cn+1. Though the image is compact, until we know Pn is Hausdorff we
can’t invoke Lem. 2.5 to see the image is closed. Here, however, a direct argument
can establish that Pn is Hausdorff. Suppose two points are in one of the Ui s, a copy
of Cn. As this is Hausdorff, separate the two points by open sets. So, given any
two points it suffices to change coordinates to assure, in the new coordinates, these
are both in one of the Ui s. Do that choosing a linear combination Laaa =

∑n
i=0 aivi

so neither point lies on the zero set of Laaa. Use Laaa in place of vj as one of the new
coordinates for any j for which aj �= 0.

Use Γ−1
n (Ui) = Vi ⊂ Cn+1 and the same transition functions for a coordinate

chart on Cn+1. This shows Γn is a map of complex manifolds. �

4.3.2. P2
z,w,u compactifications. As in §4.2.2, let Z ′ = P2

z,w,u. Embed Cz × Cw

in this by ϕ−1
u : (z, w) �→ (z, w, 1) mod C∗ ∈ Z ′. Call the image Uu. Similarly, let

Uw be points of P2
z,w,u with a representative of form (z, 1, u) and Uz points with a

representative of form (1, w, u). Take X ′ to be the closure of {(z, w) | m(z, w) = 0}
in the compact space Z ′. To check points of X ′ for a manifold neighborhood requires
an equation around each point of X ′. It suffices to define this equation for points
of X ′ ∩ Uz and X ′ ∩ Uw. We do the former; the latter is similar.

Since ϕz identifies Uz with Cw × Cu, it suffices to define the image of X ′ ∩ Uz

under ϕz. With n′ the total degree of m, it is

X ′
z = {(w, u) | un′

m(1/u, w/u).

4.3.3. Hyperelliptic curves. Suppose ϕ : X → P1
z is a degree 2 map of compact

Riemann surfaces. Let zzz be the finite set of branch points (as in Chap. 4 Lem. 2.1).
The theme of Chap. 2 §8 is that we already know, from branches of log, what are
the abelian covers of Uzzz = U (see Chap. 4 Prop. 2.11). That is, πU : XU → Uzzz is
equivalent to the cover defined by a branch of square root of h(z) ∈ C(z). Also,
h has multiplicity one zeros and poles contained in zzz (Chap. 2 (6.2)): ϕ is a cover
from a branch of solutions f(z) of m(z, w) = w2 − h(z) with h(z) =

∏t
i=1(z−zi)∏r

j=t+1(z−zj)
.

Suppose the zi s are distinct, and all different from 0 or ∞ (r = 2t so the degrees
of the numerator and denominator are the same). Then, according to Prop. 4.9,
this is an if and only if condition that for a manifold compactification given by the
fiber product embedding in pr1z ×P1

w. This is good, yet the standard normalization
of hyperelliptic curves changes the variables so that h is a polynomial. Do this by
multiplying both sides by the square of the denominator, then change the variable
w to w

∏r
j=t+1(z − zj). For simplicity we keep the name of the variables the same.

So, now consider the equation wr = h(z) where h =
∏r

i=1(z − zi). Here r is even,
and we assume it is at least 4. Another common normalization is make the changes
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z �→ z1 +1/z and w �→ w/z, thereby replacing h by a polynomial having odd degree
r ≥ 3. As it stands let us consider the P2

z,w,u compactification.
Then, X ′

u = {(z, w) | w2 −h(z) = 0} has a manifold neighborhood around each
point: ∇(m) = 0 implies w = 0 and dh

dz = 0 (z is a repeated root of h). From above,

(4.3)
X ′

w = {(z, u) | un−2 − unh(z/u) = m(w)(z, u) = 0} and
X ′

z = {(w, u) | un−2w2 − unh(1/u) = m(z)(w, u) = 0}.

On X ′
w new points (not already represented on X ′

u) have u = 0 and z = 0. For r > 3,
∇(m(w))(0, 0) = 0. So, it has no manifold neighborhood. Note this contrasts with
the P1

z ×P1
w compactification of m, in which all points have manifold neighborhoods

when you use the right algebraic change of coordinates [9.11c]. For r = 3, however,
the point (0, 0) has a manifold neighborhood in P2. There are no new points on
X ′

z; u = 0 gives no solution in w to m(z)(w, u) = 0.
4.3.4. Coordinates give meromorphic functions. Let X̄ be the P1

z × P1
w com-

pactification (§4.2.2) of X = {(z, w) | m(z, w) = 0} with m ∈ C[z, w]. Assume
every point of X̄ has a manifold neighborhood in this compactification. Then, ev-
ery point of X̄ has the form (z, w) ∈ P1

z × P1
w. Thus, projection of (z, w) onto z (or

onto w) provides a meromorphic function on X̄.
Similarly, suppose X̄ is the P2

z,w,u compactification (§4.3.2) of X and every
point of X̄ has manifold neighborhood. Then, many meromorphic functions come
from this compactification. A linear form in (z, w, u) is a nonzero linear combination
of z, w, u (like Laaa, used in the proof of Lem. 4.12). Assume X̄ is not in the zero
set of any linear form. For example, suppose m(z, w) is irreducible and has total
degree n > 1.

Proposition 4.13. Let L1 and L2 be linear forms in (z, w, u), not multiples
of one another. Let (z0, w0, u0) represent the unique point of intersection of the
zero sets of L1 and L2. Then, with z′ = L1(z, w, u)/L2(z, w, u), there is a nat-
ural (nonconstant) meromorphic function ϕ̄ : X̄ → P1

z′ . The degree of ϕ̄ is n if
(z0, w0, u0) �∈ X̄ and n − 1 otherwise.

Proof. Give the map by (z, w, u) ∈ X̄ �→ L1(z, w, u)/L2(z, w, u). We verify
this map is well-defined. If (z0, w0, u0) �∈ X̄, then meaningfully assign a value
z′ ∈ C ∪ {∞} to the evaluation of L1/L2 at any point of X̄. Let Hz′

0
be the line in

P2 given as the zero set of Lz′
0

= L1 −z′0L2. To see the degree, check the number of
points in the intersection of Hz′

0
and X̄ if z′0 is suitably general. This is n. These

are exactly the points that go to z′0.
On the other hand, suppose (z0, w0, u0) ∈ X̄. Then each Hz′

0
goes through

(z0, w0, u0). If z′0 is general, L1(z, w, u)/L2(z, w, u) has a clear ratio value at the
n−1 points other than (z0, w0, u0). So, this gives a map of degree n−1 of X̄ → P1

z′ .
Check: For only one value z′0 is Hz′

0
tangent to X̄ at (z0, w0, u0) because we assumed

X̄ is nonsingular [9.11f]. Interpret such a z′0 as having (z0, w0, u0) above it. �

5. Paths, vectors and forms

Notation for paths started in Chap. 2 §2.2. Let X be a topological space. A
path in X is a continuous γ : [a, b] → X for some choice of a and b with a < b. The
points γ(a) and γ(b) are, respectively, the initial and end points of the path. The
path γ is closed if γ(a) = γ(b).
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The idea a path being piecewise differentiable (simplicial) works if X is an
n-dimensional differentiable manifold (or, more generally, a finite union of differen-
tiable manifolds), with topologizing data {(Uα, ϕα)}α∈I . Then, γ is differentiable if
d
dt (ϕα ◦γ(t)) = vvvα(t) exists for each t ∈ [a, b] (use one-sided limits at the endpoints)
and each α ∈ I with γ(t) ∈ Uα. The vector vvvα(t) is the tangent vector to γ at t
with respect to (Uα, ϕα). It depends only on γ close to t.

As in Chap. 2, simplicial paths support applications to integration, and to form-
ing convenient analytic continuations of functions. Still, it is awkward to analyze
homotopy classes of paths without allowing paths that are only continuous in the
homotopy (see Prop. 6.10).

5.1. Tangent vectors. The above formulation presents a tangent vector as
something attached to a path. We recognize a tangent vector at a point x0 without
having a path through the point. Let C∞x0

= Cx0,X be functions, differentiable and
complex valued, defined in some neighborhood of x0.

Definition 5.1. A (complex valued) tangent vector to a differentiable manifold
X at a point x0 is a linear map vvv : C∞x0

→ C∞x0
satisfying Leiznitz’s rule:

(5.1) vvv(f1f2)(x0) = vvv(f1)(x0)f2(x0) + (f1)(x0)vvv(f2)(x0).

That is, vvv is a derivation of Cx0 defined at x0.
5.1.1. Tangent vectors and paths. To relate to tangent vectors attached to a

path, assume x0 ∈ Uα. A function f in a neighborhood of x0 defines a function
f ◦ ϕ−1

α on a neighborhood of ϕα(x0) ∈ Rn. Denote the variables of Rn here by
yyy = (y1, . . . , yn). Consider F : Rn → Rn by yyy �→ (F1(yyy), . . . , Fn(yyy)). Suppose each
coordinate function Fi(yyy) has continuous partial derivatives. The Jacobian matrix
J(F ) of F is the n × n matrix with (i, j)-entry ∂Fi

∂yj
at the point yyy.

Lemma 5.2. [Rud76, p. 214] Identify derivations of functions f ∈ Cϕα(x0),Rn

with linear combinations Tvvv =
∑n

i=1 vi
∂
∂yi

, v1, . . . , vn ∈ Cϕα(x0),Rn .
So, Tvvv(f)(ϕα(x0)) is the directional derivative of f in the direction vvv(ϕα(x0)).
For γ(t) ∈ Uα ∩ Uβ, the chain rule relates vvvα(t) and vvvβ(t):

(5.2)
(
J(ϕβ ◦ ϕ−1

α )|(ϕα◦γ)(t)

)
(vvvα(t)) = vvvβ(t).

So, vvvα(t) is nonzero if and only if vvvβ(t) is nonzero. To check if γ has a nonzero
tangent vector doesn’t depend on the choice of (Uα, ϕα).

5.1.2. Vector fields. A vector field TU on an open set U in a (differentiable)
manifold X is a differentiable assignment of derivations at each point of U . A formal
definition shows the effect of transition functions from an atlas. Sometimes it is
confusing to use yyy for variables of all copies of Rn. So, we use yyyα = (yα,1, . . . , yα,n)
for variables in the range of ϕα.

Definition 5.3. Assume {Uα, ϕα}α∈I is an atlas for the differentiable manifold
X. Then, TU consists of giving Tα =

∑n
i=1 fα,i

∂
∂yα,i

with the fα,i s differentiable
functions on Vα = ϕα(Uα), for each α ∈ I, subject to the following rule. Assume
Uα ∩ Uβ is nonempty. Consider any differentiable function f : Uα → Rn. Use
the same notation Tα for the restriction of Tα to ϕα(Uα ∩ Uβ). Here is a relation
between Tα and Tβ on Uα ∩ Uβ :

(5.3) Tα(f ◦ ϕ−1
α (yα,1, . . . , yα,n)) = Tβ(f ◦ ϕ−1

β (yβ,1, . . . , yβ,n)).
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Apply ( ∂
∂yβ,1

, . . . , ∂
∂yβ,n

) to f ◦ ϕ−1
α (yyyβ) = fα(yyyα) to get a gradient vector of

(fα1, . . . , fαn)(yyyα) functions. A traditional expression rewrites (5.3) as

(5.4) J(ψyyyβ ,yyyα
)−1

( ∂

∂yα,1
, . . . ,

∂

∂yα,n

)
=

( ∂

∂yβ,1
, . . . ,

∂

∂yβ,n

)
applied to f(ψβ,α(yyyα)) [9.14c]. Thus, (5.3) translates to a linear relation between
(fα,1, . . . , fα,n)(yyyα)) and (fβ,i, . . . , fβ,n)(ψβ,α(yyyα)) [9.14].

So, a chart produces a preferred basis for vector fields and a preferred basis for
differential 1-forms from the coordinate functions for the chart.

Definition 5.4. As in Chap. 2 Def. 2.1, γ : [a, b] → X is simplicial if there is
an integer n and t0 = a < t1 < · · · < tn−1 < tn = b with γ|[ti,ti+1]

differentiable,

i = 0, . . . , n − 1. Also, γ is special simplicial if either d
dt (γ(t)) is identically zero

for t ∈ (ti, ti+1) or it is nonzero for each t ∈ (ti, ti+1), i = 0, . . . , n − 1. A space
X is simplicially connected if, for each pair x0, x1 ∈ X, there is a simplicial path
γ : [a, b] → X with γ(a) = x0, γ(b) = x1.

Lemma 5.5 (Integrating vector fields). Let TU be a vector field on the open
set U of the differentiable manifold X. For each u0 ∈ U there exists ε > 0 and a
unique differentiable path γ : [−ε, ε] → U , with γ(0) = u0, so the following holds.
The derivation TU,γ(t) at γ(t) is the directional derivative of γ at t ∈ [−ε, ε].

Proof. With no loss, assume u0 is in an atlas element Uα. We summarize the
meaning of the lemma using the previous notation ϕα : Uα → Cn.

Let yyy be coordinates on Rn ⊃ ϕα(Uα). Use the path t �→ ϕα ◦ γ(t) = γ∗(t).
By definition, TUα

is an expression
∑n

i=1 fα,i
∂

∂yi
. The lemma says there is γ∗(t) so

dγ∗
i

dt (t) = fα,i(γ∗(t)), i = 1, . . . , n.
Many books quote this result ([Hi65, p. 12], for example) by referring to the

existence and uniqueness of solutions to ordinary differential equations. The path
in Uα is then ϕ−1

α (γ∗(t)). All general proofs we’ve seen use fixed point arguments
and involve considerable detail, as in the exercises of [Rud76, p. 118, #25–29,
p. 170, #25-26] giving uniquess and existence under all conditions that would come
up for us. Analytic dependence of the solutions on u0 is considered more difficult
(see [Bo86, p. 171-174, Thm. 4.1]). �

Suppose TU is a vector field on U and γ : [a, b] → U is a differentiable path.
Then, call γ an integral curve of TU . With some assumptions there is a useful
converse producing TU from a path. [9.13].

5.2. Holomorphic vector fields and differential forms. Analogs of dif-
ferentiable vector fields reflect the complex structure on a manifold X. The main
example from Def. 5.3 has Vα as Tα =

∑n
i=1 fα,i

∂
∂zα,i

with the fα,i s holomorphic
in the complex coordinates zα,i, i = 1, . . . , n. Though Tα initially only applies to
functions analytic in (zα,1, . . . , zα,n), we may extend it to all differentiable functions
taking complex values.

5.2.1. Extend T differentiably. Let zzz = (z1, . . . , zn) be the coordinate functions
on Cn. Write zj = xj + iyj and z̄j = xj − iyj , breaking the coordinates into their
real and imaginary parts. Then, xj = 1

2zj + z̄j and yj = 1
2izj − z̄j . Define ∂

∂zj
on

holomorphic functions f(z1, . . . , zn) as the jth partial derivative with respect to the
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variables z1, . . . , zn. The partials ∂
∂xj

and ∂
∂yj

act on any differentiable functions
of the variables x1, . . . , xn, y1, . . . , yn (see Chap. 2 Lem. 2.6).

Lemma 5.6. The operator 1
2 (∂

∂xj
− i∂

∂yj
) maps zj to 1, zk to 0 for k �= j. Fur-

ther, it maps z̄l to 0 for all l. So, it extends ∂
∂zj

to act as previously on holomorphic
functions, and to kill anti-holomorphic functions. Similarly, 1

2 (∂
∂xj

+ i∂
∂yj

) extends
∂
∂z̄j

from anti-holomorphic functions to all differentiable functions.

5.2.2. Vector fields in local coordinates. Suppose Tα and Tβ are the expres-
sions for a holomorphic vector field on two coordinate charts. Interpret the relation
between the fα,i s and fβ,j s given by the complex version of the Jacobian of the
transition functions. So, for X a 1-dimensional complex manifold, the equation
relating fα(zα)∂

∂zα
and fβ(zβ)∂

∂zβ
comes from expecting the same value upon ap-

plication of both to zβ = ψβ,α(zα):

(5.5) fβ(ψβ,α(zα)) = fα(zα)
∂ψβ,α

∂zα
.

5.2.3. Differential 1-forms. Now consider the collection of differential 1-forms
ΩU defined on an open set U in a differentiable manifold X. Use notation of §5.1.2
analogous to that for vector fields. As in §Chap. 2 2.3 our motivation is to form
integrals of ωU ∈ ΩU along any piecewise differentiable path in U .

Definition 5.7. Such an ωU comes by giving ωα =
∑n

i=1 gα,i dyα,i with the
gα,i s differentiable functions on Vα = ϕα(Uα ∩ U), for each α ∈ I, subject to the
following rule. If Vα ∩Vβ is nonempty, denote restriction of ωα to ϕα(Vα ∩Vβ) also
by ωα and let γ : [a, b] → Vα ∩ Vβ be a differentiable path. Then,

(5.6)
∫

ϕα◦γ
ωα =

∫
ϕβ◦γ

ωβ .

Equation (5.6) translates to a linear relation between (gα,1, . . . , gα,n)(yyyα) and
(gβ,i, . . . , gβ,n)(ψβ,α(yyyα)). This formula applies with γ[t,t+ε] (restriction of γ to
[t, t + ε]) replacing γ for any value of t ∈ [a, b] and ε > 0. So, it gives equality of
the integrands as a function of t.

Definition 5.8 (Contraction). Suppose TU is a vector field defined on U .
Use the previous notation for expressing TU on Vα: Tα =

∑n
i=1 fα,i

∂
∂yα,i

. The
contraction of Tα and ωα is the function

∑n
i=1 fα,igα,i. Denote it by 〈Tα, ωα〉. More

generally, the contraction 〈TU , ωU 〉 of TU and ωU is F ∈ C∞U with this property.
(5.7) F ◦ ϕ−1

α (yyyα) = 〈Tα, ωα〉 on ϕα(Vα), for each α ∈ I.

Lemma 5.9. As above, F ◦ϕ−1
α at ϕα(x) does not depend on α and the contrac-

tion 〈TU , ωU 〉 is a differentiable function on U . Further, the vector of differentials
(dyβ,1, . . . , dyβ,n) evaluated at ψβ,α(yyyα) is J(ψβ,α)(dyα,1, . . . , dyα,1).

Proof. By explicit computation using Lemma 5.2, f ◦ϕ−1
α is the integrand of

the left of (5.6). The comment following (5.6) shows this equals the contraction for
β evaluated at ψβ,α(yyyα). To conclude the proof use the vector field formula [9.14c].
Contract each side with the differentials dyβ,j to see the transformation formula for
differentials is inverse to that for vector fields. �
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5.2.4. Tensors. Suppose {Uα, ϕα}α∈I is an atlas for a differentiable manifold
X. On each Uα let T0

Uα
(resp. D0

Uα
) be the tensor algebra over C∞(Uα) generated

by tangent vectors (resp. differential 1-forms) on Uα. By definition that means
elements of T0

Uα
are finite sums of terms gT1 ⊗T2 ⊗· · ·⊗Tk with k any nonnegative

integer, g ∈ C∞(Uα) and T1, . . . , Tk tangent vectors on Uα. If k = 0, the element
is just the function g.

Suppose h1, h2 ∈ C∞ and T
(1)
i and T

(2)
i are tangent vectors on Uα. Further,

interpret the tensor sign ⊗ to be a formal symbol modulo the following relations.
Replacing Ti by h1T

(1)
i + h2T

(2)
i replaces gT1 ⊗ · · · ⊗ Ti ⊗ · · · ⊗ Tk by the sum

gh1T1 ⊗ · · · ⊗ T
(1)
i ⊗ · · · ⊗ Tk + gh2T1 ⊗ · · · ⊗ T

(2)
i ⊗ · · · ⊗ Tk.

There are two things to note:
(5.8a) Unless it follows from these allowed relations, we do not expect T1 ⊗ T2

to equal T2 ⊗ T1.
(5.8b) Declaring T1 ⊗· · ·⊗Tk times T ′1 ⊗· · ·⊗T ′k′ (in that order) to be T1 ⊗· · ·⊗

Tk ⊗ T ′1 ⊗ · · · ⊗ T ′k′ generates an associative ring multiplication on T0
Uα

.

Similarly for D0(Uα). Both have C∞(Uα) as a subring acting by multiplication
on each element of T0

Uα
(or D0

Uα
): These are associate algebras over C∞(Uα). We

may even tensor together elements of T0
Uα

and D0
Uα

for a bigger algebra T0
Uα

⊗
D0

Uα
. In this convention, however, we can distinguish between tangent vectors and

differential forms, and typically we pass all the tangent vectors to the left.
A subtlety occurs in comparing elements ωα ∈ T0

Uα
⊗D0

Uα
and ωβ ∈ T0

Uα
⊗D0

Uα

on the intersection Uα ∩ Uβ . Use the transition function ϕβ ◦ ϕ−1
α to reexpress ωβ

in the variables yα,1, . . . , yα,n for (Uα, ϕα) as previously for 1-forms (and vectors).
Then, using the formal rules for ⊗, compare ωα and ωβ upon their restriction to
Uα ∩ Uβ . Suppose the restriction of ωα and ωβ (using the variables yα,1, . . . , yα,n)
are the same on Uα ∩ Uβ . Then, we declare them together as forming a general
element ω of the tensor algebra on Uα ∪ Uβ . The subtlety is that ω likely will not
be in T0

Uα∪Uβ
⊗ D0

Uα∪Uβ
. Drop the 0 superscript for a more general algebra.

Definition 5.10. The (mixed) tensor algebra TX ⊗ DX on X consists of col-
lections ωαi ∈ T0

Uαi
⊗ D0

Uαi
, i = 1, . . . , t, with ∪t

i=1Uαi = X and ωαi and ωαj

restricting to equal elements in T0
Uαi

∩Uαj
⊗ D0

Uαi
∩Uαj

for all allowed i and j.

Elements of DX are covariant tensors. If everywhere locally ω ∈ DX is a sum
of terms with each a tensor of exactly k differential 1-forms, then it is a k-covariant
tensor. Generalize contraction (Def. 5.8) to define ω paired with k ordered tangent
vectors (T1, . . . , Tk). Notice how this requires local expressions of ω as a sum of
terms like gω1 ⊗· · ·⊗ωk, with each ωi a local differential 1-form. This contraction,
〈(T1, . . . , Tk), ω〉, is a global C∞ function on X. For ω = gω1⊗· · ·⊗ωk write it as as
g

∏k
i=1 〈Ti, ωi〉. Such an ω is symmetric if 〈(T1, . . . , Tk), ω〉 = 〈(T(1)π, . . . , T(k)π), ω〉

for any permutation π ∈ Sk. It is alternating (or a differential k-form) if

〈(T1, . . . , Tk), ω〉 = Det(π)〈(T(1)π, . . . , T(k)π), ω〉 π ∈ Sk (§7.1.4).

5.2.5. Orientation of a differentiable manifold. A traditional and fuller treat-
ment of the tensor algebra appears in texts on Riemannian geometry like [Hi65,
Chap. 4]. Riemannian geometry starts with a differentiable manifold and a given
symmetric 2-tensor furnished for measuring distances and angles [9.19]. From that
tensor appear others for measuring other quantities on the manifold. For example,
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if on a differentiable 2-manifold we can measure distances along parametrized paths,
then we should also be able to define the area of an open subset. The problem here
is that you aren’t likely to find a single parametrization by R2 of the whole area,
and you must parametrize it in pieces, then add up the resulting areas. This forces
the notion of orientation. The only 2-manifolds that have a well-defined area are
orientable, which does include all Riemann surfaces Chap. 4 [11.11].

An orientation on a 2-dimensional differentiable manifold X consists of a rule
for continuously assigning a left and right direction at the transversal meeting of
two paths on the manifold. Precisely: Suppose given γi : [−1, 1] → X, i = 1, 2,
differentiable paths for which xγi(0) = x ∈ X, i = 1, 2, and (Uα, ϕα) is a coordinate
chart containing x. So, we start with oriented 1-dimensional differential manifolds
meeting at a point. Assume also that ϕi◦γi

dt (0) = vvvi, i = 1, 2, are distinct nonzero
vectors. View a traveler as moving along ϕα ◦ γ1(t), facing at time t = 0 the
direction vvv1 in R2 regarded as the (x, y) plane in R3. Then, the parametric line
L0 = {ϕα ◦ γ1(0) + svvv1 | s ∈ R1} cuts the plane so that vvv2 points in the direction
of the left half or the right half.

Definition 5.11. Suppose there is a new {(Vβ , ψβ)}β∈J on X, compatible with
the original atlas (usually taken as a subcollection of its coordinate charts) with
this property. Independently of the choice of a coordinate chart in the new atlas
containing x, the vector vvv2 lies consistently in the same half plane (left or right)
defined by the corresponding L0. Then, we say the new atlas defines an orientation
at x. The atlas defines an orientation on X if it gives an orientation at each x ∈ X.
Riemann surfaces are examples of oriented manifolds.

A generalizing definition inductively allows discussing an orientation of X de-
fined by the oriented meeting of an oriented n − 1 dimensional manifold meeting
an oriented 1-dimensional manifold Chap. 4 [11.5c].

5.3. Meromorphic vector fields and differentials. The definition of vec-
tor fields and differential forms is formal. So for each chart, (Uα, ϕα), it extends to
objects of form Tα =

∑n
i=1 fα,i

∂
∂zα,i

or ωα =
∑n

i=1 fα,i dzα,i with the fα,i s mero-
morphic in the complex coordinates zα,i, i = 1, . . . , n. Then, since the jacobian of
transition functions (and its inverse) have holomorphic function entries, this assures
it maps a vector of meromorphic functions to a vector of meromorphic functions.

Example 5.12 (Differential of a meromorphic function). Suppose X is a Rie-
mann surface (not necessarily compact) and ψ : X → P1

z is a (nonconstant) mero-
morphic function on X. We produce a meromorphic differential from ψ and an
atlas UX = {Uα, ϕα}α∈I for X. Define dψα to be dψ◦ϕ−1

α

dzα
dzα. Check: This is a

differential form satisfying transformation formula (5.6).
Finally, let ω be a meromorphic differential 1-form on the Riemann surface X.

Let x0 ∈ X lie in Uα where ω has the expression fα(zα) dzα. Suppose ϕα(x0) = 0.
Then, the order mx0 of ω at x0 is the order of fα at 0. Transition functions have
neither zeros nor poles. So this order doesn’t change if we compute it from another
coordinate chart through ϕβ with x0 ∈ Uβ .

5.3.1. Divisors. Conclude: For a given ω, the formal sum
∑

x∈X mxx has mean-
ing. Denote it (ω) or Dω depending on the notational context. It is the divisor
of ω. Similarly, for any meromorphic function and meromorphic tangent vector on
X we may define its divisor (f) or Df . Call any formal sum D =

∑
x∈X mxx a

divisor, and mx is its support multiplicity at x.
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Lemma 5.13. On a connected Riemann surface X, let D be the divisor of a
nonconstant meromorphic differential, function or tangent vector. Then, the points
of nonzero support multiplicity for D have no accumulation point. So, if X is also
compact, divisors of nonconstant meromorphic differentials, functions or tangent
vectors have only a finite number of nonzero support multiplicities.

Proof. We do the case for differentials. The others are similar. Suppose
(ω) =

∑
x∈X mxx is the divisor of a differential and infinitely many of the mx

are nonzero. Then, this set of x s has an accumulation point, x0. Let (Uα, ϕα)
be a coordinate chart containing x0, so the statement is that on ϕα(Uα) we have
a meromorphic differential fα(zα) dzα having an accumulation of zeros or poles
at ϕα(x0) = z′α. As in Chap. 2 [9.8a], this implies fα is identically zero (or ∞)
and using connectedness, that the same holds for the differential, contrary to our
assumption (for extra help, see the argument of Chap. 4 Lem. 2.1). �

If X is not compact, divisors as in Lem. 5.13 may have infinitely many nonzero
support terms (as with a holomorphic nonpolynomial function in the complex plane
Cz). In fact, the next general result in the complex plane has a similar version for
any noncompact Riemann surface attached to an algebraic function [Ahl79, p. 195].

Proposition 5.14 (Weierstrass factorization). Suppose {mxi}i∈I is any col-
lection of nonzero integers attached to a sequence of distinct points {xi ∈ Cz}i∈I

with no accumulation point in Cz. Then, there is a holomorphic function f(z)
with (f) =

∑
i∈I mxixi. Also, f(z) dz (resp. f(z) ∂

∂z ) is a holomorphic differential
(resp. vector field) with exactly the same divisor.

Still, our tool will be the investigation of differentials, functions, etc., that
extend meromorphically to a natural compactification of X. So, we typically assume
(unless otherwise said) that mx = 0 except for finitely many x ∈ X. For such a
divisor D, the sum

∑
x∈X mx is the degree deg(D) of D. A divisor D is positive

(or D ≥ 0) if all its support multiplicities are nonnegative. This definition gives a
partial ordering on divisors: With D =

∑
x∈X mxx and D′ =

∑
x∈X m′

xx, D ≥ D′

if mx ≥ m′
x for each x ∈ X. Equivalently, with the obvious subtraction of divisors,

D − D′ is positive.
Multiplying two functions or a function and a differential gives an object with

divisor having the sum of the constituent multiplicities: (fω) = (f) + (ω).

Definition 5.15. Suppose X is a compact Riemann surface. We say two divi-
sors D1 and D2 on X are linearly equivalent if D2−D1 = (f) for some meromorphic
function f : X → P1

z. This is an equivalence relation between divisors.

Our notation for the linear equivalence class of a divisor D on a compact Rie-
mann surface will be [D]. On a compact Riemann surface, the divisor of a mero-
morphic function has degree 0 (Chap. 4 Lem. 2.1; see Ex. 5.17). Anticipating that,
conclude there is a well-defined degree attached to a linear equivalence class of divi-
sors. Finally, we have a crucial definition attached to a divisor for which the reader
should practice the notation.

Definition 5.16. For any divisor D on a Riemann surface, the linear system
of D, L(D), is the collection of meromorphic functions f for which (f) + D ≥ 0.

5.3.2. Relation between functions and differentials. As in Ex. 5.12, any (non-
constant) meromorphic function on a Riemann surface X provides us a nontrivial
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meromorphic differential form. Further, assume ω1, ω2 are meromorphic differ-
entials and ω1 is not a constant multiple of ω2. This produces a nonconstant
meromorphic function ψ : X → P1

z by the formula

(5.9) ψ ◦ ϕ−1
α (zα) = ωα,1/ωα,2.

So, all nonconstant differentials are linearly equivalent, and (see Def. 5.15), on
a compact Riemann surface, all have the same degree.

Example 5.17. Consider the identity map z : P1
z → P1

z by z �→ z. Carefully
consider what is dz = ω using Ex. 3.2.1. To clarify notation, denote ϕ1 by ϕα and
ϕ2 by ϕα′ . Then, ϕα : Cz → Czα

by z �→ z, and so ωα = dzα

dzα
dzα = dzα. Also,

ϕα′ : C∗z ∪ {∞} → Czα′ by z �→ z−1. So,

(5.10) ωα′ =
dz−1

α′

dzα′
dzα′ = −z−2

α′ dzα′ .

The differential dz is meromorphic, not holomorphic, and it has degree -2. To see
there are no nonconstant holomorphic differentials on P1

z, write such a differential
as g(z) dz with g a meromorphic function on P1

z. Liouville’s Theorem says g has
as many zeros as poles [Ahl79, p. 122]. So the degree of g(z) dz also is −2, and
(g(z) dz) cannot be positive. A similar computation shows the vector space of
holomorphic differentials on a complex torus has dimension 1 [9.8].

5.3.3. Pulling back differentials. Let f : X1 → X2 be an analytic and surjective
map between complex manifolds. Then, a meromorphic function ψ : Y → P1

z

produces a meromorphic function ψ ◦ f
def= f∗(ψ) : X → P1

z giving an embedding
C(Y ) ⊂ C(X) (§4.1.2).

Lemma 5.18. We may extend f∗ to embed meromorphic differentials M1(Y )
on Y into meromorphic differentials M1(X). Further, this maps holomorphic dif-
ferents Ω1(Y ) on Y into holomorphic differentials on X. Then ϕ∗ has the following
property. For ω ∈ M1(Y ), suppose γ ∈ Π1(X, x0) does not go through a pole of
ϕ∗(ω). Then,

∫
γ

ϕ∗(ω) =
∫

ϕ∗(γ)
ω.

Proof. Use the notation of (4.1). To simplify we do this for the case of
1-dimensional complex manifolds, though the many variable case is just a slight
addition to the notation. This is truely a local statement. Write ω as hα2(zα2) dzα2

on ϕα2(f(Uα1) ∩ Uα2). Then, define f∗(ω) by

hα2(ϕα2 ◦ f ◦ ϕ−1
α1

(zα1)) d(ϕα2 ◦ f ◦ ϕ−1
α1

(zα1)) on Uα1 ∩ f−1(Uα2).

The equality of the integrals is nothing more, after substituting for the coordinates
of the path γ, than the change of variables formula Chap. 2 Lem. 2.3. �

5.4. Half-canonical differentials. Square-roots of differentials appear on a
Riemann surface X when we seek a canonical choice of θ function attached to the
surface. The case when X has genus 1 (Chap. 4 §7.5) will be our guide.

Riemann’s θ functions often allow us to put coordinates (as in the initial dis-
cussion of §4) on such total familes. Whenever possible, we would like the con-
struction of such coordinates to be canonical. Usually, however, constructing θ
functions depends on choices. So, we are careful to note, for curves in families, how
the construction varies with the points parametrizing the family members.

Riemann used θ functions to give coordinates for constructing objects, like
differentials and functions on a Riemann surface. When the Riemann surface has
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genus 1 (or 0) there are natural choices for working with Riemann’s coordinates.
When, however, the genus exceeds 1, and the surface is not special, there are
several (22g−1 − 22g−2) potential choices of the odd θ function Riemann required
to generalize Abel’s Theorem. We will see that half-canonical differentials precisely
differentiate between these choices.

5.4.1. Cocycles. For X an n-dimensional complex manifold, let {Uα, ϕα}α∈I

be the coordinate chart, and {ψβ,α = ϕβ ◦ ϕ−1
α }α,β∈I the corresponding collec-

tion of transition functions (as in Def. 3.6). Each ψβ,α then is a one-one analytic
function on an open subset of Cn whose coordinates we label zα,1, . . . , zα,n. De-
note the n × n complex Jacobian matrix for ψβ,α by J(ψβ,α). Call the matrices
{J(ψβ,α)}α,β∈I the (transformation) cocycle attached to meromorphic differentials.
Similarly {J(ψβ,α)−1}α,β∈I is the cocycle attached to meromorphic tangent vectors.
Recall the notation for n × n matrices, Mn(R) with entries in an integral domain
R and for the invertible matrices GLn(R) with entries in R under multiplication.
Cramer’s rule says for each A ∈ Mn(R) there is an adjoint matrix A∗ so that AA∗

is the scalar matrix det(A)In given by the determinant of A. This shows the invert-
ibility of A ∈ Mn(R) is equivalent to det(A) being a unit (in the multiplicatively
invertible elements R∗) of R. Denote the n × n identity matrix (resp. zero matrix)
in GLn(R) by In (resp. 000n).

Definition 5.19 (1-cycocle). Suppose gβ,α ∈ GLn(H(Uα ∩ Uβ)), α, β ∈ I.
Assume also that gγ,βgβ,α = gγ,α for all α, β, γ ∈ I on Uα ∩ Uβ ∩ Uγ (if this is
nonempty). Then, {gβ,α}α,β∈I is a multiplicative 1-cocycle with values in GLn,X .
Similarly, suppose gβ,α ∈ Mn(H(Uα ∩ Uβ)), α, β ∈ I. Suppose gγ,β + gβ,α = gγ,α

for all α, β, γ ∈ I on Uα ∩Uβ ∩Uγ . Then, {gβ,α}α,β∈I is an additive 1-cocycle with
values in GLn,X .

We also name (1-)cocycles for collections of subgroups in GLn,X (resp. Mn,X)
for which it makes sense to multiply (resp. add) gγ,β and gβ,α. So, for example, we
may consider a multiplicative cocycle with values in {±In} or an additive cocycle
with values in ZIn. When there are 1-cocycles, there are also 0-chains and their
associated 1-boundaries. We write the definition for GLn, recognizing there are
analogous versions for all other types of cocycles.

Definition 5.20 (1-boundary). With uα ∈ GLn(H(Uα)), α ∈ I, suppose
gβ,α = uβ(uα)−1 for all α, β, γ ∈ I in Uα ∩ Uβ (if nonempty). Then, {gβ,α}α,β∈I

is a 1-cocycle, called a 1-boundary with values in GLn,X . Call the set {uα}α∈I a
0-chain with values in GLn,X .

5.4.2. Half-canonical divisors. Suppose ω is a meromorphic differential on a
Riemann surface X, written locally as fα(zα)dzα on simply connected domains Uα

(Chap. 2 §8.3). Assume also the square hypothesis:
(5.11) The divisor of fα(zα) has the form 2Dα for Uα running over a subchart

covering X.
Then, there is a branch hα(zα) of square root (of fα(zα)) on Uα (Chap. 2 (6.2)).
Of course, there are two of these; our notation means we have chosen one. Call
the symbol τα = hα(zα)

√
dzα, a half-canonical divisor on Uα. The squares of these

form a global differential on X. Denote the collection {hα(zα)}α∈I , by hhh and refer
to it as a square-root of ω.

Lemma 5.21 (Half-canonical divisor). The collection of divisors {(hα(zα))}α∈I

from a square root of ω give a well-defined divisor: a half-canonical divisor on X.
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Proof. Let D = (ω) be the divisor of ω. Since, h2
α = fi,α, the support

multiplicities of D are all even integers. So, a square-root of ω defines D1/2 = (ω)/2,
a divisor uniquely given by the zeros and poles of the hα s. �

Now consider how to decide, based on a square-root of ω, if there is an object
ω1/2 with values at points on X whose divisor is D1/2 = (ω)/2. Continue the
transition function notation ψβ,α from §5.4.1. This requires us to make sense, on
Uα ∩ Uβ , of equality between

(5.12) τα(zα) = hα(zα)
√

dzα and τβ(ψβ,α(zα)) = hβ(ψβ,α(zα))
√

dψβ,α(zα).

Proposition 5.22. Assume each component of Uα∩Uβ, (α, β) ∈ I×I is simply
connected and for such, we have made a choice of

√
J(ψβ,α) = gβ,α on Uα ∩ Uβ.

Then, independent of α with x′ ∈ Uα, setting the value of τα to hα(ϕα(x′)) is well-
defined if and only if {gβ,α}(α,β)∈I×I = ggg is a 1-cocycle. If there is a ggg that is a
1-cocycle, call the resulting half-canonical differential ω1/2,hhh,ggg. Then, with ggg fixed,
but hhh′ varying over square-roots of ω, any pair of ω1/2,hhh′,ggg differ by a 1-boundary
with values in {±1}.

Proof. We need only add that the cocycle condition on ggg is necessary and
sufficient for (5.12). For this check that if x′ ∈ Uα ∩ Uβ ∩ Uγ , then all the values
hα(ϕα(x′)), hβ(ϕα(x′)) and hγ(ϕγ(x′)) at x′ match up using ggg. Comparing (5.12)
for each of the pairs (α, β), (β, γ) and (α, γ) gives the cocycle condition. �

5.4.3. Square-hypothesis for hyperelliptic curves. Suppose the affine part of a
hyperelliptic curve X, with compactification from Ex. 4.2.3, is {(z, w) | w2 = h(z)}.
We explicitly display differentials ω satisfying the square hypothesis of (5.11). For
simplicity, assume h has odd degree and distinct zeros z1, . . . , zr−1 (with zr = ∞).
Denote the point on X over zi by xi, with x∞ lying over z = ∞. As in [Mum76,
p. 7], form the differentials

ωi =
(z − zi)

1
2

(
∏

j �=i z − zj)
1
2

dz, i = 1, . . . , r − 1.

Since w =
√

h(z), the factor in front of the dz in ωi is just z−zi

w , a meromorphic
function on X. The divisor of ωi is therefore 2xi − 2x∞ = Di. For the check at a
neighborhood of x∞ over z = ∞, use t = 1/

√
z as the uniformizing parameter on

X. Consider the case deg(h) = 3. Then, (t−1 − zi)(−2wt3) dt has t = 0 as a pole
of order 2. So, Di is the same divisor as (z − zi).

Now consider the case deg(h) = r − 1, r ≥ 6 an even integer. Similarly,
(ωi) = 2xi +2(r/2−3)x∞, as z−zi

−2wt3 dt has t = 0 as a zero of multiplicity 2(r/2−3).

6. Homotopy, monodromy and fundamental groups

Complex structure provides the notion of analytic continuation. We detect
the effects of analytic continuation through monodromy action, a representation
of some fundamental group. In practice this can be a permutation representa-
tion, a representation as automorphisms of a vector space or a representation into
automorphisms of a more general group. The prototype use of monodromy is
Riemann’s Existence Theorem: We replace constructing a compact Riemann sur-
face using charts with permutation representations of a fundamental group. For
example, using classical generators (Chap. 4 Fig. 3) for the fundamental group of
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Uzzz = P1
z \ {zzz} gives an effective listing of Riemann surface covers (and their corre-

sponding algebraic functions; Chap. 4 Cor. 2.9).

6.1. Homotopy of paths. Let γi : [ai, bi] → X, i = 1, 2, be two one-one
simplicial paths in X with the same range, initial, and end points. The function
f(t) = γ−1

2 ◦ γ1 is a simplicial path f : [a1, b1] → [a2, b2] for which d
dt (f(t)) ≥ 0

(where the derivative is defined) and γ2(f(t)) = γ1. (Use the chain rule.) We give
a more general statement.

Definition 6.1 (Image equivalent paths). Let γ : [a1, b1] → X be a simplicial
path in X, and let f1 : [a2, b2] → [a1, b1] and f2 : [a1, b1] → [a2, b2] be simplicial
paths with d

dt (fi(t)) ≥ 0 where it is defined, i = 1, 2. Assume also γ◦f1◦f2(t) = γ(t)
for t ∈ [a1, b1]. Call γ and γ ◦ f1 image equivalent paths. It is a simple exercise to
show each path is image equivalent to a path γ : [0, 1] → X.

Definition 6.2 (Homotopically equivalent paths). Consider a continuous map
F : [a, b] × [0, 1] → X, and points xa, xb ∈ X, with the following properties:
F (t, s) = γs(t) is a path for each s ∈ [0, 1] with initial point xa and end point xb.
Call F a homotopy between γ0 and γ1 (or γ0 and γ1 are homotopic).

Remark 6.3 (Warnings!). The end points of the paths γs remain fixed through-
out a homotopy, or else all paths in a connected space would be homotopic.

Even if γ0 and γ1 are simplicial paths, we do not initially assume γs is also
simplicial. Still, the argument of Chap. 2 Lem. 4.3 generalizes easily to any (union
of) differentiable manifold(s) to say that any continuous path is homotopic to a
simplicial path. Further, it is then image equivalent to a product of simplicial
paths that are either constant or have nonzero derivative, and if it is a nonconstant
path, you can toss out — up to equivalence — the constant paths. We use this
statement freely [9.12]. It is common to think of both s and t as time parameters.
It is compatible to consider the range of γ0 as a physical object layed down para-
metrically. As a function of time, each point γ0(t) of the range of γ0 moves to a
different position γs(t). So, F represents deforming an initial path, perhaps along
which it is more efficient to accrue similar information from traversing γ0.

In Fig. 4 the space X is the same as Fig. 3. Note: γ1 and γ2 are closed,
beginning and ending at 0 mod L ∈ C/L.

Figure 4. γ1 can’t deform to γ2 on X

✏✏✏✏✏✶
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂✍

✏✏✏✏✏

↖
γ1

← γ2

ω2

ω1

Definition 6.4. Extend the definition of homotopic paths. We say two paths
γi : [ai, bi] → X, i = 1, 2, with γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2) are equivalent
(or homotopic) if γ1 and γ2 are image equivalent, respectively, to homotopic paths
γ∗i : [a, b] → X, i = 1, 2, for some a < b. This is an equivalence relation.
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6.2. Analytic continuation on a manifold. Suppose f ∈ E(D, z0) is ex-
tensible in a domain D and γ[a, b] → D is a path. Chap. 2 Rem. 4.4 notes the
production of a simplicial path γ∗ in D for which the analytic continuations fγ and
fγ∗ are the same. Further, assume f is extensible as a holomorphic (rather than
just meromorphic) function in D. Then, define Fγ for any antiderivative F of f
(around z0) as the analytic continuation Fγ∗ . Chap. 2 Lem. 4.3 produces γ∗ from
γ by a succession of homotopies, between a piece of path on γ contained in a disk
and a line segment joining two points on the boundary of the disk. Disks are a
crucial case of the following definition. The simple lemma following it, hidden in
the construction of γ∗, appears in most arguments about homotopy classes.

Definition 6.5. Call a topological space X contractible (to x0 ∈ X) if there
is a continuous function f : X × [0, 1] → X satisfying f(x, 0) = x and f(x, 1) = x0

for each x ∈ X.
Lemma 6.6. A closed or open ball (or anything homeomorphic to such) in Rn

is contractible. If X is contractible, then any two paths with the same endpoints are
homotopic [9.12b].

Analytic continuation of a meromorphic function (Chap. 2 Def. 4.1) extends to
manifolds by imitating the other extensions to manifolds. Suppose X is a complex
manifold with coordinate chart {(Uα, ϕα)}α∈I . Consider any path γ : [a, b] → X.
Our notation follows the case for a dimension 1 complex manifold, though it extends
easily to the general case.

By a disk (or ball) D on X we mean an open set in X which lies in one
coordinate neighborhood Uα where ϕα(D) is a disk (or ball) in ϕα(Uα) = Vα.

6.2.1. Extensible functions on X. Follow Chap. 2 §4.1 to extend analytic con-
tinuation of a function along a path to where the path is in a complex manifold.

Definition 6.7 (Analytic continuation along a path). Suppose f is meromor-
phic in a neighborhood Ux0 ⊂ X of x0 ∈ X and γ : [a, b] → X is a path based at
x0. Let f∗ : [a, b] → P1

z be a continuous function with the following properties.
(6.1a) f∗(t) = f(γ(t)) for t close to a (in [a, b]).
(6.1b) For each t′ ∈ [a, b], there is a neighborhood Uγ(t′) of γ(t′) and an analytic

function ht′ : Uγ(t′) → P1
z with ht′(γ(t)) = f∗(t) for t near t′ (in [a, b]).

As before, ht′ is the analytic continuation of f to t′. It is an analytic function
in some neighborhood of γ(t′). Reference is usually to the end function hb = fγ ,
analytic in a neighborhood of γ(b). This is the analytic continuation of f (along
γ). As with analytic continuation along a path in P1

z, f∗(t) determines all data for
an analytic continuation. Also, it is unique: its difference from another function
suiting (6.1) must be constant (restrict to coordinate neighborhoods of points of
the path and apply Chap. 2 [9.8a]). Again, there is a related definition.

6.2.2. Algebraic functions on X. An analytic function f̂ : X → P1
z satisfying

f̂(x) = f(x) for all x ∈ Ux0 is an analytic continuation or extension of f to X.
Definition 6.8. Denote by E(X, x0) all functions meromorphic in a neighbor-

hood of x0 that analytically continue along every path in X based at x0.
Further, suppose there is compact Riemann surface X̄ with X = X̄ \ xxx where

xxx is a finite set of points on X̄. Chap. 4 shows, if such a X̄ exists, it is unique up
to analytic isomorphism. If xxx consists of r points, call such an X an r-punctured
Riemann surface. Dropping reference to r, call it just a punctured Riemann surface.
This tacitly assumes r is a finite number.
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Definition 6.9. Suppose X is a punctured Riemann surface. Then, E(X, x0)alg

consists of the f ∈ E(X, x0) for which both the following sets are finite.
(6.2a) All analytic continuations, Af (X) = {fγ}γ∈Π1(X,x0) of f in X.
(6.2b) For x′ ∈ xxx, the limit endpoint values of fγ along all γ ∈ Π1(X, x0, x

′).
Proposition 6.10. Let D be a disk on X, and suppose f : D → P1

z is analytic.
There is a partition a = t0 < t∗0 < t1 < t∗1 < · · · < t∗n−1 < tn = b of [a, b], coordinate
neighborhoods (Ui, ϕi), a disk Di centered about γ(ti) in Ui and fi ∈ H(Di), i =
1, . . . , n−1, with these properties.

(6.3a) Di ∩ Di+1 �= ∅ and fi(z) = fi+1(z) for z ∈ Di ∩ Di+1.
(6.3b) γ(t) ∈ Di for t ∈ [ti, t∗i ], γ(t) ∈ Di+1 for t ∈ [t∗i , ti+1], i = 0, . . . , n − 1.
(6.3c) f0(z) = f(z) for z ∈ Uz0 .

Further, let γ∗ be the path along the consecutive line segments γ(ti) to γ(t∗i ), then
γ(t∗i ) to γ(ti+1), i = 0, . . . , n − 1. Then, fγ∗ = fγ .

Proof. The proof reduces to that of Chap. 2 Lem. 4.3 by using the definition
of function and coordinate charts on a complex manifold. �

Proposition 6.11 (The general monodromy theorem). Let γ1, γ2 : [a, b] → X
be two paths with γ1(a) = γ2(a) = x0 and γ1(b) = γ2(b) = x1. Suppose γ1 and γ2

are homotopic on X. Let Ux0 be a neighborhood of x0 and f : Ux0 → P1
z Then,

fγ1 = fγ2 ([Ahl79, p. 295] and [Con78, p. 219]).

Proof. Let F : [a, b] × [0, 1] → X be a homotopy between γ1 and γ2 fixing
points xa = x0, xb = x1 ∈ X. A continuous function on a compact space is
absolutely continuous. From absolute continuity of F there are partitions

a = s0 < s1 < · · · < sn = b of [a, b] and 0 = t0 < t1 < · · · < tm = 1 of [0, 1]

so that F : [si, si+1]× [tj , tj+1] → X has range in a coordinate chart Ui,j on X and
ϕi,j : Ui,j → C has range in a disk.

Suppose h is meromorphic in a neighborhood of F (si, tj) and extensible on the
range of F on [si, si+1] × [tj , tj+1]. Denote the product of the paths

s �→ F (s, tj) = Fij,1, s ∈ [si, si+1] and t �→ F (si+1, t) = Fi+1j,2, t ∈ [tj , tj+1]

by µ+
ij . Similarly, let µ−ij be the product of paths t �→ F (si, t) = Fij,2, t ∈ [tj , tj+1]

and s �→ F (s, tj+1) = Fij+1,1, s ∈ [si, si+1]. From Chap. 2 Lem. 4.6, hµ+
ij

= hµ−
ij

.
Write the path γ1 as the product of the paths Fi0,1, i = 0, . . . , m. Similarly,

γ2 is the product of the paths Fin,1, i = 0, . . . , m. We give a sequence of paths
(with the same endpoints) that starts with γ1, and ends with γ2. The terms of
the sequence differ from path-to-path in the chain by a product of paths of form
(µ+

ij)
−1µ−ij or of form γγ−1. This shows fγ1 = fγ2 . Simply replace Fi0,1 by

Fi0,1Fi+10,2F
−1
i+10,2(µ

+
i0)
−1µ−i0

for each i = 1, . . . , m. These substitutions lead from γ1 to the path that is the
product of Fi1,1, i = 0, . . . , m. Continue inductively to the path γ2, which is the
product of Fi1,n, i = 0, . . . , m. �

Chap. 2 §4.4 defines the product of two paths γi : [ai, bi] → X, i = 1, 2, for
which the end point of γ1 is the initial point of γ2. Many treatments on fundamental
groups (like [Ma; Chap. 2]) restrict the domain interval for a path to [0, 1]. The
treatment here aids computation of the Artin braid group (Chap. 4 [11.8] and
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Chap. 5). It has other virtues: If γi : [ai, bi] → X, i = 1, 2, 3, are three paths with
γi(bi) = γi+1(ai+1), i = 1, 2, then γ1(γ2γ3) and (γ1γ2)γ3 are identical rather than
just equivalent as in [Ma67, p. 59]. Thus, forming products is trivially associative.

6.3. Path equivalence classes form a group. We say γ : [a, b] → X, a
closed path with initial (and end) point x0 ∈ X, is based at x0. The set of paths
based at x0 is closed under taking products. Denote the (homotopy) equivalence
class of γ by [γ]. Note: [γ∗1γ∗2 ] is independent of the choice of γ∗i ∈ [γi], i = 1, 2.
The function γ : [a, b] → X by γ(t) = x0 is called a constant path; denote [γ] by
εx0 . The set of equivalence classes of paths in X based at x0 is the fundamental
group of X based at x0.

Theorem 6.12. Equivalence classes of paths into X based at x0 form a group,
denoted π1(X, x0), under the multiplication given by [γ1][γ2]

def= [γ1γ2]. The identity
element is εx0 . The inverse of [γ] is the class [γ−1] (Chap. 2 §4.4).

Proof. Consider γ : [a, b] → X and γ−1 as above. Let s′ = a+s(b−a) and
consider the function F : [a, 2b−a] × [0, 1] → X defined by

(6.4) F (t, s) =




γ(t) for t ∈ [a, s′]
γ(s′) for t ∈ [s′, 2b−s′]
γ(2b−t) for t ∈ [2b−s′, 2b−a].

So, F is a homotopy between γγ−1 and the constant path from [a, 2b−a] into {x0}.
From [9.12b], for γ0 : [a0, b0] → {x0}, the paths γ0γ and γγ0 are equivalent to

γ. Thus, [γ][γ−1] = εx0 , [γ]εx0 = [γ] = εx0 [γ]. This shows π1(X, x0) is a group. �

The fundamental group does depend on the base point x0, though its isomor-
phism class does not. Indeed, for x0, x1 ∈ X, let α : [a, b] → X be a path with
initial point x0 and end point x1. Define ψ(x0, x1) : π1(X, x1) → π1(X, x0) by

ψ(x0, x1)([γ]) = [αγα−1] for each [γ] ∈ π1(X, x1).

Check that ψ(x0, x1) is a homomorphism of groups inverse to the homomor-
phism ψ(x1, x0): [γ] ∈ π1(X, x0) �→ [α−1γα] ∈ π1(X, x0). Note: The isomorphism
π(x0, x1) depends on the choice of α if π1(X, x0) is not an abelian group.

Corollary 6.13. For x0, x1 ∈ X, π1(X, x0) and π1(X, x1) are isomorphic.
Still, we eventually come to fundamental groups of members of a family of

topological spaces (Chap. 5), where all members have the same fundamental group.
Our most profound (the braid and Hurwitz monodromy) groups appear to account
for different identifications among these fundamental groups.

6.4. Fundamental group of a circle. For any differentiable manifold X,
there is a natural map from the fundamental group π1(X, x0) computed with piece-
wise differentiable paths to the fundamental group computed with continuous paths,
π1(X, x0)cont. This induces an isomorphism (though we don’t exploit this seriously)
from Rem. 6.3. This point shows in a comparison of the two fundamental groups
when X = S1, a circle which we take to be the unit circle in Cz. We give two proofs
that it is isomorphic to Z. The first explicitly uses simplicial paths. The other uses
the universal covering space (Lem. 8.4).

Consider the path γ∗|[a,b]
: [a, b] → S1 by t �→ cos(2πt) + i sin(2πt), t ∈ [a, b].

For n ≥ 0 an integer, denote γ∗|[0,n]
by γ∗n, and let S1 be the image of γ∗1 . Denote
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the inverse of γ∗|[0,1]
by (γ∗)−1

|[0,1]
. Since (γ∗1 )n = γ∗n it is consistent to define γ∗−n to

be (γ∗1
−1)n. For n = 0 let γ∗0 be the constant path mapping to 1.

Figure 5. Homotopically speaking, a path going nowhere. Tra-
versal for t ∈ [ i

6 , i+1
6 ], i = 0, 1, 2, 3, 4, 5

γ( 1
6 )

γ(0)

γ( 1
6 )

γ( 2
6 ) γ( 2

6 )

γ( 3
6 ) γ( 3

6 )

γ( 4
6 )

γ( 4
6 )

γ( 5
6 ) γ( 5

6 )

γ(1)

i = 0 i = 1 i = 2 i = 3

i = 4 i = 5
Final path range−−−−−−−−−−−−−→

Write this path using γ( i
6 ), i = 0, 1, 2, 3, 4, 5

Theorem 6.14. The group π1(S1, 1) is infinite cyclic with generator [γ1].

Proof. From Rem. 6.3 any nonconstant path γ : [a, b] → S1 is equivalent
(Def. 6.4) to a product of paths with nonzero derivative. Each such is then image
equivalent to (γ∗)ε

|[r,s]
for some r < s and ε ∈ {±1}. So, we can write the path as∏A

i=1(γ
∗)εi

|[ri,si]
with si = ri+1. Suppose εi and εi+1 have opposite sign. Further

subdivide one of paths corresponding to i or to i+1 to assume [ri, si] and [ri+1, si+1]
have the same length. From (6.4),

(γ∗)εi

|[ri,si]
(γ∗)εi+1

|[ri+1,si+1]

is equivalent to the constant path with image (γ∗)εi(ri) [9.12a]. Thus the whole path
is equivalent to a path with a smaller K. An induction on the integer

∑A
i=1 |εi+1 − εi|

shows γ is equivalent to γ∗n for some integer n.
The proof is complete if γ∗n is inequivalent to γ∗m for m �= n. Decompose

γ : [a, b] → S1 into its real and imaginary parts: γ = γ1 + i γ2 where γi : [a, b] → R,
i = 1, 2. Define deg(γ) through the formula

2πi deg(γ) =
∫ b

a
(γ1(t), γ2(t)) · (dγ1

dt (t), dγ2
dt (t)) dt

+i
∫ b

a
(−γ2(t), γ1(t)) · (dγ1

dt (t), dγ2
dt (t)) dt

(as in Chap. 2 Lem. 2.3). By direct computation deg(γ∗n) = n.
If γ is homotopic to γ∗n, then Chap. 2 Lem. 2.3 shows deg(γ) = n. As deg(γ)

depends only on [γ] [9.12d], [γ∗n] is distinct from [γ∗m] for n �= m. �
Chap. 4 computes fundamental groups of many spaces from Thm. 6.14.
Let γ : [a, b] → X1 be a (simplicial) path. Consider f ◦ γ : [a, b] → X2, and

for x1 ∈ X1, denote f(x1) by x2. For [γ] ∈ π1(X1, x1), [f ◦ γ] ∈ π1(X2, f(x1)) is
independent of the choice of γ representing [γ]. To a product of paths γ1γ2 in X1,
apply the formula f◦(γ1γ2) = (f◦γ1)(f◦γ2). This shows [f◦γ1][f◦γ2] = [f◦(γ1γ2)].
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Lemma 6.15. Conclude: f induces a homomorphism of groups

f∗ : π1(X1, x1) → π1(X2, x2).

If f is one-one and onto then f∗ is an isomorphism of groups.
Example 6.16. Let X1 = X2 = S1 and consider cos(2πt) + i sin(2πt) = z(t).

For a fixed positive integer n define a function f by the formula f(z(t)) = z(nt) =
cos(2πnt) + i sin(2πnt). Thus f∗ : π1(S1, 1) → π1(S1, 1). Also, for γ∗1 , the gener-
ating path for π1(S1, 1), f ◦ γ∗1 (t) = f(z(t)). Therefore f ◦ γ∗1 is image equivalent
to γ∗n. Identify π1(S1, 1) with Z, the group of integers, by identifying the integer
1 with [γ∗1 ]. Then, f∗ : π1(S1, 1) → π1(S1, 1) sends the integer m to f∗(m) = nm.
The image of f∗ is the subgroup of π1(S1, 1) = Z that n generates.

6.5. Fundamental group of a product. Let (X, x0) and (Y, y0) be two
differentiable manifolds with a base point. The projections onto each factor, prX :
X × Y → X and prY : X × Y → Y , induce homomorphisms

prX∗ : π1(X × Y, (x0, y0)) → π1(X, x0) and prY ∗ : π1(X × Y, (x0, y0)) → π1(Y, y0).

So, there is a homomorphism

(6.5) (prX∗,prY ∗) : π1(X × Y, (x0, y0)) → π1(X, x0) × π1(Y, y0).

The right side is the product group with factors π1(X, x0) and π1(Y, y0).
Theorem 6.17. π1(X × Y, (x0, y0)) and π1(X, x0) × π1(Y, y0) are isomorphic.

Proof. Let fX (resp. fY ) map X → X × Y by fX(x) = (x, y0) (resp. map
Y → X × Y by fY (y) = (x0, y)). For γ : [a, b] → X × Y consider the paths
(fX ◦ prX ◦ γ) = ψX : [a, b] → X × Y and (fY ◦ prY ◦ γ) = ψY : [a, b] → X × Y .

We show the map taking ([γ1], [γ2]) ∈ π1(X, x0)×π1(Y, y0) to fX
∗ ([γ1])fY

∗ ([γ2])
in π1(X × Y, (x0, y0)) is inverse to (prX∗,prY ∗). This only requires showing γ is
equivalent to ψXψY . Fig. 6.5 illustrates this when X = Y = S1 and X × Y is the
complex torus of Fig. 3 with ω1 = 1 and ω2 = i [9.5b].

Figure 6. The diagonal recomposes itself

ω1

ω2

X
prX(γ)

Y

prY (γ)

γ

Write γ(t) = (γX(t), γY (t)) for t ∈ [a, b] and assume [a, b] = [0, 1]. Then γ is
image equivalent to the path (γX( t

2 ), γY ( t
2 )) for t ∈ [0, 2]. Also, ψX is the path

t �→ (γX(t), y0) for t ∈ [0, 1] and (x0, γ
Y (t−1)) for t ∈ [1, 2]. Here is a homotopy

between these paths running over s ∈ [0, 1]:

γs(t) =




(γX( t
2−s ), y0) for t ∈ [0, s]

γX( t
2−s ), γY ( t−s

2−s )) for t ∈ [s, 2−s]
(x0, γ

Y ( t−s
2−s )) for t ∈ [2−s, 2].
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�

Example 6.18 (Continuation of §3.2.2). Here Xi = C/L(ωi
1, ω

i
2) is

{t1ωi
1 + t2ω

i
2 | 0 ≤ ti < 1, i = 1, 2}

where ωi
1/ωi

2 ∈ C \R, i = 1, 2. For the lattice {m1ω
i
1 +m2ω

i
2 | m1, m2 ∈ Z} use the

letter Li, i = 1, 2. For z ∈ C, there is a unique ω ∈ Li with z −ω ∈ Xi. Then z −ω

represents the coset z mod Li
def= {z + u | u ∈ Li} (as in §7.1). Let πi : C → C/Li

be the map that takes z to z mod Li. Then πi is an analytic map. It becomes a
homomorphism of groups if we make Xi into a group using this addition formula:

z1 mod Li + z2 mod Li
def= z1+z2 mod Li[9.9d].

Suppose L1 ⊆ L2. Then, for z ∈ C, the set

(π1)−1(z mod L1) = {z + ω | ω ∈ L1}
is in (π2)−1(z mod L2). So, the map f taking z mod L1 to z mod L2 depends only
on z mod L1, not on z. Identify π1(Xi, 0) with Li (as in [9.9g]). The induced map
f∗ is the inclusion L1 into L2. For each x2 ∈ X2 the cardinality of the set f−1(x2)
is the order of the quotient group L2/L1 [9.7d].
Note: These concepts work equally well for finite unions of manifolds.

7. Permutation representations and covers

Two types of group theory arise in analyzing algebraic functions from Rie-
mann’s viewpoint. One is the presentation of fundamental groups, as free groups
on generators with relations. Elementary examples of that do appear in many topol-
ogy books (here too, starting with Chap. 4 §1.1). The second type is less common:
Analyzing homomorphisms of fundamental groups into other groups. Motivating
problems and sufficient group theory show how finite and profinite group theory
apply to the study of moduli of Riemann surfaces. The group theory starts with
permutation representations and their associated group representations.

7.1. Permutation representations. Denote by {xxx} = {x1, . . . , xn} any set
of n distinct elements. Let Sn be the collection of permutations of {xxx}, and regard
Sn as a group in the usual way. Multiplication of permutations corresponds to
functional composition of maps on {xxx}. Reminder: As the introduction states,
we typically act with Sn on the right of elements from xxx, though sometimes the
presence of a second action forces us to act on the left.

7.1.1. Permutation notation and actions. Denote the identity element of Sn by
1. Here is an inefficient, though clear way to express the effect of g ∈ Sn:(

1 2 · · · n
(1)g (2)g · · · (n)g

)
where k = (j)g is the integer subscript of the image of xj under g.

Example 7.1. Suppose n = 16, and the display of g is(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 12 9 8 1 3 2 5 6 10 11 7 4 13 14 15

)
.

The notation indicates g maps x9 to x6. Disjoint cycle notation for g represents
it as a product of disjoint cycles of integers. It requires fewer symbols than the
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complete permutation notation. Also, it shortens computations in Sn by parsing
the group action into memorable pieces. The disjoint cycle representation for g:

(1 16 15 14 13 4 8 5)(2 12 7)(9 6 3).

The order of the disjoint cycles is unimportant; (i)g goes to the right of i. That
is, (1)g = 16 is right of 1, and the cycle closes at 5 because (5)g is 1, back to the
beginning. Exclude cycles of length 1 ((10)g = 10 gives a cycle (10)) for efficiency.
An element of Sn is a k-cycle, k > 1 if it has one and only one cycle — of length k
— of length bigger than 1.

For another unique, less orthodox way to write permutations see [9.17a].
Let G be any group. A degree n permutation representation of G is a homo-

morphism T : G → Sn. Such a T is the same as giving an action of G on the set
S = {x1, . . . , xn}.

With G a group and S a set, a right action is a function: A = AR : S ×G → S:
A(s, g) �→ (s)g with two action properties:

(7.1a) (s)g1g2 = ((s)g1)g2 for s ∈ S, g1, g2 ∈ G. Using A we would write this

A(A(s, g1), g2) = A(s, g1g2).

(7.1b) (s)1G = s for s ∈ S (the identity in G leaves s ∈ S fixed).

A left action is from a function AL : G × S → S with the action composite

AL(g1, AL(g2, s)) = AL(g1g2, s).

An orbit of an action is the range of the set s × G, under A, for some s ∈ S.
The kernel of the action ker(A) consists of those g ∈ G that act like the identity on
S. The most important example is where G acts on the right cosets of a subgroup
H of G. The set Hg = {hg}h∈H is a right coset of H in G. Two right cosets Hg
and Hg′ are either equal or have no elements in common. Assume there are exactly
n distinct right cosets of H in G: H, Hg2, . . . , Hgn. Call n the index (G : H) of H
in G. Finding good representatives for cosets is an art (try [9.17c]).

The archetype of a right action: A : (Hg′, g) �→ Hg′g, or g ∈ G maps a right
coset Hg′ to (Hg′)g = Hg′g. For any subgroup H there is both a set of right cosets
of H and a set of left cosets of H. Only if H is normal in G are all right cosets
also left cosets. The map (g, g′H) �→ gg′H is a left action on left cosets. There are
further actions of groups in [9.16]. We emphasize a right action because this is the
natural action of fundamental groups acting on points as in Lem. 7.13.

Definition 7.2. Suppose G is a group with a normal subgroup H and another
subgroup W . Assume 〈H, W 〉 = G and H ∩ W = {1}. We say G is the semi-direct
product of H and W , written H ×sW .

If G = H ×sW , then elements of G act as automorphisms of H by conjugation.
This is an action A: For g ∈ G, A(g) : h ∈ H �→ g−1hg

def= hg. This is a right
action. The following lemma, in a left or right action form is in almost all graduate
texts in algebra.

Lemma 7.3. Each element of H ×sW has a unique expression as wh, h ∈ H,
and w ∈ W . Suppose A : W → Aut(H) is a homomorphism giving a right action
of W on H. Then, there is a group G given as a semi-direct product of H and W .
Multiplication in this group satisfies the formula w1h1w2h2 = w1w2(h1)A(w2)h2.
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Remark 7.4 (Affine action). There is a memorable notation for multiplication
by imitating matrix multiplication of lower triangular 2 × 2 matrices. Associate

wihi with
(

wi 0
hi 1

)
, i = 1, 2. Then, the multiplication in H ×s W imitates an

expected matrix calculation:

(
w1 0
h1 1

)(
w2 0
h2 1

)
=

(
w1w2 0

(h1)A(w2)h2 1

)
.

Further, H ×sW acts as permutations of H. For its matrix form, replace h′ ∈ H

by the vector (h′, 1): (h′, 1)
(

w 0
h 1

)
= ((h′)A(w)h, 1) or h′ �→ (h′)A(w)h. The left

action version with upper triangular matrices has a little glitch in it, unless H is an
abelian group. That, however, comes up often in important examples (see [9.18]).

7.1.2. Transitive and intransitive representations. We discuss concepts that use
coset representations. Lem. 7.7 shows how to go from the definition of action to
the language of homomorphisms. When using groups acting on manifolds we often
translate from actions into representations.

Definition 7.5. The right coset representation TH : G → Sn, defined by the
subgroup H ≤ G, comes from the formula

(7.2) for g ∈ G, i ∈ {1, 2, . . . , n}, (i)TH(g) = j with Hgj the right coset
equal to Hgig.

Denote the subgroup of elements g ∈ G for which T (g) fixes the integer j by
G(T, j) = G(j). For T a permutation representation, ker(T ) is {g ∈ G | T (g) = 1G},
the kernel of the action of G. Call T faithful if ker(T ) consists only of 1G. Also, T is
transitive (G under T has one orbit) if for each i ∈ {1, 2, . . . , n}, there is gi ∈ G with
(1)T (gi) = i. Then, G(1)gi is the set of g ∈ G taking 1 to i. By definition, ker(T ) is⋂n

i=1 G(i). Assume T is transitive and (1)T (gi) = i, i = 1, . . . , n. Then, g−1
i G(1)gi,

the conjugate of each element of G(1) by gi, equals G(i). So, G(1) . . . , G(n) is a
complete list of conjugates of G(1) in Sn.

Definition 7.6. Let Ti be a degree n permutation representation of G, i = 1, 2.
Suppose there is h ∈ Sn with h−1T1(g)h = T2(g) for each g ∈ G. Then T1 is permu-
tation equivalent to T2: T1 and T2 are equivalent as permutation representations.

Lemma 7.7. In notation above, G acts on (right) cosets of H ≤ G, permuting
them, and TH : G → Sn is a homomorphism. The kernel is those g ∈ G that fix
each coset. This is the same as the elements of ∩g∈Gg−1Hg. Reordering cosets of
H in G changes the representation TH only up to permutation equivalence.

Suppose AS (resp. AS′) is an action of G on S (resp. S′) with S and S′ disjoint
sets. Then, there is an action of G on S × S′, the direct product action: A × A′ :
(S × S′) × G → S × S′ by g ∈ G : (s, s′) ∈ S × S′ �→ ((s)g, (s′)g). There is also
an action of G on S ∪ S′, the direct sum action: A ⊕ A′ : (S∪̇S′) × G → S∪̇S′ by
g ∈ G : s ∈ S∪̇S′ �→ (s)g given by A if s ∈ S, and by A′ if s ∈ S′. For T : G → Sn

an arbitrary permutation representation, partition {1, . . . , n} into a disjoint union
X1 ∪ X2 ∪ · · ·Xt of the G orbits. Suppose ni = |Xi|, i = 1, . . . , n.

Theorem 7.8. Let TH : G → Sn be the right coset representation associated
to the subgroup H of G. Then TH is a transitive representation with ker(TH) equal
to

⋂
g∈G g−1Hg. Conversely, if T : G → Sn is a transitive representation of G,

then T is permutation equivalent to TH with H = G(1). Generally, in the notation
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above for T , T = ⊕t
i=1Ti : G → ⊕t

i=1Sni presents T as the direct sum of right coset
representations corresponding to subgroups of G.

Proof. For each i ∈ {1, 2, . . . , n}, formula (7.2) shows (1)TH(σi) = i. So TH

is transitive. The subgroup ker(TH) consists of the g′ ∈ G such that Hgig
′ = Hgi,

i = 1, . . . , n: g′ ∈ g−1
i Hgi, i = 1, . . . , n. Each element in G has the form hgi for

some h ∈ H and i ∈ {1, 2, . . . , n}. So, g′ ∈ ker(TH) if and only if g′ ∈
⋂

g∈G g−1Hg.
Let T : G → Sn be an arbitrary transitive permutation representation. Choose

g1, . . . , gn so that (1)T (gi) = i, i = 1, . . . , n. Thus, the cosets G(1)g1, . . . , G(1)gn

are distinct. Conclude that (7.2), with G(1) replacing H, gives TG(1). As

{g ∈ G | (i)T (g) = j} = g−1
j G(1)gi,

(i)T (g) = j exactly if (i)TG(1)(g) = j. This means TG(1) and T are the same
permutation representation. We made choices in selecting the gj s. So, independent
of choices, the representations are permutation equivalent.

Now suppose the representation is not transitive. Since the orbits are all dis-
tinct, there is a natural map from the representation to the direct sum representa-
tion on the collection of orbits. �

7.1.3. Primitive representations and equivariant maps. A subgroup H ≤ G is
normal if g−1Hg = H for each g ∈ G. Only then is the set of pairwise products
HgHg′ of two cosets a single coset, equal to Hgg′. So, the cosets have a natural
group multiplication. Denote this set by G/H: Each element ḡ = g mod H ∈ G/H
denotes the coset Hg. For H any subgroup of G, the normalizer of H in G is
NG(H) = {g ∈ G | g−1Hg = H}. Similarly, define the centralizer of H in G:

CenG(H) = {g ∈ G | g−1hg = h for each h ∈ H} [9.15].

Definition 7.9. Consider a transitive permutation representation T : G → Sn

of G. Call T primitive if there are no groups properly between G(1) and G. Let
G(1) be the subgroup of G that fixes 1. If T is transitive, then it is T is doubly
transitive if for each j ∈ {2, . . . , n} there is a g ∈ G(1) with (2)T (g) = j: G(1) is
transitive on {2, . . . , n}.

When the notation shows G is in Sn, we drop the T notation for permutation
representations. The transitivity formula for a chain of subgroups K ≤ H ≤ G says
that (G : K) = (G : H)(H : K).

Lemma 7.10. Doubly transitive permutation representations are primitive.

Proof. Suppose G ≤ Sn is doubly transitive. Let H be a subgroup of G
properly containing G(1). Choose h ∈ H \ G(1). Then (1)h = j ∈ {2, . . . , n}.
For any j′ ∈ {2, . . . , n}, use double transitivity to produce g′ with (1)g′ = 1 and
(j)g′ = j′: hg′ ∈ H takes 1 to j′. So, the number of cosets of G(1) in H is the same
as the number of cosets of G(1) in G. Apply the transitivity formula to the chain
G(1) < H ≤ G to conclude the index of H in G is 1 and T is primitive. �

Assume group G acts on two sets: It has an action AS (resp. AS′) on S (resp. S′)
with S and S′ related by a function f : S → S′. We say f commutes with (is
equivariant for) these actions if f((s, g)AS) = (f(s), g)AS′ for s ∈ S, g ∈ G.

Example 7.11 (Compatible permutation representations). For G a group and
M a normal subgroup, let uM : G → G/M be the natural homomorphism with
kernel H. Suppose H1 is a subgroup of G and H2 is a subgroup of G/M for which
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fM (H1) ≤ H2. Then uM induces a map fM : {H1g | g ∈ G} → {H2g | g ∈ G}.
This map commutes with G acting on the cosets of H1 and on the cosets of H2.

7.1.4. Representations from permutation representations. [9.18] gives many ex-
amples of primitive groups that are not doubly transitive. For g ∈ G, some authors
abuse notation to write T (g) = (s1) · · · (st) where s1, · · · , st are the integer lengths
of the disjoint cycles of T (g) (we usually omit cycles of length one) to indicate a
cycle type (conjugacy class) in Sn. Denote the count of length one cycles in T (g)
by t(T (g)), the trace of T (g). For example, the permutation example of §7.1.1 has
trace 2 and its cube has trace 5. We remind why T (g) it is a trace.

Regard the formal symbols {x1, . . . , xn} as basis vectors for a vector space V
over a field F . Then each permutation g ∈ Sn extends linearly to act on V . That is,
applying g ∈ G to v =

∑n
i=1 aixi ∈ V gives

∑n
i=1 aix(i)g. Write the result of g on xi

to be
∑n

j=1 ai,jxi with coefficients denoting what would appear in the ith position
of a matrix Mg acting on the right of (row) vectors. When F has characteristic
0, the matrix Mg has trace

∑n
i=1 ai,i, the count of the number of xi s that g fixes.

In each row and column the matrix Mg has exactly one non-zero entry and that is
a 1. So, Mg is an element of the orthogonal group On: Mg times its transpose is
the identity matrix. The determinant function is multiplicative on n × n matrices.
Conclude that Mg has determinant Det(Mg)

def= Det(g) equal to ±1. When the
field F has characteristic p, the count of the integers fixed by g is the trace mod p.
We may revert, when acting with matrices to a traditional left-hand action.

The result is that a degree n permutation representation T of a group G pro-
duces a homomorphism ρT : G → GLn(F ). If T is a faithful permutation rep-
resentation, then ρT is a faithful group representation: Its kernel is trivial. Any
homomorphism ρ : G → GLn(F ) is called a representation of G over the field
F . With V = Fn, we often write VT to indicate we mean V with the action
through T . Then, for any representation, extend this notation to use Vρ. In fact,
group theory doesn’t restrict to just finite dimensional representations, though we
will. Most situations regard permutation representations as the same if they are
equivalent. If M ∈ GLn(F ), then the two permutation representations g �→ ρ(g)
and g �→ M−1ρ(g)M are (representation) equivalent. Though two permutation
representations may be inequivalent, their corresponding representations might be
equivalent (§8.6.2 and [9.20]).

The group representation attached to the sum of permutation representations
is the action on the direct sum of the vector spaces. When F has characteristic
0, every permutation representation of degree exceeding 1 is the direct sum of the
identity representation and another representation. These are the only summands
if and only if the permutation representation is doubly transitive [9.19d]. Further,
the group representation of the direct product of two permutation representations
is their tensor product; the trace is the product of the constituent traces [9.19a].
The group ring of G over F has the notation F [G]. The product of

∑
g∈G agg

and
∑

g∈G bgg (with ag, bg ∈ F ) is given by convolution:
∑

g∈G cgg with cg =∑
h∈G ahbh−1g, g ∈ G. A representation ρ then produces a homomorphism of

associative rings:
∑

g∈G agg �→
∑

g∈G agρ(g) ∈ Mdeg(ρ)(F ). Call an idempotent I
in this ring G invariant if it commutes with multiplication by elements of G. That
means the range of I is a G invariant space: I is a G invariant projection [9.19h].
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7.2. Covering spaces. Let X and Y be differentiable (resp. analytic) man-
ifolds. Assume f : Y → X is a differentiable (resp. analytic) map. We will often
use that if f is one-one, and onto in a neighborhood of a point, then it has a dif-
ferentiable (resp. analytic) inverse (Lem. 4.2). Suppose ϕ : X → X ′ is any map
between spaces, and x0 maps to x′0 under ϕ. As in Lem. 6.15, this induces a homo-
morphism on fundamental groups ϕ∗ : π1(X, x0) → π1(X ′, x′0) by mapping a closed
path γ : [a, b] → X to [ϕ ◦ γ] ∈ π1(X ′, x′0). This makes sense because composing
with ϕ preserves homotopy classes of paths into X. Though obvious, it doesn’t
trivialize computing the image of π1(X, x0) under ϕ∗.

Definition 7.12 (Covering space). The pair (Y, f) (or just Y if there is no
confusion) is a covering space (or cover) of X if each point x ∈ X has a con-
nected neighborhood (Chap. 2 §2.2.2) Ux with this property: for each connected
component V of f−1(Ux), restricting f to V is a one-one and onto map V → Ux.

7.2.1. Degree of a cover. Assume X is connected, and f : Y → X is a cover.
Then, the cardinality of the fibers |f−1(x)|, x ∈ X, being locally constant, must
actually be constant. This is the degree deg(f) of f . We say (Y, f) is finite, or that
f is a finite cover if deg(f) < ∞.

Two covers fi : Yi → X, i = 1, 2 are equivalent (as covers of X) if there is a
one-one and onto continuous map ψ : Y1 → Y2 with f2 ◦ ψ = f1 [9.21]. Note: For
any covering space (Y, f) of X, U an open subset of X, and V a union of connected
components of f−1(U), the restriction of f to V gives a cover (V, f|V ) of U .

A framework for considering equivalence classes of finite covers of a manifold X
is the goal remaining to this subsection. This immediately reduces to considering
connected finite covers (Y, f); we assume Y is a connected space. The classification
hinges on producing an equivalence class, T (Y, f), of permutation representations
(§7.1) from an equivalence classes of covers (Y, f). We do that now.

Note: Covers in this section are what topologists call covers. In algebraic
geometry the word cover includes complex analytic maps of manifolds having some
fibers that ramify (their cardinality is smaller than the degree). The phrase then
includes, for example, any nonconstant analytic map f : Y → P1

z, with Y a compact
Riemann surface and deg(f) ≥ 2. As the fundamental group of P1

z is trivial, such
an f must ramify (Chap. 4 Thm. 1.8). By the end of Chap. 4, a cover will include
any surjective analytic map between compact complex manifolds with finite (point
sets in their) fibers. Reference back to this chapter will speak of the unramified
covers corresponding to subgroups of fundamental groups as in Thm. 7.16.

7.2.2. Covers and permutation representations. Let f : Y → X be a cover with
γ : [a, b] → X a path having initial point x0 and end point x1.

Lemma 7.13 (Action of path lifting). For y′ ∈ Y with f(y′) = x0, there is a
unique path γ̃ : [a, b] → Y with f ◦ γ̃ = γ: the lift of γ with initial point y′.

So, γ produces a unique map γ∗ : f−1(x0) → f−1(x1) depending only on the
image of γ in π1(X, x0, x1). In particular, consider paths γi : [ai, bi] → X, i = 1, 2,
with γ1(b1) = γ2(a1) and γ1(a1), γ2(b1), γ2(b2) respectively x0, x1, x2. Then, there
is a transitivity formula:

(7.3) (γ1 · γ2)∗ = (γ1)∗ ◦ (γ2)∗ : f−1(x0) → f−1(x2).

Proof. Each γ(t) has a neighborhood Ut with f one-one on the connected
components of f−1(Ut). The argument of Chap. 2 §3.3.2 works here as it did there,
by assuming you have extended the path lifting γ̃ to an interval [a, t′] with t′ < b.
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Let [r, s] be a closed nontrivial interval for which t′ ∈ [r, s] and there is neighborhood
Ut′ of (̃t′) containing γ([r, s]) with U ′ ⊂ f−1(Ut′) a connected component on which
f is one-one and γ∗(t′) ∈ U ′. For each t ∈ [r, s] define γ̃(t) to be the unique point
of U ′ lying over γ(t). Finish exactly as in Chap. 2 §3.3.2.

Now considering (7.3) Since the map γ∗ is clearly continuous and varies con-
tinuously in a homotopy family, as a map on a finite set, it is a homotopy class
invariant. So, γ∗ depends only on the image of γ in π1(X, x0, x1). The path γ̃1 · γ2

starting at y′ is the same as the path γ̃1 · γ̃2 where γ̃2 is the unique path starting
at the end point of γ̃1. The formula (7.3) just says the endpoint of both of these
paths are the same. �

Label the points of f−1(x0) as yyy = {y1, . . . , yn}. Consider a path γ : [a, b] → X
based at x0. Then, the end point of the lift of γ with initial point yj , j = 1, . . . , n
associates to γ and yyy a unique labeling of f−1(γ(b)). A closed path γ gives an
element of Sn, Tyyy(γ), as follows:

(7.4) (i)Tyyy(γ) = j with yj the end point of the lift of γ with initial point yi.
For γ1, γ2 ∈ Π1(X, x0) (closed paths based at x0) (7.3) gives

Tyyy(γ1γ2) = Tyyy(γ1)Tyyy(γ2).

The right side consists of elements multiplied in Sn. So, Tyyy defines a permutation
representation of π1(X, x0) whose equivalence class we denote by T (Y, f).

In Fig. 7, for example, w �→ wn = z gives the map f : C∗w → C∗z (C∗ = C\{0}).
A lift of γ (a clockwise circle, compatible with our choices in Chap. 4) is γ̃ going 1

n
of the way around a clockwise circle. The associated permutation is an n-cycle of
Sn representing that γ̃ goes from the lift y′ = 21/n of γ(0) = 2 to y′′ = 2

1
ne

−2πi
n , the

point on γ̃ lying 1
n of the way around from y′. §7.2.3 discusses a traditional picture

representing the nth power map as if it were the projection on a real coordinate.

Figure 7. An n-cycle of path liftings

Cz↘

2
1
ne

−2πi
n

↘• ↖ γ̃

←− γ

Cw

�
2

1
n→• •←3

1
n 2→• •←3

7.2.3. Impossible pictures. We discuss the problem of representing covers by
pictures in R3. Consider the ramified cover f : Uw:0,∞ → Uz:0,∞ by w �→ wn in
Fig. 7. Points of Uw:0,∞ over z ∈ Uz:0,∞ correspond on the graph of f to C × C
points on the line with constant second coordinate z. You can’t draw pictures in
C × C = R4. So first year complex variables texts try to represent Uw:0,∞ and
Uz:0,∞ as subsets of R3.
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Let (x1, x2, x3) be coordinates for R3, and let x3 = 0 represent Uz:0,∞ sitting in
R3\{(0, 0, 0)}. Pictures try to represent an annulus around the origin in Uw:0,∞ as a
set M in R3 over an annulus D0 in Uz:0,∞. Then, points of M over (x1, x2, 0) ∈ D0

are on the line in R3 whose points have first coordinates x1 and x2. That is, f
appears as a coordinate projection. There is, however, no topological subspace M
of R3 that can work! If there were, then a cylinder perpendicular to the plane
x3 = 0, with (0, 0, 0) on its axis, would intersect M in a simple closed path winding
n times around the cylinder. Represent such a path by γ : [0, 1] → R3 where
t ∈ [0, 1] maps to

γ(t) = (cos(2πnt), sin(2πnt), x3(2πnt)) and x3(2πn) = x3(0).

Conclude: w(t) = x3(2πnt) − x3(2πnt + 2π) is 0 for some value of t between
0 and (n − 1)/n. So, the path isn’t simple. The author has never seen such
a picture attempt in the literature for any noncyclic cover, much less for more
demanding nonsolvable groups. Still, we discuss this more in Chap. 4 §2.4 which
also uses symbolic representations that assume we understand cyclic covers from
their description in Chap. 2.

7.3. Pointed covers and a Galois correspondence. Let f : Y → X be a
cover. Call the triple (Y, f, y′) a pointed cover if y′ ∈ Y . Then, we regard f(x′) = x0

as the base point for X, and (Y, f, y′) is a pointed cover of (X, x0).
Definition 7.14. Suppose (Y, fi, y

′
i), i = 1, 2, are two pointed and connected

covers of X. We say they are compatibly pointed (or compatible) if whenever
we have covers h : Z → X and hj : Yj → Z, with h ◦ hj = fj , j = 1, 2, then
h1(y1) = h2(y2).

If it is clear a cover is pointed, we may refer just to the covering maps f1 and
f2 to say these are compatible. Extension Lem. 8.1 shows the difference between
a pointed cover on one hand, and a cover without a point on the other. Group
theoretically this interprets as the difference between giving a subgroup of a group
and giving a conjugacy class of subgroups.

7.3.1. Fiber products of covers. The basic theorems of Galois theory, including
the construction of the Galois closure of a cover (§8.3), that translates geometrically
using fiber products.

Lemma 7.15. Given connected covers fj : Yj → X, j = 1, 2, of X, any con-
nected component of Y1 ×X Y2 is minimal among among connected covers (Y, f)
of X factoring through each fj. If the covers are compatibly pointed with y′j ∈ Yj,
j = 1, 2, then a unique pointed component of Y1 ×X Y2, (Y, (f1, f2), (y′1, y

′
2)) is

compatible with both (Yi, fi, y
′
i), i = 1, 2.

Proof. Let Y be a connected component of Y1 ×X Y2. Denote projection of
Y on Yj by prj . Consider any (y1, y2) ∈ Y1 ×X Y2 lying over x ∈ X. Choose a
neighborhood Ux of x for which there is a neighborhood Uyj ⊂ Yj on which fj maps
one-one to Ux. Then, restricting (f1, f2) to Uy1 ×Ux

Uy2 gives a one-one map that
shows Y is a cover of X.

Now assume the covers are compatibly pointed. Let x0 ∈ X be f1(y′1) = f2(y′2).
Then, a unique component of Y1 ×X Y2 contains (y′1, y

′
2). �

Thm. 7.16 produces covers of any path-connected, locally path-connected space.
For, however, our main applications where X is a (complex) manifold, it shows any
cover of X is a (complex) manifold with a natural coordinate chart. It also says
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one cover of a space X dominates all others. This is the universal covering space
X̃ corresponding to H = {1} ≤ π1(X, x0).

Theorem 7.16 (Unramified Galois correspondence). Let (Y, f, y′) be a pointed
cover of (X, x0). This canonically corresponds to a subgroup HY,f,y′ ≤ π1(X, x0)
which we identify with π1(Y, y′). The index (π1(X, x0) : π(Y, y′)) is n = deg(f).
Any ordering yyy = {y1, . . . , yn} on the fiber f−1(x0) with y1 = y′ corresponds to a
transitive permutation representation TY,f,yyy in which the stabilizer of 1 is HY,f,y′ .
If y′′ ∈ f−1(x0), then HY,f,y′ and HY,f,y′′ are conjugate subgroups of π1(X, x0) and
we identify y′′ with a coset of H in π1(X, x0).

Conversely, each subgroup H ≤ π1(X, X0) of index n (possibly ∞) produces
a canonical pointed (connected) degree n cover (YH , fH , y′H) of X. We regard y′H
as the H coset of the identity in π1(X, X0). The fundamental group of YH maps
one-one onto H under (fH)∗.

Suppose H1 and H2 are two subgroups of π1(X, x0). Then, the unique con-
nected component of YH1 ×X YH2 containing (y′H1

, y′H2
) corresponds to the subgroup

H1 ∩ H2. The maximal pointed cover of X through which both f1 and f2 factor is
(Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉).

§7.3.2 consists of a proof of Thm. 7.16 and §8.1 has corollaries appropriate for
covers that aren’t pointed.

7.3.2. Proof of Thm. 7.16. Start with (Y, f, y′). Apply (7.4) to a closed path
γ : [a, b] → X based at x0. Use a specific ordering of f−1(x0) with y1 = y′. The
lift of γ to a path with initial point y1 is a closed path in Y based at y1 if and
only if (1)Tyyy = 1. So we identify π1(Y, y1) with H(f, y1), the subgroup of π1(X, x0)
stabilizing 1 under the map f∗.

Now consider how a subgroup H of π1(X, x0) of index n canonically produces a
degree n pointed cover of X. First: H produces an equivalence class of permutation
representations of π1(X, x0) of degree n (Thm. 7.8), with the coset of the identity
corresponding to the integer 1 in the permutation representation.

Define Y∞: As a set it is the collection of all equivalence classes of paths in X
— not necessarily closed — with initial point x0. For γ ∈ Y∞ let f∞([γ]) be the
endpoint of γ. Define YH to be Y∞ modulo the relation that equivalences

[γ1] and [γ2] if f∞([γ1]) = f∞([γ2]) and [γ1γ
−1
2 ] ∈ H.

Let fH : YH → X be the map induced by f∞ on the set YH . Now use that X is
a connected manifold. For each x ∈ X choose a path γ with initial point x0 and
endpoint x. A ball neighborhood Ux of x has this property: For γ1, γ2 : [a′, b′] → Ux,
two paths with the same initial and endpoints, γ1γ

−1
2 is equivalent to the constant

path in Ux.
For each such pair (γ, Ux) consider the subset of YH represented by paths γγ1

with γ1 a path in Ux with initial point x. Denote this subset by Vγ,Ux . We declare
the topology on YH to have as a basis of open sets these Vγ,Ux s running over all
pairs (x, Ux). For y ∈ YH with fH(y) = x, f−1

H (Ux) has n connected components,
Vγi,Ux , i = 1, . . . , n, where [γ1γ

−1
i ] runs over distinct coset representatives of H in

π1(X, x0). With this topology (YH , fH) satisfies Def. 7.12. It also has an atlas of
open sets inherited from X. If we show YH is Hausdorff, then (YH , fH) is a cover of
X. As usual, since X is Hausdorff, we have only to find disjoint open sets around
two points over the same point of X. We have done exactly that above.
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To complete classifying pointed covers of X, we show the following. Given
(Y, f, y′) a connected cover and H(f, y′) the corresponding subgroup of π1(X, x0),
and (YH(f,y′), fH(f,y′), y

′
H(f,y′)) the cover of X associated to H(f, y′), then

(7.5) (Y, f, y′) is equivalent to (YH(f,y′), fH(f,y′)).
For y ∈ Y let γ∗ : [a, b] → Y be a path from y′ to y, and let ψ(y) = fH(γ∗). Follow
the defined maps to see ψ : Y → YH(f,yyy) is a one-one map giving (7.5).

Suppose (YH , fH , yH) is the canonical cover defined by H ≤ π1(X, x0). Let
(YH , fH , y′′) by the same cover, those with a different point, y′′ ∈ f−1

H (x0). Any
γ ∈ π1(Y, yH , y′′) defines a coset H[γ] of H in π1(X, x0). Conversely, the elements
of π1(X, x0) that stabilize H[γ] are exactly the elements of the conjugate subgroup
[γ−1]H[γ]. That shows that using different points attached to a fixed cover corre-
spond to subgroups conjugate to H.

Now suppose H1 and H2 are two subgroups of π1(X, x0). We must show prop-
erties attached to the equivalence of two categories: Pointed covers of (X, x0) and
subgroups of π1(X, x0). The notion of fiber product is a categorical construction.
So, the association between H1 ∩ H2 and (Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉) is that they

are the fiber products of the two givens in their respective categories. Def. 1.3 notes
the fiber product for subsets of a set is just their intersection. As the intersection
of two subgroups is a subgroup, the fiber product from subgroups of a group is just
their intersection. For saying fiber product is categorical, see [9.3a]. Similarly, the
correspondence between 〈H1, H2〉 and (Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉) is that these are

the pushouts of the two givens in their respective categories [9.3c].

8. Group theory and covering spaces

We won’t be able to make explicit computations with covers until Chap. 4.
Still, the topics of this section come from practical experience with covers. Fol-
lowing a discussion of algebraic functions (§8.2) and a geometric approach to the
Galois closure of a cover (§8.3), we consider the decomposing covers (§8.4) and the
relation between covers and locally constant bundles (§8.5). A problem from this
on computing components of covers shows the power of an elementary piece from
finite group representations (§8.6)

8.1. Corollaries of Thm. 7.16. Suppose (Yi, fi, y
′
i), i = 1, 2, are any two

pointed covers of (X, x0). By an isomorphism g : (Y1, f1, y
′
1) → (Y2, f2, y

′
2) between

them, we mean an isomorphism between Y1 and Y2 with these properties:
(8.1a) g(y′1) = y′2 (g preserves basepoints); and
(8.1b) f2 ◦ g = f1 (g commutes with projections).

The crucial point is that if two pointed covers are isomorphic, this isomorphism is
unique. Suppose, however, we don’t assume g preserves basepoints?

Lemma 8.1 (Extension Lemma). Consider a pair of covers (Yi, fi), i = 1, 2,
without their basepoints, and any isomorphism g between them. Then, g maps the
fiber f−1

1 (x0) one-one to f−1
2 (x0), and what g does to any one element of f−1

1 (x0)
determines g. Further, isomorphisms between (Y1, f1) and (Y2, f2) correspond one-
one with automorphisms Aut(Yi, fi) of (Yi, fi) (for either i = 1 or 2).

Any automorphism of a cover (Y, f) of X lifts to an automorphism of the
universal cover (X̃, f̃) of X. If X is a complex manifold, then Aut(Y, f) is a group
of complex analytic isomorphisms.
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Proof. Assume g that maps y′1 ∈ f−1
1 (x0) to y′2 ∈ f−1

1 (x0). Then, g is an
isomorphism between (Y1, f1, y

′
1) and (Y2, f2, y

′
2), and so it is unique. Let A1,2 be

the set of isomorphisms between (Y1, f1) and Y2, f2). Then, we have an action of
Aut(Y1, f1) (resp. Aut(Y2, f2)) on the right (resp. left) of A1,2:

A1 : A1,2 × Aut(Y1, f1) → A1,2 by (g, α) �→ g ◦ α; and
A2 : Aut(Y2, f2) × A1,2 → A1,2 by (β, g) �→ β ◦ g.

For g′, g ∈ A1,2, g−1g′ = α is in Aut(Y1, f1). This shows g ◦ α = g′, and A1 is
transitive on A1,2 (as in §7.1). Similarly, A2 is transitive on A1,2.

Now consider an automorphism α of (Y, f). Again, let (Y, f, y′) with y′ over
x0 be a corresponding pointed cover. Then, (Y, f, y′) and (Y, f, α(y′)) are pointed
covers of (X, x0). So, Thm. 7.16 shows they correspond to conjugate subgroups H
and Hα: Hα = [γ−1]H[γ] for some [γ] ∈ π1(X, x0). A natural analytic isomorphism
between (YH , fH , y′H) and (YHα , fHα , y′Hα

) comes by mapping the homotopy class
of [γ′] defining a point of YHα

(in §7.3.2) to [γ][γ′]. The new base point (the coset
of [γ]) has stabilizer [γ−1]H[γ]. This automorphism lifts to the universal covering
space, because premultiplying by [γ] also defines it there. �

Definition 8.2. Let Tyyy : π1(X, x0) → Sn be the representation of (7.4) associ-
ated to (Y, f). The image of π1(X, x0) is called the (geometric) monodromy group,
G(Y, f), of the cover. It is isomorphic to π1(X, x0)/

⋂n
i=1 π1(Y, yi) (Thm. 7.8).

Covers (Y, f) of a manifold (X, x0) have two extremes. For most, Aut(Y, f)
consists only of the identity element: We say (Y, f) has no automorphisms. The
other extreme is in this definition.

Definition 8.3. If Aut(Y, f) is transitive on the the fiber f−1(x0), we say
(Y, f) is Galois.

The Galois situation is our main tool, though what constantly arises in practice
is the situation with no automorphisms. §8.3 has the details for distinguishing
these and all the cases in between. An example of the Galois situation is the
universal cover of (X, x0) where the automorphism group is isomorphic to the whole
fundamental group of (X, x0). The fiber f−1(x0) in this case corresponds to the
elements of π1(X, x0), and by translation these give a permutation of the points.
Automorphisms also give a permutation of f−1(x0). Still, from Lem. 8.8, only
when π1(X, x0) is abelian can we expect to canonically identify these two groups
of permutations. The next lemma revisits Chap. 2 Prop. 3.2. As previously, use
the notation f̃ : X̃ → X for the universal cover of X with paths starting at x0

representing its points.

Lemma 8.4. In the notation above, let [γ] ∈ π1(X, x0) and let [γ′] represent
a homotopy class of paths on X with γ′ : [a, b] → X, γ′(a) = x0 and γ′(b) =
x. Then, multiplication by [γ]−1 on the left of γ′ induces an automorphism of X̃

giving an action AL : π1(X, x0) × X̃ → X̃. Regard the fiber f̃−1(x0) as elements
of π1(X, x0). Then, the usual right action of π1(X, x0) gives the group structure
identifying π1(X, x0) with the monodromy group of f̃ .

The exponential map exp : R → S1 by θ �→ e2πiθ presents R as the universal
cover of S1 with Z as its fundamental group. The path γ∗n corresponds to n ∈ Z
and the automorphisms of (R, exp) identify with Z acting by translation. Similarly,
the fundamental group of a complex torus Cn/L identifies with the lattice L.
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Proof. The universal covering space is unique up to homeomorphisms com-
muting with the map to X. One way to identify the fundamental group of a
space X is to find any space X̃ with trivial fundamental group and a covering map
f̃ : X̃ → X. Given x0 ∈ X, any other cover of X that has trivial fundamental
group must be isomorphic to (X̃, f̃), and this isomorphism is unique up to compo-
sition on the left with an element of (X̃, f̃). Since R and Cn are contractible, they
have trivial fundamental group (Lem. 6.6). The map θ ∈ R �→ e2πiθ is a covering
map with the elements of R over 1 given by the integers. The permutation of the
fiber over 1 given by the path γ∗n is translation by n. The argument is similar for
a complex torus. �

The next corollary tells when a map between spaces extends to a map between
covers of the spaces.

Corollary 8.5. Suppose ϕ : X → X ′ is a differentiable map between complex
manifolds mapping a point x0 ∈ X to x′0 ∈ X ′. Let ϕH′ : Y ′H′ → X ′ be the
cover defined by a subgroup H ′ ≤ π1(X ′, x′0). Then, there is a continuous (and so
automatically differentiable) map ψ : X → Y ′H′ with ϕH′ ◦ ψ = ϕ if and only if the
induced map ϕ∗ : π1(X, x0) → π1(X ′, x′0) has image in a conjugate of H ′.

Proof. Suppose the induced map ϕ∗ has image in a conjugate m−1H ′m of
H ′. Let γ∗ be a representative path in X ′ for which [γ∗] = m. Then, let γ :
[a, b] → X start at x0 and end at x. Define ψm,H′ : X → Y ′H′ by ψ(x) is the class
m · [ϕ ◦ γ] ∈ Y ′H′ : the product of m and the image under ψ of γ. To show the map
doesn’t depend on γ, we consider another closed path γ′ from x0 to x. We are done
if the closed path (γ∗)−1 ·ψ(γ · (γ′)−1) ·γ∗ in X ′ defines a closed path in Y ′H′ . Since,
however, γ · (γ′)−1 is a closed path in X, its image under
phi∗ is some ρ ∈ m−1H ′m by hypothesis and the image of (γ∗)−1 ·ψ(γ · (γ′)−1) · γ∗
is therefore mρm−1 ∈ H ′. From the definition of Y ′H′ this exactly says the image
path is closed.

Conversely, suppose there is such a ψ : X → Y ′H′ . Then, closed paths in X
have image under ψ in X ′ that lift to closed paths in Y ′H′ . So, the image group
ψ∗(π1(X, x0)) = H∗ is a subgroup of π1(X ′, x′0) whose corresponding cover Y ′H∗

factors through ψH′ : Y ′H∗ → X ′. �

Suppose X is a connected complex manifold (like Uzzz = P1
z \ {zzz}). Define

analytic continuation along a path from Def. 6.7. Consider the extensible functions
E(X, x0): complex analytic functions defined in a neighborhood of x0 that have an
analytic continuation along every path in X (as in Chap. 2 Def. 4.5). Let ϕ : Y → X
be a cover with y0 ∈ Y lying over x0. Let γ : [a, b] → X be a path starting at x0

with γ† : [a, b] → Y its unique path lift starting at y0 (Lem. 7.13).
Proposition 8.6. There is an isomorphism (of rings) between E(Y, y0) and

E(X, x0). In particular, for (X̃, x̃0) the universal cover of (X, x0), holomorphic
functions on X̃ form a ring isomorphic to E(X, x0). If ϕ is a finite cover of punc-
tured Riemann surfaces, this induces an analytic isomorphism between E(Y, y0)alg

and E(X, x0)alg. These results hold with extensible meromorphic replacing extensi-
ble holomorphic functions.

Proof. Since ϕ is a cover, there is a disk neighborhood Ux0 of x0 and a
component Uy0 of ϕ−1(Ux0) with y0 ∈ Uy0 on which ϕ maps one-one. So, restriction
of a function f ∈ E(X, x0) to Ux0 transports by ϕ−1 to a function f ∈ Uy0 . There
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is no harm in using the same notation to extend f along γ† : [a, b] → Y starting at
y0. Let γ be ϕ ◦ γ†, and let f∗ : [a, b] → P1

z be the continuous function defining the
analytic continuation along γ. Define the analytic continuation of f along γ† to be
the same, f∗. This shows f is extensible in Y . Clearly, if f is algebraic (on X) it
will also be algebraic on Y . �

8.2. The problem of identifying algebraic functions explicitly. Sup-
pose ϕ̃ : X̃ → X is the universal covering space of a complex manifold X and x̃ lies
over x0 ∈ X. Then, similar to formation of complex torii and other quotient mani-
folds, it is natural to regard points of X as the orbits of the action of π1(X, x0) on
X̃. Riemann’s approach was to identify the universal covering space of a Riemann
surface as a simply connnected domain on the Riemann sphere. Consider the case
of Prop. 8.6 when Y = X̃ and X = Uzzz, with |zzz| ≥ 3. Riemann’s Uniformization
Theorem says X̃ is analytically isomorphic to a disk ∆ in such a way that the map
extends continuously to the boundaries (Chap. 4 Def. 7.9 for an elementary proof,
or [Spr57, Thm. 9.6] for the more general case). So, E(Uzzz, z0) is ring isomorphic to
convergent functions in a disk. We find it convenient to replace a disk by the ana-
lytically isomorphic upper half plane H. This is the same exact space independent
of (z0, zzz). What changes, however, with zzz is the identification of algebraic functions
Fzzz. Suppose ϕzzz : H → Uzzz is this uniformization.

Elements of PGL2(R) with positive determinant (Chap. 2 [9.14d]; this identifies
with PSL2(R)) represent the action of complex analytic isomorphisms of H. As
zzz varies, a different subgroup Γzzz (though abstractly isomorphic as a group) of
PSL2(R) defines Uzzz as a quotient of H.

Prop. 8.6 identifies extensible (meromorphic) algebraic functions on Uzzz with
certain meromorphic functions Fzzz on H. Though, which ones? Given g∗ mero-
morphic on H, composing it with an analytic isomorphism of H produces a new
meromorphic function on H. We call the compositions of g∗ with elements of Γzzz

transforms by Γzzz.

Proposition 8.7. Suppose f , meromorphic on H, has only finitely many trans-
forms under the action of Γzzz and a unique limit value as it approaches any point
in R ∪ {∞}. Then, f defines an algebraic element of E(Uzzz, z0) and conversely.

Outline. Let x̃ ∈ H lie over z0 ∈ Uzzz. From Prop. 8.6, any meromorphic
extensible function g on Uzzz identifies with a meromorphic function g∗ on H. Further,
the analytic continuation of g around [γ] ∈ π1(Uzzz, z0) produces g∗γ , the result of
composing g∗ with the analytic isomorphism of H associated to γ. If g is algebraic,
then it has only finitely many analytic continuations, so the different transforms
g∗γ , running over γ ∈ π1(Uzzz, z0) are finite in number. Conversely, if the number
of transforms of a meromorphic function g∗ on H are finite in number, then the
identification of g∗ with g ∈ E(Uzzz, z0) gives a function with only finitely many
analytic continuations. �

8.3. Galois theory and covering spaces. Use notation from Lem. 8.1:
(Y, f) is a cover of X.

8.3.1. Identifying automorphisms of a cover. Having Aut(Y, f) act on a fiber
{y1, . . . , yn} = f−1(x0) induces a homomorphism Λyyy : Aut(Y, f) → Sn.

It is a mistake to confuse the Galois (geometric monodromy) group of a cover
with its automorphism group, even if the cover is Galois. The next lemma efficiently
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differentiates Aut(Y, f) from G(Y, f). It shows that having chosen a right action
for G(Y, f) forces using a left action of Aut(Y, f) on the set {1, . . . , n}.

Lemma 8.8. Let (Y, f) be a connected cover of X. The homomorphism Λyyy

injects Aut(Y, f) onto the centralizer CenSn
(G(Y, f)) of G(Y, f) in Sn. This is iso-

morphic to Nπ1(X,x0)(π1(Y, y1))/π1(Y, y1) (§7.1) and |Aut(Y, f)| ≤ n with equality
if and only if π1(Y, y1) is normal in π1(X, x0).

Proof. For y ∈ Y let γ∗ : [a, b] → Y be a path with initial point yi and
endpoint y. Consider ψ ∈ Aut(Y, f). Then ψ ◦ γ∗ : [a, b] → Y is the (unique) lift of
f ◦ γ∗ with initial point ψ(yi). So, if i = 1 and ψ(y1) = y1, then ψ ◦ γ∗ = γ∗. Thus
ψ(y) = y for each y ∈ Y , and Λyyy is injective. This alone shows |Aut(Y, f)| ≤ n.

In the above, assume γ = f ◦ γ∗ is a closed path. If the endpoint of γ∗ is yj ,
then the endpoint of ψ ◦ γ∗ is ψ(yj). Thus

(i)Λyyy(ψ)−1 ◦ Tyyy(γ) ◦ Λyyy(ψ) = (i)Tyyy(γ).

Equivalently, Λyyy(ψ) ∈ CenSn
(G(Y, f)). Conversely, for α ∈ CenSn

(G(Y, f)) define
α to be a permutation of the points {y1, . . . , yn} from its action on {1, . . . , n}. Still,
use an action on the left: If (i)α = j, write α(yi) = yj). Our goal is to create an
automorphism—also called α—on Y that extends this action on the fiber over x0.

Take i = 1 and γ∗ as in the first paragraph above. Define ψα,γ∗ :
(8.2) ψα,γ∗(y) is the endpoint of the lift of f ◦ γ∗ with initial point α(y1).

If we show ψα,γ∗(y) is independent of γ∗ having endpoint y, then ψα,γ∗ defines
an element ψα ∈ Aut(Y, f). For this purpose let γ1 (resp., γ2) be a path in Y with
initial (resp., end) point y and end (resp., initial) point y1. If ψα,γ∗(y) �= ψα,γ1(y),
then ψα,γ∗γ2(y1) �= ψα,γ1γ2(y1). Therefore, ψα,γ∗(y) is independent of γ∗ if and only
if ψα,γ∗(y1) is independent of γ∗ for γ∗ ∈ π1(Y, y1). That is, we must show α(y1)
is the endpoint of the lift of f ◦ γ with initial point α(y1) for each γ ∈ π1(Y, y1).

With α(y1) = yj , this is equivalent to ((1)α)T (Y, f)(f ◦ γ) = j. (The right
action of α on 1 is intentional—α did come from Sn.) For γ a closed path on Y
with initial point y1, (1)T (Y, f)(f ◦ γ) = 1 is automatic. Apply α to the right side
of this and use that α commutes with T (Y, f)(f ◦ γ) to conclude from [9.15b].
Recall: G(1) is the subgroup of G(Y, f) leaving 1 fixed. Thm. 7.16 identifies
Nπ1(X,x0)(π1(Y, y1))/π1(Y, y1) with NG(Y,f)(G(1))/G(1). �

8.3.2. Fiber products and Galois closure. We say a connected cover (Y, f) of
X is a Galois cover (or is Galois) if |Aut(Y, f)| equals n = deg(f). By Lem. 8.8
this holds if and only if π1(Y, y1) is a normal subgroup of π1(X, x0)). Each cover
(Y, f) produces a Galois cover (Ŷ , f̂) of X called the Galois closure of (Y, f). If
H ≤ π1(X, x0) corresponds to Y , then ∩g−1Hg corresponds to (Ŷ , f̂). We use fiber
products to give an alternate construction of it (Def. 1.3). It correctly displays the
automorphism group action. We again warn: Don’t confuse it with the geometric
monodromy group, though they are isomorphic for a Galois cover.

Denote the fiber product of Y → X taken n = deg(f) times by

Y n
X

def= Y ×X × · · · ×X Y.

Points of Y n
X are n-tuples (y′1, . . . , y

′
n) ∈ Y n for which f(yi) = f(yj) for all i and

j. The fat diagonal, ∆Y,f,n, is the subset of n-tuples of Y n
X with at least two equal

coordinate entries. Remove it to form Y n
X \ ∆Y,f,n = UY,f,n. We use a copy of Sn

acting on the left of {1, . . . , n} to give an action of automorphisms on this set:
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(8.3) for σ ∈ Sn and yyy′ = (y′1, . . . , y
′
n) ∈ UY,f,n, ασ maps yyy′ to

(y′σ(1), . . . , y
′
σ(n)) = ασ(yyy′).

Restrict the natural map of Y n
X to Xto UY,f,n to present UY,f,n as a degree n!

cover of X with automorphism group containing Sn. The action of Sn is transitive
on points mapping to x0. Yet, UY,f,n may not be connected. (We don’t consider
it a Galois cover of X.) Decompose UY,f,n into connected components Ŷ1, . . . , Ŷt.
Let f̂i be the restriction to Ŷi of the projection map UY,f,n → X, i = 1, . . . , t. A
computation shows deg(f̂i) = |G(Y, f)| [9.22].

Theorem 8.9. The covers (Ŷi, f̂i) are equivalent as covers of X, i = 1, . . . , t.
Characterize members (Ŷ , f̂) of this equivalence class from these properties.

(8.4a) (Ŷ , f̂) is a Galois cover of X, with its group a transitive subgroup of Sn.
(8.4b) There is a commutative diagram of covers of X:

✑
✑

✑✑✸f
Ŷ

f̂−−−−→ X

fY

�
Y

(8.4c) For any Galois cover ĝ : Ẑ → X factoring through Y by gY : Ẑ → Y ,
there is commutative diagram of covers of X:

✑
✑

✑✸f❍❍❍❍❥gY

Ẑ
ĝY−−−−→ Ŷ

f̂−→ X

fY

�
Y

Proof. Choose y1 ∈ Y lying over x0 ∈ X. Thm. 7.3.2 identifies the subgroup
of π1(X, x0) corresponding to (Y, f) with π1(Y, y1). It also identifies its conjugates
(in π1(X, x0)) π1(Y, yi) with yi running over f−1(x0). A Galois cover corresponds
to a normal subgroup of π1(X, x0). So, the smallest Galois cover mapping through
(Y, f) corresponds to the largest normal subgroup, H =

⋂n
i=1 π1(Y, yi), of π1(X, x0)

contained in π1(Y, y1). So, there is a cover with property (8.4c).
Let pr1 : Y n

X → Y be projection onto the first factor, and let fY,i be the
restriction of pr1 to Ŷi. Then, with (Ŷ , f̂) (resp., fY ) replaced by (Ŷi, f̂i) (resp., fY,i)
properties (8.4a) and (8.4b) hold, i = 1, . . . , t. This shows the map h : Ŷi → Y has
degree 1: (Ŷi, f̂i) and (Ŷ , f̂) are equivalent covers of X. The proof is complete. �

Fig. 8 shows four discs on a degree 4 cover of Uzzz lying over a disk Uz0 around the
base point. Assume the cover has monodromy group S4. (Like that from a general
degree 4 polynomial f ∈ C[w].) We visibly can see the action of any element α ∈ S4

on the four points of f−1(z0) extend to the four disjoint disks over Uz0 . Yet, there
is no continuous extension of any nonidentity α to f−1(Uz0). Lem. 8.8 says such
extending α s must centralize the monodromy. We stipulated, however, this is S4,
a group with trivial center.
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Figure 8. α = (1 2)(3 4) ∈ S4 tries, but fails, to be an automor-
phism of Y : The four discs on the left constitute f−1(Ux0)

Ux0

x0

y1y2

y3y4

hα(2)h
−1
2 hα(1)h

−1
1

f−1(Ux0)
h1

hα(1)

h2

hα(2)

8.3.3. Galois closure orbits. Chap. 2 [9.5] has Galois exercises based on using
fields. We now explain how these have analogs where we replace field extensions of
a given field by covers of a given space. One tricky point: Composite of two fields
makes sense only if there is given a priori a field L containing them both. As with
the comments from §4.2.3 on local holomorphic functions, the next lemma shows
fiber product of covers is dual to tensor product of fields. This analogy will come
through even more when we deal with the field of meromorphic functions on a cover
in Chap. 4 Prop. 2.11.

Lemma 8.10. Let Ki, i = 1, 2, be two finite extensions of a field K (having 0
characteristic). The ring K1⊗K K2 is the direct sum of field extension of K. These
summands are, up to isomorphism of extensions of K, in one-one correspondence
with all compositions of K1 and K2.

Proof. Since the characteristic is 0 (only need separable extensions), the prim-
itive element theorem says K2 = K(α) for some α ∈ K2. Up to isomorphism of
extensions, K2/K is K[x]/(f2(x)) with f2 the irreducible polynomial for α over
K. Factor f2 as

∏u
i=1 gi(x) over K1, with the gi s monic and distinct. (Again use

characteristic 0, or just that irreducible polynomials have no repeated roots.) Now
apply Lem. 4.8 to write K1 ⊗K2 = K1[x]/(f2(x)) as ⊕u

i=1K1[x]/(gi(x)). Since each
of the gi s is irreducible over K1, each of the summands is a field. So each summand
is a field generated by extensions of K isomorphic to K1 and K2.

Conversely, suppose L is a field containing K1 and generated by K1 and K ′ =
K(α′)/K with α′ the image of α in an isomorphism of K2/K with it. Then, L is
isomorphic to one of the summands of K1 ⊗ K2. This concludes the proof. �

Suppose Li/K (resp. fi : Yi → X) is a field extension (resp. connected cover)
of finite degree ni, with Gi its Galois closure group and L̂i/K (resp. f̂i : Ŷi → X
its Galois closure field (resp. cover), i = 1, 2. As in Chap. 2 [9.6a], consider the
fiber product Hf of G1 and G2 over the Galois group of the well-defined field
extension L̂1 ∩ L̂2. Then, G(L̂1 · L̂2/K) is Hf . The restriction of elements of
Hf to L̂i produces a permutation representation Ti, i = 1, 2. Now consider the
direct product representation Tf of Hf induced from T1 and T2 (§7.1.2). The next
lemma, in this analogy, shows different composites of field extensions correspond
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to the different components of the fiber product of the covers over X. The proof
shows also that inequivalent composite extensions L1 · L2 correspond one-one to
orbits of Tf (compare with Chap. 2 [9.6c]).

Lemma 8.11. Let g : Y → X be the maximal cover through which f̂i, i = 1, 2,
both factor. Then, g is a Galois cover. If M is its group, this induces homomor-
phisms fi∗ : Gi → M . Denote the fiber product of these group homomorphisms
by Hc. Then, any connected component Ŷ1,2 of Ŷ1 ×X Ŷ2 (as a cover of X) is the
minimal Galois cover of X factoring through f̂i, i = 1, 2. The group of this cover is
Hc, a subgroup of Sn1 ×Sn2 (acting on pairs (i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2). Orbits
of Tc correspond one-one to the components of Y1 ×X Y2.

Proof. Let CGal be the category of Galois covers of X up to isomorphism
commuting with the map to X. Similarly, let CNor be the category of normal
subgroups of π1(X, x0). The first part of the lemma is an equivalencing of fiber
products in each of these categories (as at the end of the proof of Thm. 7.16). The
fiber product for two normal subgroups of π1(X, x0) is their intersection, which
identifies the quotient as Hc in this case. Since the fiber product Ŷ1 ×X Ŷ2 may
not be connected, and therefore not Galois, this cannot be the fiber product in the
category of Galois covers of X. A connected component, however, of it defines an
equivalence class of connected and Galois covers. It is this that is the fiber product
in the category CGal.

Now consider the statement on orbits of Tc. Since Hc factors through Gi, with
its representation Ti, i = 1, 2, it makes sense to form the direct (tensor) product Tc

of T1 and T2. Direct summands in the category of permutation representations cor-
respond to components of covers in the category of covers of X. Since permutation
representations correspond to equivalence classes of covers, to show the statement
on orbits we have only to show that the direct product permutation representation
Tc corresponds to the fiber product Y1 ×X Y2. This is the equivalence of direct
product in their respective categories. �

8.4. Imprimitive covers and wreath products. Suppose f : Y → X is a
(connected) cover, and f factors through another cover f1 : Y1 → X. That gives a
series of covers Y

f2−→Y1
f1−→X. We say f1 ◦f2 is a decomposition of f if deg(fi) > 1,

i = 1, 2. If there is no such decomposition of f , we say it is indecomposable
or primitive. Equivalence two decompositions if the their corresponding covers
f1 : Y1 → X are equivalent to give equivalence classes of decompositions. As
G(Y, f) ≤ Sn, denote the subgroup stabilizing 1 by G(Y, f)(1).

Lemma 8.12. The monodromy group G(Y, f) is a primitive subgroup of Sn if
and only if f is primitive (Def. 7.9). Equivalence classes of decompositions of f
correspond one-one with subgroups properly between G(Y, f) and G(Y, f)(1).

Proof. Choose a basepoint y1 ∈ Y to apply Thm. 7.16. Groups between
G(Y, f) and H1 = {g ∈ G(Y, f) | (1)g = 1} correspond one-one to decompositions
of f . In particular, f is primitive if and only if there no decomposition of f . �

Suppose G and H are groups, with G1 ≤ G and H1 ≤ H. Let TG1 : G → Sn

and TH1 : H → Sm be corresponding coset representations. Use TG1 to have G act
on Hn, the product of n copies of H:

(8.5) g ∈ G acts by (h1, . . . , hn) �→ (h(1)TG1 (g), . . . , h(n)TG1 (g)).
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This gives a natural permutation representation TH�G : H 5G def= Hn×sG → Snm

acting on a set L = {11, . . . , 1m, 21, . . . , 2m, . . . , n1, . . . , nm} by this formula:

(ij)TH�G(h1, . . . , hn, g) = (i)TG(g)(j)TH(hi).

Call TH�G the wreath product representation of TG and TH . Then, H 5 G is the
wreath product of G and H, though this assumes we know the corresponding per-
mutations representations. Now consider how the wreath occurs in covering theory.

Definition 8.13. Suppose ψ : Ĝ → G is a cover of groups. Let TG1 (resp. TĜ1
)

be a faithful permutation representation of G (resp. Ĝ). Call TĜ1
an extension of

TG1 if ψ maps some conjugate of Ĝ1 maps surjectively to G1: TĜ1
extends TG1 .

Lemma 8.14. Suppose f : Y → X is a (connected) cover, and f factors as a
series of covers Y

f2−→Y1
f1−→X. Let Gfi be the group of the Galois closure of fi, with

Tfi the corresponding permutation representations, i = 1, 2. Use similar notation
for f . Then, Tf extends Tf1 , Gf is a transitive subgroup of Gf2 5 Gf1 and Gf1(1)
maps surjectively to the group Gf2 . Further, Gf = Gf2 5Gf1 if and only if the kernel
of Gf → Gf1 is isomorphic to G

deg(f1)
f2

.

Proof. Choose a base point y0 ∈ Y and so image base points in Y1 and
X. Apply Thm. 7.16 to identify Gf (resp. Gf2 , Gf1) with permutation representa-
tions of π1(X, f(y0)) (resp. π1(Y1, f2(y0)), π1(X, f(y0))) from the cosets of π1(Y, y0)
(resp. π1(Y, y0), π1(Y1, f2(y0))). The permutation representation of Gf comes from
the image Gf (1) of π1(Y, y0) in Gf . Similarly, the permutation representation of Gf1

comes from the image of Gf1(1) of π1(Y1, f2(y0)) in Gf1 . As π1(Y1, f2(y0)) contains
π1(Y, y0), Tf extends Tf1 . All coset permutation representations are transitive.

With x0 = f(y0), let W = y1, . . . , ydeg(f1) be the points of Y1 lying over x0.
Similarly, let Wi = {yi,ji

}ji=1,...,deg(f2) be the points of Y lying over yi. Intersecting
the conjugates of Gf (1) gives K = ker(Gf → Gf1). So, K acts as permutations
on each Wi, i = 1, . . . ,deg(f1). Restrict Gf (1) to W1 for the group Gf2 in the
representation Tf2 . Similarly, identifying all sets Wi, embeds K as a subgroup of
G

deg(f1)
f2

. This identifies Gf with a subgroup of the wreath product. Since the order

of Gf is |Gf1 ||K|, the index of Gf in Gf2 5Gf1 equals (Gdeg(f1)
f2

: K). This gives the
last statement of the lemma. �

8.5. Representations and groupoids. Rather than define groupoid gen-
erally, we present a classical case for later use. The idea is that of Deligne and
Grothendieck. Deligne has a notion of (fundamental group) realizations. We think
of these as ways a space declares its presence through types of analytic continua-
tion. This helps us to explain the profinite fundamental group of a complex manifold
(Chap. 4 §8.2). Mastering the Hurwitz monodromy group in Chap. 5 simplifies if
we understand how a fundamental group depends on a base point. That leads to
generalizing what will serve as a base point. Tangential base points (Chap. 2 §8.4)
are an example. We get much mileage from a particularly significant parameter
space, the classical j-line (Chap. 4 §7.8). This follows [De89, §10] which used the
related λ-line.

8.5.1. A law of composition. Suppose CX is the category of unramified covers
of an complex manifold X. For ϕ : Y → X an unramified cover and ψ : X ′ → X
any map of complex manifolds, there is a natural contravariant map ψ∗ : CX → CX′

through fiber products: ψ∗(ϕ) =: X ′ ×X Y → X ′.
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Lemma 8.15. The map ψ∗ preserves fiber products. For ϕ1, ϕ2 ∈ EX :

ψ∗(ϕ1 ×X ϕ2) = ψ∗(ϕ1) ×X′ ψ∗(ϕ2).

Proof. Seeing this set theoretically makes it clear the cover structures are
compatible. First: Identify (Y1 ×X Y2) ×X X ′ with (Y1 ×X X ′) ×X′ (Y2 ×X X ′) by
mapping (y1, y2, x

′) all lying over a given x ∈ X to ((y1, x
′), (y2, x

′)). Then, both
maps send this element to x′. �

Let ϕ̂ : Ŷ → X be the Galois closure of this cover. Suppose this has group G.
Then G acts faithfully and transitively on the fibers of ϕ̂. On Ŷ × Ŷ → X × X let
G act diagonally: (ŷ1, ŷ2)g

def= ((ŷ1)g, (ŷ2)g).
Denote Ŷ × Ŷ /G, the orbits of the action of G, by G. Let Gi,j be the pullback

of G to X × X × X induced from the projection of X × X × X on its (i, j) factors.
For example, G1,2 consists of triples (ŷ1, ŷ2, x3) with ŷi ∈ Ŷ , i = 1, 2, and x3 ∈ X.

This gives a composition law G1,2×G2,3 → G1,3 respecting fibers over X×X×X.
Here is what that means. For (x1, x2, x3) ∈ X × X × X, let (ŷ1, ŷ2, x̂3) (resp.
(x1, ŷ

′
2, ŷ

′
3)) represent a point of Gx1,x2 the fiber of G1,2 (resp. G2,3) over (x1, x2)

(resp. (x2, x3)). The composition law Gx1,x2 × Gx2,x3 → Gx1,x3 uses the following
formula. There is a unique g ∈ G taking ŷ′2 to ŷ2. Define the product of (ŷ1, ŷ2, x3)
and (x1, ŷ

′
2, ŷ

′
3) to be (ŷ1, x2, (ŷ′3)g).

We say G = Ŷ × Ŷ /G → X × X is a groupoid. Most significant is that it
induces a groupoid in FX′ by pullback, for each ψ : X ′ → X.

8.5.2. Fundamental groupoid. There is a fundamental groupoid that dominates
all (classical) groupoids over X. We define this directly, as it will appear in Chap. 5.

Consider this data: x1, x2 ∈ X, and Di a simply connected (path-connected)
neighborhood of xi on X, i = 1, 2. Suppose x′i ∈ Di, i = 1, 2. To read the next
lemma correctly, emphasize the word canonical.

Lemma 8.16. There is a canonical isomorphism (dependent on (D1, D2)):

ψD1,D2 : π1(X, x1, x2) → π1(X, x′1, x
′
2).

Proof. For γi any path from xi to x′i in Di, i = 1, 2, map γ ∈ π1(X, x1, x2)
to [γ−1

1 · γ · γ2] = [γ−1
1 ][γ][γ2] ∈ π1(X, x′1, x

′
2). Under the hypotheses, [γi] depends

only on xi, x
′
i, Di and not the particular choice of path. That shows the lemma.

We will, however, confront repeatedly the dependence of ψD1,D2 on (D1, D2). �

Definition 8.17. The fundamental groupoid PX of X consists of the disjoint
union ∪̇x1,x2∈Xπ1(X, x1, x2). The composition law for π1(X, x1, x2)×π1(X, x2, x3)
is the usual path multipication: [γ1,2] ∈ π1(X, x1, x2) times [γ2,3] ∈ π1(X, x2, x3) is
[γ1,2][γ2,3] ∈ π1(X, x1, x3).

Restriction of PX to the diagonal of X × X is the local system of fundamental
groups ∪̇x1∈Xπ1(X, x1). For x ∈ X, restrict PX to X × {x} ⊂ X × X to get the
universal cover of (X, x). Now we trace through an action of a groupoid on various
locally constant sets.

8.5.3. Action of a groupoid. We recognized already that the category CX con-
sists of locally constant finite sets on X. That means, given f : Y → X an
unramified cover, the topology on Y comes from an open cover U of X so that
fU : YU → U makes of YU a finite collection of disjoint copies of U . Generalizing
the notion of covers allows defining related locally constant structures. We con-
centrate here on VX , the category of locally constant — or flat — vector bundles
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on X. Suppose V is a vector space over C (say, Cn). Then, there is a natural
fiber preserving addition and scalar multiplication with the expected properties on
V × U . An object V ∈ VX consists of an analytic map L : V → X of manifolds
with an open cover U having the following properties.

(8.6a) For U ∈ U , there is an analytic isomorphism ψU : VUi
→ V × Uγ(ti) so

that LU : VU → U and prU ◦ ψU : VU → U are the same.
(8.6b) Local constancy: For U, U ′ ∈ U , with U ∩U ′, an element of GLn(C) gives

ψ−1
U ◦ ψU ′ restricted to V × (U ∩ U ′) along each fiber.

(8.6c) A fiber preserving complex analytic addition and multiplication by C on
V restricts over each U ∈ U to that structure on V × U .

Note the right action in (8.6b). We say V is a rank n (locally constant, or flat)
bundle. Two flat bundles V1 and V2 are bundle isomorphic if there is a compatible
open cover U for both and a fiber preserving analytic isomorphism ψ : V1 → V2.
Suppose ψ intertwines (8.6) for V2 relative to U to that for V1 so that for each
U ∈ U , an element gU ∈ GLn(C) gives ψ−1

1,U ◦ψ◦ψ2,U . Then, ψ is a flat isomorphism.
Warning: Some bundle isomorphisms have no corresponding flat isomorphism.

Example 8.18 (Flat bundle from a cover). Let f : Y → X be a degree n cover
(element of CX). For each x ∈ X, denote the space spanned over C by the points
of f−1(x) by Vx. We explain why Vf

def= ∪̇x∈XVx is a locally constant vector bundle
on X by taking Lf to be the natural projection. Suppose U ≤ X is open, x′ ∈ U
and fU identifies YU with ∪̇y′∈f−1(x′)Uy′ where Uy ≤ Y maps one-one onto U . This
means we have n sections to the map fU . We also call these y′1, . . . , y

′
n. So, for

each x ∈ U , {y′i(x)}n
i=1 is a basis for Vx. Then, we have a natural analytic manifold

topology on Vf by identifying Vf,U with Cn × U by mapping the standard basis of
Cn to y′1(x), . . . , y′n(x) running over x ∈ U .

Suppose P is a groupoid on X and V ∈ V. Regard P as a locally constant
bundle of sets over X × X. Consider the fiber products pr∗i (V) def= V ×X (X × X),
using pri : X × X → X, projection on the ith factor, i = 1, 2. We say P acts on V
if there is a fiber preserving analytic map

(8.7) AX : pr∗1(V) ×X×X P → pr∗2(V).

Regard each term P, pr∗1(V) and pr∗2(V) as a locally constant bundle over X × X.
Denote the vector space Cn (with its canonical basis understood) by V , so

that there is an action of GLn(C) on the right of V . (To adjust to a left action
on GLn(C), see Ex. [9.16f].) For x0 ∈ X, and n a positive integer, consider pairs
(V, mx0) with V a flat bundle of rank n, and mx0 a fixed vector space isomorphism
of Vx0 with V , by Vx0,n. Compose mx0 with any element of GLn(C) gives a natural
action of GLn(C) on the pairs (V, mx0).

Proposition 8.19. The fundamental groupoid PX acts on every V ∈ VX .
Each (V, mx0) ∈ Vx0,n produces αV,mx0

∈ Hom(π1(X, x0),GLn(C)) and the map
(V, mx0) �→ αV,mx0

is one-one and onto. Flat rank n bundles up to flat isomorphism
correspond to elements of Hom(π1(X, x0),GLn(C))/G.

Proof. Consider (x, x′) ∈ X × X and [γ] ∈ π1(X, x, x′). We give an action:
AX((v, x, x′), [γ]) = (v′, x, x′) with v ∈ Vx and v′ ∈ Vx′ . The construction, for a
given path γ, is exactly as in the proof of Lem. 7.13. We set appropriate notation.
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If γ : [a, b] → X, then there is a partition t0 = a < t1 < · · · < tn = b and
contractible open subsets Uγ(ti), i = 0, . . . , n, with Uγ(ti) ∩ Uγ(ti+1) contractible,
i = 0, . . . , n − 1, so the following holds.

(8.8a) ψUi : VUi → V × Uγ(ti) is one of the maps given by (8.6).
(8.8b) γ[ti−1,ti+1] ≤ Uγ(ti), i = 0, . . . , n, with the provisos t−1 = a and tn+1 = b.

Since the path γ has the information about the endpoints in it, we may simplify
notation by rewriting our expression for AX as AX(v, [γ]) = v′ with v (resp.v′) in
the beginning (resp. end) point of γ. Inductively define AX(v, γ[t0,tk+1]) = vk+1:

AX(AX(v, [γ[t0,tk]]), [γ[tk,tk+1]]) = AX(vk, [γ[tk,tk+1 ]) = (vk)(ψUk
)−1 ◦ ψUk+1 .

That defines the action for a particular path. We need to know the result
doesn’t depend on the partition, nor on the homotopy class of γ. Starting from
the definition of the action on γ with a partition, apply the General Monodromy
Theorem 6.11 proof. (Our contractibility assumptions on the Ui s allow us to use
this proof.) Line-for-line this shows AX depends only on the homotopy class [γ]
and not on γ.

Define αV as
∏n−1

k=0(ψUk
)−1 ◦ ψUk+1 . We use that the constituent elements

are in GLn(C) (locally constant as a function of x ∈ X), and that the result is
independent of the homotopy class of the path to see it is a homomorphism. Now
consider when two flat bundles are flat isomorphic.

Notice that the collection of isomorphisms ψU : VU → V × U gives a cocycle
condition: For U, U ′, U ′′ intersecting nontrivially,

(ψ−1
U ◦ ψU ′) ◦ (ψ−1

U ′ ◦ ψU ′′) = ψ−1
U ◦ ψU ′′ .

Apply Lem. 2.2 to see that V identifies with the disjoint union of ∪U∈UV × U
modulo the equivalence of points on V × U with V × U ′ on the overlap of U ∩ U ′

by ψ−1
U ◦ ψU ′ . Using this, a flat isomorphism between V1 and V2 interprets as the

existence of gU ∈ GLn(C) for which

g−1
U ◦ ψ−1

1,U ◦ ψ1,U ′ ◦ gU ′ = ψ−1
2,U ◦ ψ2,U ′ .

In running around any path given by a sequence of Ui s, the conclusion is that αV1

differs from αV2 on this path by conjugation by gU0 . That effect is determined by
its effect on mx0 . This concludes the proof of the theorem. �

8.6. Complete reducibility and covers with equivalent flat bundles.
Flat bundles appear in a few well-known papers long ago. [Gun67, p. 97], from
which the author first heard of these subjects many years ago, cites [We38] and
[At57]. Riemann knew of the distinction between holomorphic vector bundles and
flat bundles through his investigation general ordinary differential equations versus
differential equations with ordinary singular points. This topic appears in Chap. 4.
An advanced reader will note we have yet to define general holomorphic bundles.

8.6.1. Decomposing the representations of a cover. A cover f : Y → X has a
flat bundle on X associated with it (Ex. 8.18). Let ρX ∈ Hom(π1(X, x0),GLn(C))
be the associated homomorphism. We explore the natural map EX → VX , es-
pecially noting it is not injective. [Sch70] and [Fri73] are sources for practical
problems in which this becomes significant. In particular, Chap. 4 [11.12] uses
Riemann’s Existence Theorem on the groups of [9.20] to produce primitive, inequiv-
alent covers whose fibers products are reducible. This is a chance to introduce the
significant topic of complete reducibility for fundamental groups representations.
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Definition 8.20. Let G be a group and F a field. Suppose ρ : G → GLn(F )
is a representation of G. Then, ρ has an invariant subspace V ≤ Fn if ρ(g) maps
V into V for each g ∈ G. A representation is irreducible if it has no invariant
subspace. Two invariant subspaces V and W (for ϕ) are complements if V and
W span Fn, and V ∩ W = {0}. Call ρ completely reducible if every ρ invariant
subspace V has a complement.

Recall: With R a ring, r ∈ R is an idempotent if r2 = r. Idempotents in
Mn(F ) are the matrices of projection onto subspaces of Fn.

Lemma 8.21. Suppose V is a ρ invariant subspace. If F has characteristic 0,
then V has a complement.

Proof. Let P : Fn → V be any projection onto V : Choose a basis v1, . . . , vk

of V , extend to a basis v1, . . . , vn of V , and define P by
∑n

i=1 aivi �→
∑k

i=1 aivi.
Then, P 2 = P and P is an idempotent. So, too is In − P=P’, and it defines a
complementary space by projection. If P commutes with the action of G, then
In − P would also be a G invariant subspace. To get this, average over G: Replace
P with PG = 1

|G|
∑

g∈G ρ(g)−1Pρ(g). Since each term ρ(g)−1Pρ(g) acts like the
identity on V , for v ∈ V , (v)PG = 1

|G|
∑

g∈G(v)ρ(g)−1Pρ(g) = v. �

[9.19] applies the complete reducibility of finite group representations when F
has zero characteristic. Complete reducibility does in general if either G is infinite
or F has positive characteristic [9.17]. If a representation ρ is completely reducible,
then we may write Fn as ⊕k

i=1Vi, a direct sum of invariant and irreducible subspaces
for the action of G. Another notation for this is ρ = (ρ1, . . . , ρk) with ρi restriction
of ρ to the space Vi: ρ is the direct sum of the actions of the ρi, i = 1, . . . , k.

The notation 111G is for the one-dimensional representation of G where the action
of G leaves each vector fixed. Given any representation ρ there is natural conjugate
representation ρ̄: g �→ ρ̄(g) by applying ¯ to each entry of ρ(g).

8.6.2. Components of fiber products. Suppose fi : Yi → X is a connected cover
of degree ni, with ρfi

∈ Hom(π1(X, x0),GLni
(C)) the corresponding element from

Prop. 8.19, i = 1, 2. Then, ρf1 and ρf2 induce the tensor product representation
ρf1 ⊗ ρf2 ∈ Hom(π1(X, x0),GLn1n2(C)). Let Gi be the group of a Galois closure
Ŷi → X of fi, i = 1, 2. Lem. 8.11 shows each of these representations factors through
a faithful representation of G = G1 ×H G2 for some group H that is a quotient of
both G1 and G2. Here G is the group of the minimal Galois cover of X factoring
through f1 and f2. Use the notation ρf1 ⊗ ρf2 for this representation, too. Since G
is a finite group, each representation is completely reducible. Any representation
of Gi induces a representation of G through the canonical projection of G onto
Gi. Write ρfi = ⊕ki

j=1Vi,j , i = 1, 2, indicating the irreducible representations of G
coming from those of Gi, i = 1, 2.

Proposition 8.22. The number of connected components of the fiber product
Y1 ×X Y2 is the same as the number of times the identity appears in ρf1 ⊗ ρf2 . In
turn, this is the same as the number of distinct pairs (j, j′) where V1,j is equivalent
to the conjugate of V2,j′ .

If G = G1 = G2, and ρ1 = ρ2, Y1 ×X Y2 has at least two connected compo-
nents. In this case it has precisely two if and only if the permutation representation
associated with f1 (or with f2) is doubly transitive.
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Proof. Apply Lem. 8.11 to conclude there are as many connected components
in Y1 ×X Y2 as the number of orbits in the direct product applied to G of the
permutation representations attached to f1 and f2. This counts the appearances of
the identity in the corresponding representation which in turn counts the number
of appearances of the identity in ρf1 ⊗ρf2 . Use the representation theory reminders
in [9.19b] to see this also counts the number of pairs (j, j′) listed in the statement
of the proposition. This completes the first part of the proof.

Suppose ρT = ⊕k
j=1VT,j is the decomposition of ρ1 ⊗ ρ2 given in the statement

into irreducible representations (over C). A permutation representation is the same
as its conjugate. So, for each VT,j , its conjugate also appears in the summands of
ρT . If ρ1 = ρ2 and G = G1 = G2, besides the identity in both ρ1 and ρ2, there must
exist at least one other pair indexed by (j, j′) of conjugate representations. From
[9.19d], k = 2 if and only if the permutation representation is doubly transitive. If,
however, k ≥ 3, there will be at least three pairs (j, j′) indicating corresponding
pairs of conjugate represenations. This concludes the proof. �

9. Exercises

We apply group theory exercises here to geometric applications in Chap. 4.
[FH91] contains a hurried encyclopedic account of classical representations. Yet,
it doesn’t cover our later needs. [Ben91] (very concise) and older relaxed texts like
[Ha63] work for Riemann surface applications requiring deeper group theory. We
have exercises that prepare some characteristic p representations. These appear in
Modular Towers (Chap. 5). Representation theory changes as much as Riemann
surface theory. As [Lam98, p. 369] notes, it is about 100 years old. Even such
topics as higher characters from its beginnings — unlike linear characters these do
determine the group — have still an uncertain place in the theory.

9.1. Constructing manifolds. Call a topological space a pre-manifold if it
has coordinate charts, but is not necessarily Hausdorff. We characterize Hausdorff.

(9.1a) Show the space of Ex. 2.4 is not Hausdorff.
(9.1b) Prove Lemma 2.5 using the argument before it.
(9.1c) Let {(Xαi

, ϕαi
)}αi∈Ii

(resp., {(Zα, ϕα)}α∈I) be topological data for Xi

(resp., Z), i = 1, 2. Let fi : Xi → Z, i = 1, 2 be continuous. Show

{(Xαi
× Xαj

) ∩ (X1 ×Z X2), (ϕαi
, ϕαj

)}(αi,αj)∈I1×I2

gives topologizing data on X1 ×Z X2 with continuous projections pri :
W

def= X1 ×Z X2 → Xi, i = 1, 2. Further, W is Hausdorff if X1, X2 and
Z are. Use this to prove Lemma 4.3.

(9.1d) Let f : X → Y be continuous, with X and Y pre-manifolds. Let γ :
[0, 1] → Y be a path. If a continuous γ1 : [0, 1) → X lies over γ[0,1)

(f ◦ γ1(t) = γ(t) for t ∈ [0, 1)). Show: For all pairs (γ, γ1), there is at
most one extension of γ1 to a path γ∗1 : [0, 1] → Y if and only if the
diagonal in X ×Y X is closed. Call an f satisfying this separated.

(9.1e) With f in d) separated, consider extending γ1 to γ∗1 : [0, 1] → Y . Show:
Such γ∗1 exists (for each γ1) if and only if f is a proper map (§2.2).

Consider some manifolds (differentiable) from vector calculus.

(9.2a) If Xi is ni-dimensional, i = 1, 2, show X1 × X2 is n1+n2-dimensional.
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(9.2b) The n-sphere is Sn = {xxx ∈ Rn+1 |
∑n+1

i=1 x2
i = 1}. Here is some data for

defining a manifold structure on Sn:

U+ = {(x1, . . . , xn+1) ∈ Sn | xn+1 > 0}
and Rxxx is any rotation of the sphere that that takes xxx to (0, . . . , 0, 1). Let
Uxxx be the image of U+ under R−1

xxx , and define ϕxxx to be pr ◦ Rxxx where
pr(xxx) = (x1, . . . , xn). Show the (Uxxx, ϕxxx)’s are a differentiable atlas on Sn.

(9.2c) Consider f ∈ R[x1, . . . , xn] and the set Xf = {xxx ∈ Rn | f(xxx) = 0}. Let
X0

f = {xxx ∈ Xf | ∇(f)(xxx) �= 0} (Lemma 3.2). State a differentiable version
of the implicit function theorem [Rud76, p. 224] from Chap. 2 §6.2.

(9.2d) Assume n = 3 in c) and two open sets U1 and U2 with these properties:
∂f
∂x1

is nonzero in U1 and ∂f
∂x3

is nonzero in U2. Apply c) to conclude there
is a differentiable transition function ϕ2 ◦ ϕ−1

1 for the pair (U1, U2).
(9.2e) If X0

f is nonempty, show it is a differentiable n − 1 dimensional manifold.
(9.2f) State a complex analog of c) for f ∈ C[z1, . . . , zn] using complex partials.

How does this show the complex version of X0
f is an n − 1 dimensianal

analytic manifold?
(9.2g) Apply the fundamental theorem of algebra [Ahl79, p. 122] to show the

manifold in f) cannot be compact.
Fiber products and pushouts are categorical constructions. Chap. 4 [11.10]

continues this exploration.
(9.3a) The fiber product of two maps fi : Yi → X, i = 1, 2, satisfies the following

universal property: If f : Y → X factors through each of the fi s, then f
factors through (f1, f2). Further, (f1, f2) is universal for this property.

(9.3b) The pushout for fi : Yi → X, i = 1, 2, satisfies a reverse diagram to the
fiber product. It is the maximal object through which both fi, i = 1, 2,
factor. For subsets of a set, the pushout would be the union. Show the
pushout of pointed covers is exactly as given in Thm. 7.16.

(9.3c) For subgroups of a group, the union is not a group. Show the subgroup
generated by the two groups is the pushout.

9.2. Complex structure and torii. Going from R to C is partly a linear
algebra constraint. Use the identifications {Ln}∞n=1 of R2n and Cn in §3.1.2. Con-
sider replacing {Ln}∞n=1 by the sequence {L′n}∞n=1 of linear (invertible) maps (from
R2n → Cn). Denote (x1, y1, . . . , xn, yn) �→ (−y1, x1, . . . ,−yn, xn) by Jn.

(9.4a) Show with L′n in place of Ln, though the functions labeled analytic in
any neighborhood of an analytic manifold X will change, the set of n-
dimensional analytic manifolds remains the same.

(9.4b) Show, for analytic manifolds X and Y (possibly of different dimensions),
the set of analytic maps X to Y using {Ln}∞n=1 map naturally to the
corresponding set using {L′n}∞n=1.

(9.4c) Show {L′n}∞n=1 gives the same analytic functions on each analytic manifold
as {Ln}∞n=1 if and only if L′n = Bn ◦ Ln with Bn ∈ GLn(C) for all n.
Further, this is equivalent to L′n ◦ Jn = i · L′n for all n. Hint: Check on C
linear combinations of z1, . . . , zn in Cn using L′n. Also: Invertible R linear
maps Cn → Cn are in GLn(C) if and only if they commute with i.

(9.4d) Consider the case L = Ln : R2n → Cn by

(x1, y1, . . . , xn, yn) �→ (x1 − iy1, . . . , xn − iyn) = (z̄1, . . . , z̄n)
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for examples where using {L′n}∞n=1 changes a given analytic structure.
Hint: See Chap. 4 §??.

Consider the topology of the torus of Fig. 3.
(9.5a) Show the complex torus C/L(ω1, ω2) of § 3.2.2 is compact.
(9.5b) Suppose R > 3r with r, R ∈ R. The torus, Tr,R;xxx0,vvv =, with radii (r, R)

centered at xxx0 = (0, 0, 0) ∈ R3 and perpendicular to vvv = (0, 0, 1) has this
underlying set of points:

{xxx0 + R(cos(θ), sin(θ), 0) + r(cos(θ) cos(β), sin(θ) cos(β), sin(β))}θ,β∈[0,2π].

Show Tr,R;xxx0,vvv is differentiably isomorphic to C/L(ω1, ω2).
(9.5c) Consider the two torii in Fig. 2: Assume one is T = Tr,R;xxx0,vvv, the other

T ′ = Tr,R;xxx′
0,vvv′ for vectors xxx′0, vvv

′ ∈ R3 and T ∩ T ′ = ∅. Call T and T ′

unknotted if for any C > 0 there is a continuous function

F : [0, 1] × R3 \ T → R3 \ T

with F (0, y) = y for y ∈ R3 \ T and |F (1, y)| > C for y ∈ T ′. Otherwise
they are knotted. Show there are two knotted torii in R3.

(9.5d) Regard R3 as in in R4: It is the set of xxx ∈ R4 with x4 = 0. Extend the
definitions above to show any pair of torii in R3 is unknotted in R4.

We start discussing the nature of the lattice attached to a complex torus.
(9.6a) Let C/L(ω1, ω2) = X be a complex torus with lattice L(ω1, ω2) = L as

in Ex. 6.18. For z1, z2 ∈ C define m(z1 mod L, z2 mod L) to be z1 +
z2 mod L. Define the inverse of z mod L to be −z mod L. Show X is a
differentiable group with multiplication m.

(9.6b) For t ∈ R, let z(t) = cos(2πt) +
√

−1 sin(2πt). Use f : X → S1 × S1

by t1ω1 + t2ω2 �→ (z1(t), z2(t)) to conclude that π1(X, 0 mod L) identifies
with L as a group isomorphic to Z2, pairs of integers.

(9.6c) Suppose x1, x2 ∈ S1 generate an infinite group 〈x1, x2〉. Consider the col-
lection TN = {xj

1x
j′

2 }−N≤j,j′≤N for large N to conclude 1 is a limit point
for 〈x1, x2〉. Conclude: w1, w2 ∈ C, C/L(w1, w2) satisfies the conditions
of Lem. 2.3 only if w1, w2 lie on different lines through the origin.

Consider comparing two lattices of complex torii. With Li = L(ω1,i, ω2,i),
i = 1, 2, continue Ex. 6.18. Assume λi = ω1,i

ω2,i
∈ C \ R, i = 1, 2.

(9.7a) Assume λ2 = aλ1+b
cλ1+d for some a, b, c, d ∈ Z for ad − bc = 1. Show C/L1 =

X1 and C/L2 = X2 are analytically isomorphic. Hint: Map t1ω1,1+t2ω2,1

to t1(aω1,1 + bω2,1)α + t2(cω1,1 + dω2,1)α with α ∈ C satisfying

(aω1,1 + bω2,1)α = ω1,2 and (cω1,1 + dω2,1)α = ω2,2.

(9.7b) Why assume ad − bc = 1 in a)? Why must we have a, b, c, d in Z, rather
than just a, b, c, d ∈ R?

(9.7c) Suppose L1 ⊂ L2. Consider f : X1 → X2 given in Ex. 6.18. Show there
exist ω1, ω2 ∈ L2 and n1, n2 ∈ Z with these properties: L(ω1, ω2) = L1;
and the complex numbers

z(k1, k2) = ( k1
n1

)ω1 + ( k2
n2

)ω2, 0 ≤ ki ≤ ni, i = 1, 2,

give the n1n2 distinct elements z mod L1 mapping to 0 mod L2. Hint: Ap-
ply the Elementary Divisor Theorem Chap. 2 [9.15] to get a basis {uuui}2

i=1

of L2 and integers n1, . . . , n2 so that {niuuui}2
i=1 generates L1.
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(9.7d) Conclude for x ∈ X1 that x + z(k1, k2) mod L1 are the distinct elements
of X1 mapping f(x) under f .

Now we describe holomorphic differentials on a complex torus.
(9.8a) Let L be a lattice in Cz. Define ωα on one of the local coordinate charts

ϕα(Uα) ⊂ Cz for C/L to be the differential dz (As in Ex. 6.18). Show
this defines a global differential form ωL on C/L, and the divisor of this
form is 0. Hint: Use that the transition functions, on connected subsets
of ϕα(Uα ∩ Uβ) have the form z �→ z + β.

(9.8b) Accept without proof that any meromorphic function has divisor of degree
0. Conclude: Holomorphic differentials on C/L have degree 0 divisor; so
they are constant multiples of ωL.

(9.8c) A g dimensional complex torus has the form A = Cg/L where L is a Z
module having dimension 2g and such that RL = Cg (a lattice). Imitate
b) to show holomorphic differentials on A form a dimension g vector space.

[9.8c] considers complex torii. Since Cg is contractible, π1(A,000) identifies with
L. We now see all differentiable groups have an abelian fundamental group.

(9.9a) Suppose that γ0,i and γ1,i are homotopic paths in a space X, i = 1, 2,
and that the end point of γ0,1 is equal to the initial point of γ0,2. Show
γ0,1γ0,2 is homotopic to γ1,1γ1,2.

(9.9b) Show the associative rule for multiplying paths.
(9.9c) Let ψ1 and ψ2 be two isomorphisms between π1(X, x0) and π1(X, x1) as

in Corollary 1.19. Show ψ−1
2 ◦ ψ1 is an inner automorphism of π1(X, x0).

That is, it is given by conjugation by an element of π1(X, x0).
(9.9d) A group G is differentiable G if it is a differentiable manifold, and its

multiplication and inverse are both differentiable maps. Similarly, there
is the notion of analytic group. Show a complex torus Cg/L (L a lattice)
is an analytic group.

(9.9e) Suppose M is a subvariety of GLn(C) (defined by a finite number of
equations in the n2 coordinates of the entries), closed under multiplication
and inverse. Show M is an analytic group.

(9.9f) For G a differentiable group consider f1 : G → (G, 1) (resp. f2 : G →
(1, G)) by g �→ (g, 1) (resp., g �→ (1, g)). Show for [γ1], [γ2] ∈ π1(G, 1):

m∗((f1)∗[γ1])(f2)∗[γ2]) = [γ1][γ2].

(9.9g) Continuing b), show π1(G, 1) is an abelian group. Conclude: A differ-
entiable manifold X with a nonabelian fundamental group (as often in
Chap. 4) has no differentiable group structure.

9.3. Pn compactification. Use the notation of §4.3.
(9.10a) Consider h ∈ C(w), h = h1/h2, with (h1, h2) = 1. Let m = h2(w)z−h1(z)

as in Ex. 4.7. Show the P1
z × P1

w compactification of {(z, w) | m(z, w) =
0, z �∈ zzz} is a manifold.

(9.10b) Consider Pn = Cn+1 \ {0}/C∗. Induct on n to show Pn = U0∪̇Pn+1.
Inductively define a topology: neighborhoods of xxx ∈ Pn−1 are the image
in Pn of neighborhoods of (0, v1, . . . , vn) ∈ Cn+1.

(9.10c) Prove directly in Pn: Any infinite sequence has a limit point. Hint: Any
infinite sequence has an infinite subsequence in Ui for some i.

Fiber products help construct new manifolds from old. Use notation of §4.2.3.
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(9.11a) Generalize the P2 compactification of h(w) − g(z) from Ex. 4.3.3.
(9.11b) Conclude the proof of Prop. 4.9 by noting Lh

z′ [(z − z′)1/e1 , (z − z′)1/e2 ] is
a proper subring of Ph

z′,[e1,e2]
, though its quotient field equals Pz′,[e1,e2].

(9.11c) Finish the hyperelliptic case of Ex. 4.3.3: P1 × P1-compactification gives
a manifold while no P2-compactification ever does.

(9.11d) Apply b) to f : X → P1
z of degree at least 3. Then, V = X ×P1

z
X contains

the diagonal ∆ and it consists of the union of this and another compact
set V ′. Show V ′ has a manifold structure from its embedding in X × X
if and only if there is only one ramified point over each branch point of f
and that ramification order is 2. That is, f is a simple-branched cover.

(9.11e) Show global meromorphic functions on Pn are ratios of (same degree)
homogeneous polynomials in the coordinates of Pn. Show there is no
analytic map ψ : P2 → P1. Hint: A ratio of same degree polynomials has
a singularity at common zeros.

(9.11f) Assume X̄ ⊂ pr2z,w,u is a compact manifold, and (z0, w0, u0) ∈ X̄ is the
intersection of L1 and L2 in Prop. 4.13. Show there is no other value
z′0 �= z0 so L1−z′0L2 is tangent to X̄. Hint: Otherwise, u′ = (L1−z′0L2)/z
and w′ = (L1 − z′1L2)/z give local coordinates for X̄ in a neighborhood
of (0, 0) ∈∈ Cu′ × Cw′ though both functions ramify at (0, 0).

9.4. Paths and vector fields. Let X be a manifold.
(9.12a) Show each (simplicial) path γ : [a, b] → X is image equivalent to γ1 :

[0, 1] → X. Show each nonconstant path is image equivalent to a path
constant on no interval.

(9.12b) Assume X is contractible (Def. 5.8). Suppose γ : [a, b] → X is a path with
initial point x0 and endpoint x1. Form the function G : [a, b]× [0, 1] → X
by G(t, s) = f(γ(t), s). Use this to show all paths in X with initial point
x0 and endpoint x1 are homotopic.

(9.12c) Let γ : [a, b] → Rn be a simplicial path. Let fff = (f1, . . . , fn) : Rn → Rn

be defined and continuous on the image of [a, b]. Consider
n∑

i=1

∫ b

a

fi(γ(t))
dγi

dt
dt

def=
∫

γ

fff · dxxx,

the line integral of fff along γ.
(9.12d) If γ1 and γ are image equivalent paths in Rn, show line integrals along

them are equal (use change of variables formula from Chap. 2 Lem. 2.3).
(9.12e) Let F : [a, b]× [0, 1] → Rn be a homotopy between paths γ0 and γ1 (write

F (t, s) = γs(t)) in Rn. Assume fff is continuous on the image of F . Show
the line integral of fff along γs is a continous function of s.

For a differentiable path γ : [0, 1] → U with U open in Rn, there may not exist
a vector field TU having γ as an integral curve, though locally this is so.
(9.13a) If TU exists explain why γ(t1) = γ(t2) implies dγ

dt (t1) = dγ
dt (t2).

(9.13b) Let V be a neighborhood of the line segment t → (t, 0, . . . , 0) ∈ Rn
ttt ,

t ∈ [0, 1]. Assume there is a one-one differentiable Γ : V → U with
Γ(t, 0, . . . , 0) = γ(t). Show ∂γ

∂t1
(ttt) (applying ∂

∂t1
to all coordinates of Γ)

produces a vector field on Γ(V ) with γ an integral curve.
(9.13c) Assume dγ

dt is never 0. Consider Ht = {www ∈ Rn | www · dγ
dt = 0}. Find

differentiable one-one F : Rn → Rn with F (ttt) = γ(t1) + www(t1, t2, . . . , tn)
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with www(t1, t2, . . . , tn) ∈ Ht1 linear in (t2, . . . , tn) (t1 fixed). Hint: Apply
the chain rule.

(9.13d) How does F give Γ in b)?
Returning to (5.3) we relate

(fα,1(yyyα), . . . , fα,n)(yyyα) to (fβ,i, . . . , fβ,n)(ψβ,α(yyyα))

.
(9.14a) Apply both sides of (5.3) to the coordinate function yβ,j to get

fβ,j(ψβ,α(yyyα)) =
n∑

i=1

fα,i
∂ψβ,α,j

∂yα,i
(yyyα)

where ψβ,α,j is the jth coordinate of ψβ,α. That is, the fβ s are the result
of applying the Jacobian matrix of ψβ,α(yyyα) to the fα s.

(9.14b) Consider the case ψ = ψ(x,y),(r,θ) : R2
r,θ → R2

x,y by (r, θ) �→ (x, y). Express
∂
∂x as fr

∂
∂r + fθ

∂
∂θ by applying both to x = r cos(θ) and y = r sin(θ).

Do the same for ∂
∂y , expressing it as f ′r

∂
∂r + f ′θ

∂
∂θ . Applying ( ∂

∂x , ∂
∂y )

to f(x, y) and evaluating at (r cos(θ), r sin(θ)) is the same as applying
J(ψ(x,y),(r,θ))( ∂

∂r , ∂
∂θ ) to f(r cos(θ), r sin(θ)).

(9.14c) Generalize b) to say (as in (5.4))

J(ψyyyβ ,yyyα
)−1

( ∂

∂yα,1
, . . . ,

∂

∂yα,n

)
=

( ∂

∂yβ,1
, . . . ,

∂

∂yβ,n

)
.

9.5. Permutation groups. Suppose G ≤ Sn is transitive. Def. 7.9 defines
primitive subgroup of Sn.
(9.15a) For g ∈ NG(G(1)), multiplication of g on the left of the distinct right

cosets G(1)σ1, . . . , G(1)σn of G(1) permutes these cosets. Conclude: This
induces a homomorphism ψ : NG(G(1))/G(1) → CenSn(G).

(9.15b) Show ψ is an isomorphism because both groups have order equal

|{i ∈ {1, 2, . . . , n} | σ(i) = i for each σ ∈ G(1)}|.
(9.15c) Show NG(G(1))/G(1) (or CenSn

(G)) is trivial if G is primitive and G(1)
is nontrivial.

(9.15d) Show a nontrivial normal subgroup of a primitive group is transitive.
(9.15e) Show a primitive subgroup of Sn containing a 2-cycle is Sn. Conclude any

transitive group generated by 2-cycles is Sn. Hint: Consider the normal
subgroup generated by the conjugates of the 2-cycle.

Let G be a centerless group, Aut(G) its automorphisms and T : G → Sn faithful
transitive permutation representation.

(9.16a) Explain this from [Isa94, p. 43]: In general neither (gH)A(g′) def= gHg′

nor (gH)A(g′) def= (gg′)H define an action on left cosets of H in G.
(9.16b) Let S be the collection of conjugates of a subgroup H of the group G,

with the action by conjugation by elements of G: S = g−1Hgg∈G and the
right action of g′ ∈ G �→ (g′)−1g−1Hgg′. What is the coset representation
associated with this transitive action, and when is it faithful?

(9.16c) Show (conjugation by) G is normal in Aut(G). The outer automorphism
group Out(G) of G is the quotient Aut(G)/G. Show the natural map ψT :
NSn(G) → Out(G) has kernel CenSn(G) (§7.1.3; compare with [9.15c]).
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(9.16d) Denote the image of ψT in Out(G) by OutT (G). Show OutT (G) = Out(G)
if and only if G(T, 1) (§7.1.2) has exactly n images under Aut(G). Hint:
Associate to α ∈ Aut(G) an element of Sn defined up to CenSn

(G) if it
maps among the conjugates of G(T, 1). Show [9.20b] gives examples where
T is doubly transitive and Out(G) �= OutT (G).

(9.16e) Case: G = An (resp. G = Sn), n ≥ 4, in its standard representation T .
Show Out(Sn) = {1} (resp. OutT (An) = Out(An) = Z/2) if and only if
Sn (resp. An) has exactly n transitive subgroups of index n under Aut(G).
Hint: Intransitive subgroups have small orders. (See [9.17b].)

(9.16f) Set notation in the proof of Prop. 8.19 to change to a left action of GLn.

We will need the following facts later.

(9.17a) For each i, 2 ≤ i ≤ n, consider Li = {1n, (1 i), (2 i), ..., (i − 1 i)} ⊂ Sn

(1n indicates the identity). Show each x ∈ Sn has a unique product
representation as x = x1x2 . . . xn with xi ∈ Li. (This gives a technique
to generate random elements of Sn with uniform distribution.) Hint: For
g ∈ Sn if (n)g = i, let h = g(i n) and induct on n.

(9.17b) [Isa94, p. 79-80] bases Out(Sn) = {1}, if n �= 6, on two observations:
• If α ∈ Aut(Sn) permutes transpositions, then conjugating by some

g ∈ Sn gives α. Hint: Elements of (Li)α in a) then have a unique
integer of common support.

• If n �= 6, among elements of order 2, the conjugacy class of transpo-
sitions has a unique cardinality.

(9.17c) Let TH : G → Sn be a permutation representation. Show all cosets of H
have the form Hgi, i = 0, . . . , n − 1, if and only if g is an n-cycle in TH .

(9.17d) Suppose F has characteristic p which also divides the order of finite group
G. Show a faithful permutation representation of G cannot be completely
reducible. Hint: Reduce to G = 〈g〉 with g having order p.

(9.17e) Suppose G is a free group on r ≥ 2 generators. Find representations
ϕ : G → GLr(C) that are not completely reducible. Hint: Map G into an
upper-triangular, not diagonal, matrix group.

9.6. Affine groups as permutation representations. Let H ≤ GLk(F )

with F = Fq. Regard G = {
(

A v
0 1

)
| A ∈ H, v ∈ V = Fk

q} as a group V ×sH as

in Rem. 7.4. Note: If a nonabelian group replaced Fk
q , then A(v′) + v should more

naturally be written v + A(v′).

(9.18a) Suppose {0} < V1 < V is an H invariant space. Then, V1 ×s H is a
subgroup of G properly containing H. Show conversely, a group properly
between H and G has the form V1 ×sH with H invariant V1.

(9.18b) Embed V in G by v �→
(

1 v
0 1

)
. Have G act on V by

(
A′ v′

0 1

)
maps

v �→ A(v) + v′ = v∗: equivalent to
(

A′ v′

0 1

)
multiplies

(v
1
)

to
(v∗

1
)
. Show

this gives a faithful transitive permutation representation of G.
(9.18c) From a) the representation of b) is primitive if and only if H acts irre-

ducibly. Suppose H = 〈A〉 has a single matrix generator, which we use to
makes V into an F [z] module by having f(z) ∈ F [z] map v ∈ V to f(A)(v).
The elementary divisor theorem (Chap. 2 §9.15) says V ≡ ⊕t

i=1F [z]/(fi)
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(as an F [z] module). Example: If v = (a, b) ∈ F 2, and A =
(

1 3
1 2

)
,

f(z) = z2 + z + 1, then f(z)(v) =
(

6 12
4 10

)
(v) = (6a + 12b, 4a + 10b).

We can uniquely choose the fi s monic so that f1|f2| · · · |ft. Show G is
primitive if and only if t = 1 and f1 is an irreducible polynomial.

(9.18d) The multiplicative group F∗pn is cyclic. Let α be a generator, and A
the matrix of α acting on Fn

p by regarding it as Fpn . In equation form:
v ∈ Fpn �→ αv ∈ Fpn . Show V ×s〈A〉 is doubly transitive on F .

(9.18e) From Def. 7.9, b) is doubly transitive if and only if H is transitive on
V \ {0}. When H = 〈A〉, show G is doubly transitive if and only if, for
some isomorphism of Fpn and (Fp)n, A acts like multiplication by α ∈ F∗pn .

9.7. Group representations. In this exercise consider representations over
any field containing Q.

(9.19a) Show that the direct product of two permutation representations as a
group representation is the tensor product of the two group representa-
tions. Therefore the trace is the product of the traces.

(9.19b) Finish showing the number of orbits is the same as the number of appear-
ances of the identity.

(9.19c) Let Ti : G → Sni , i = 1, 2, be permutation representations for which
t(T1(g)) = t(T2(g)) for each g ∈ G (as in §7.1). Show n1 = n2 and T1(g)
and T2(g) are conjugate in Sn1 for each g ∈ G. Hint: Induct on the length
of the highest disjoint cycles and compare t(T1(g)) and t(T1(gr)) for some
prime r dividing the order of g.

(9.19d) Show 1
|G|

∑
g∈G t(T (g)) counts the orbits of a permutation representation

T . Hint: Put the additive operator t on the outside of the sum by re-
garding T (g) as a permutation matrix. Each orbit I gives a 1-dimensional
invariant subspace spanned by

∑
i∈I xi (as in §7.1.4).

(9.19e) Show the collection of LC =
∑

u∈C u with C a conjugacy class of G,
span the G invariant idempotents of C[G]. For ρ any representation,
1
|G|

∑
g∈G t(ρ(g)) counts appearances of 111G in ρ. Hint: 1

|G|
∑

g∈G ρ(g) is
an idempotent, and its trace equals the dimension of its range.

(9.19f) Orthogonality Relations: Let ρV and ρW be representations of G on re-
spective spaces V and W . Show t(ρV ∗⊗W (g)) = t(ρV (g))t(ρW (g)) gives∑

g∈G

t(ρ̄V (g))t(ρW (g)) = dimC HomC[G](V, W ).

Further, this dimension gives the appearances of 111G in HomC(V, W ). Hint:
For ρ′ irreducible, 111G appears exactly once in HomC(Vρ′ , Vρ′).

(9.19g) Show VT is 111⊕V ′ with V ′ irreducible if and only if T is doubly transitive.
Hint: Apply d) to count appearances of 111G in VT ⊗VT ; use that 111G appears
in ρ1 ⊗ ρ2 with ρ1, ρ2 irreducible only if ρ2 = ρ̄1.

(9.19h) Suppose the representation T : G → Sn is doubly transitive. Show G does
not contain a subgroup H of degree m < n intransitive in T . Hint: Count
appearances of 111G in VT ⊗ VTH

using d).

Denote the finite field of q = pr for p a prime by Fq. Let G = GLk(F ) be the
k × k invertible matrices with coefficients in the field F = Fq. Write Pk−1(F ) for
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lines through the origin in Fk
q : {αvvv | α ∈ F} for some vvv ∈ Fk

q \ {000}. Then, G has a
permutation action Tk,F on Pk−1(F ) induced from its action on Fk

q . Let ψ : Fk
q → Fq

be a nonconstant linear map (linear functional). Denote linear functionals up to
multiplication by elements of Fq \{0} by P̂k−1(F ), with a permutation action T̂k,F :

For ψ ∈ Pk−1(F ) and A ∈ GLk(F ), ψA(vvv) def= ψ((vvv)A−1) for vvv ∈ Fk
q .

(9.20a) Show Tk,F is doubly transitive of degree n(q) = (qk−1)
(q−1) for k > 1.

(9.20b) Show T̂k,F also has degree n(q) and is doubly transitive, though Tk,F and
T̂k,F are not permutation equivalent. Hint: Show the stabilizer in G of a
hyperplane in Pk−1(F ) fixes no point.

(9.20c) Show t(T̂k,F (g)) = t(Tk,F (g)), so T̂k,F and Tk,F are equivalent as repre-
sentations [9.19c]. Hint: T̂k,F (g) is induced from the transpose of g, and
a matrix and its transpose are conjugate.

(9.20d) As in [9.18d], identify Fk
q with Fqk as vector spaces over Fq to find α ∈ Fqk

producing A ∈ GLk(F ) with Tk,F (A) and T̂k,F (A) both n(q)-cycles.
(9.20e) Assume: T1, T2 are inequivalent degree n doubly transitive representations

of a group G; they are equivalent as group representations; and T1(g) =
T2(g) = (1 2 . . . n) for some g ∈ G. Let D be the orbit of 1 under G(T1, 1)
in the representation T2. Use double transitivity to show D is a difference
set: {di − dj | di �= dj ∈ D} contains each nonzero integer mod n with
the same multiplicity t [Fri73]. Further, t · (n − 1) = |D| · (|D| − 1).
Example: For k = 3, q = 2, n = 7 in b), D = {1, 2, 4} and t = 1.

9.8. Easy Galois covers.

(9.21a) Suppose X and Yi are differentiable manifolds, and that fi : Yi → X are
covering maps, i = 1, 2. Assume ψ : Y1 → Y2 is any continuous map
with f2 ◦ ψ = f1. Show ψ is a map of differentiable manifolds. Also: ψ is
analytic if X is a complex manifold.

(9.21b) Let f : Y → X be a finite cover of degree n. Use that X is connected to
show |f−1(x)| is n for each x ∈ X.

(9.21c) Consider X1 = {x +
√

−1 y ∈ S1 | y > 0} and X2 = S1. Show, for n > 0,
the map of Ex. 6.16 restricted to X1 is not a covering map.

(9.21d) Follow the notation of Ex. 6.18 and of [9.7]. Let L and Li, with Li ⊆ L,
i = 1, 2, be lattices. Show that if fi : Xi = C/Li → C/L by z mod Li �→
z mod L, then the covers (Xi, fi) are equivalent if and only if L1 = L2.

(9.21e) Let Xi = X, i = 1, . . . , n, and let Y be the disjoint union of the Xi’s.
What is the automorphism group of the cover Y → X obtained by map-
ping each point of Y to its corresponding point in X?

(9.21f) Let f : Y → X be a cover and consider a subgroup G of Aut(Y, f) of order
equal to deg(f). Assume that, for some point x0 ∈ X, G acts transitively
on the set f−1(x0). Show f restricted to any connected component of Y
gives a Galois cover of X.

(9.21g) Let X = Y = C \ {0}. Show f : Y → X by z �→ zn is a Galois cover.
Hint: Consider ψk : z �→ e2π

√
−1 kz, 0 ≤ k ≤ n − 1.

(9.21h) Let Xi, i = 1, 2, be as in [9.7c] with L1 ⊂ L2. Show f : X1 → X2

in Ex. 6.18 is a Galois cover. Hint: Consider ψk1,k2 : z mod L1 �→ z +
z(k1, k2) mod L1.
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(9.21i) Consider a) with f ∈ C[y] and f(y) = yn + cn−2y
n−2 + · · ·+ c1y. Assume

the greatest common divisor of the set {n and i with ci �= 0} is 1. Show
Aut(Y,pr) is trivial. Hint: Apply Liouville’s Theorem [Ahl79, p. 122] to
see elements of Aut(Y, f) have the form y �→ ay + b for some a, b ∈ C.

9.9. Imprimitive and Frattini covers. This discussion on imprimitivity
continues in Chap. 4 [11.13]
(9.22a) Let π1(X, x0) be the fundamental group of a connected differentiable

manifold X. Let Hσ1, . . . , Hσn be the distinct cosets of a subgroup
H ≤ π1(X, x0) of index n corresponding to the cover (Y, f) (with fiber
{y1, . . . , yn} over x0). Consider the points of UY,f,n (§8.3.2) over x0 that
connect by a path to (y1, . . . , yn). Show these correspond to distinct n-
tuples of cosets: {(Hσ1σ, Hσ2σ, . . . , Hσnσ) | σ ∈ π1(X, x0)}. Why is this
the same as |G|? Conclude deg(f̂i) = |G(Y, f)| (as prior to Thm. 8.9).

(9.22b) Show components of Y ×X Y of degree 1 over Y correspond to elements
of Aut(Y, f) (Lem. 8.8). If f : Y → X has automorphisms, and f is not
a cyclic Galois cover of prime degree, show G(Y, f) is imprimitive. How
does [9.21i] give explicit imprimitive covers with no automorphisms?

(9.22c) Show (Y, f) decomposes if and only if Y ×X Y → X properly factors
through a fiber product of form Y ′ ×X Y ′. If so, show Y ′ ×X Y ′ \ ∆ is a
nontrivial component of Y ×X Y .

Let K ⊂ L̂ ⊂ M̂ be a chain of fields with M̂/K (resp. L̂/K) Galois with
group G∗ (resp. G). This is a Frattini chain if the only subfield K ≤ T ≤ M̂ with
T ∩ L̂ = K, is T = K. Denote restriction of elements of G∗ to L̂ by rest : G∗ → G.
(9.23a) Suppose T = M̂H is the fixed field of a subgroup H of G∗. Show T∩L̂ = K

is equivalent to rest : H � G. Hint: Use that T ∩ L̂ = K allows extending
any automophism of L̂ to T · L̂ to be the identity on T .

(9.23b) Show a) is equivalent to this group statement: If H ≤ G∗ and rest(H) =
G, then H = G∗ (the map rest : G∗ → G is a Frattini cover). Hint:
rest(H) = G is equivalent to M̂H ∩ L̂ = K.

(9.23c) Suppose X̂ → Ŷ → Z is a sequence of covers with ψX : X̂ → Z Galois
with group G∗ and ψY : Ŷ → Z Galois with group G. Let ψ : G∗ → G be
the natural map and assume ψ is a Frattini cover. Show the equivalence
with this. For any sequence X̂ → W → Z of covers with W �= Z, there is
a proper cover of Z that W → Z and Ŷ → Z factor through.

9.10. Laplacian. The Laplace operator ∇2 = ∂
∂x

∂
∂x + ∂

∂y
∂
∂y on R2

x,y acts on
C∞(R2). It generalize to a Riemann surface X (see Chap. 4 §11.11 for ∧ product).
Locally in z = x + iy, write a differential 1-form (not necessarily holomorphic) on
an open set U ⊂ C as ω = p(x, y) dx+q(x, y) dy. Consider ∗ω = −qdx+pdy. Write
w = u + iv for the real and imaginary components of the variable for Cw.
(9.24a) With z = f(w), suppose f : V ⊂ Cw → U ⊂ Cz is analytic, one-one and

onto from V to U . Write w = u(x, y)+iv(x, y) as the local inverse of f . Ex-
press ω as Ω(u, v) = p(x(u, v), y(u, v)) dx(u, v)+q(x(u, v) y(u, v)) dy(u, v).
Show ∗Ω(u, v) = −Q(u, v) du+P (u, v) dv equals ∗ω expressed in u and v.
Hint: Apply the Cauchy-Riemann equations: ∂x

∂u = ∂y
∂v and ∂x

∂v = − ∂y
∂u .

(9.24b) Conclude from a): On any Riemann surface X, ∗ defines a linear map on
differentiable 1-forms.
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(9.24c) Show these further properties of ∗: Its square is multiplication by -1,
ω∧ ∗ ω=(p2 + q2)dx ∧ dy, and ∗ω = iω if ω is holomorphic. Conclude: ω
is holomorphic if and only if dω = 0 and ∗ω = iω.

(9.24d) Consider ∗d = − ∂
∂y dx + ∂

∂xdy acting on differentiable functions. So, for f

differentiable on X, ∗df = ∗d(f) is well-defined, and it extends to 1-forms:
p(x, y) dx+ q(x, y) dy �→ ∗d(p(x, y))∧ dx+ ∗d(q(x, y))∧ dy. Show ∗d(ω) is
−d ∗ ω. Define ∇2(f) by d ∗ df = ∇2(f)dx ∧ dy. Argue why this defines a
(complex) Laplacian ∇2

X on a 1-dimensional complex manifold.
(9.24e) Suppose differentiable f on X has a corresponding λ ∈ C with ∇2

X(f) =
λf dx∧dy (everywhere locally). Call λ an eigenvalue of ∇2

X . If fi : Yi → X
are inequivalent covers of X, with equivalent locally flat bundles (Defn8.6),
over X, i = 1, 2, show their Laplacians have the same eigenvalues.



CHAPTER 4

RIEMANN’S EXISTENCE THEOREM

This chapter introduces the foundation of the book: The construction of all
compact Riemann surfaces through Riemann’s classification of the branched covers
of the sphere (Thm. 2.6). Still, one cover at a time, won’t give us much useful
information. We need to know the nature of families of related covers. The Exis-
tence Theorem serves well, though it takes additional ideas to find a useful naming
scheme for the families. This chapter’s nontraditional treatment of modular curves
motivates many general ideas in Chap. 5.

1. Presentations of fundamental groups of Riemann surfaces

Our command of Riemann’s Existence Theorem requires combinatorial ability
to list finite quotients of the fundamental group of Uzzz. Thm. 1.8 tells us π1(Uzzz)
is a free group on r − 1 generators (with r = |zzz|) and more. It is the basis for
describing families of covers (Chap. 5) of P1

z. Our main computational tools for
this are Hurwitz monodromy actions. These are on explicit sets running from
types of Nielsen classes (§3.2) to special fundamental group generators of Riemann
surfaces defined by Nielsen classes (§9.2).

1.1. Presentations and free products. Most fundamental groups appear
as quotients of free groups. Further, we define the kernel of that quotient by listing
specific relation elements in the kernel. We recognize the smallest normal subgroup
containing these relations as the kernel. A presentation, however, doesn’t list all
relations from this normal subgroup condition. Presenting groups as quotients of
free groups this way is convenient for forming their quotients. To see whether a
group G is a quotient of some fundamental group, we need only check if specific
generators of G satisfy a tiny list of relations. This suits how we form compact
Riemann surfaces from unramified covers of Uzzz. Still, this often leaves a tough
problem. How to check if an expression from the free group is in that kernel.

For S a set, we first define the group F (S) that S freely generates. The following
construction is of a free group with relations. Generalizing this to groups generated
freely by subgroups is a categorical rather than quotient construction.

For s ∈ S and n ∈ Z, use the symbol sn to denote the pair (s, n). If t ∈ S and
m ∈ Z then sn = tm if and only if s = t, n = m.

Elements of F (S) are (finite) sequences sssnnn = (sn1
1 , · · · , snk

k ) satisfying

k ∈ N; s1, · · · , sk ∈ S; n1, · · · , nk ∈ Z \ {0}; and si �= si+1, i = 1, · · · , k − 1.

Regard the sequence ∅ with no elements as an element of F (S). Denote
(tm1

1 , · · · , tm$

A ) ∈ F (S) by tttmmm. Define the product of sssnnn and tttmmm by cancellation
to be the elimination of any consecutive terms of the form tt−1. Formally, Find
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the smallest integer u with this property: t−mu
u �= s

nk−u+1
k−u+1 ; but t−mi

i = s
nk−i+1
k−i+1 ,

i = 1, · · · , u − 1. Then

(1.1)
sssnnntttmmm = (sn1

1 , · · · , s
nk−u

k−u , α, t
mu+1
u+1 , · · · , tm$

A )

where α =
{

(snk−u+1
k−u+1 , tmu

u ) for tu �= sk−u+1

t
nk−u+1+mu
u for tu = sk−u+1.

With this multiplication F (S) is a group with ∅ the identity. For example, an
induction on the length of the sequence of the middle term, in a product of 3 terms,
suffices to establish the associative law. The inverse of sssnnn is (s−nk

k , · · · , s−n1
1 ).

For a group G and a subset S of G, denote by 〈S〉 the subgroup of G that S
generates. The elements sssnnn ∈ F (S) for which sn1

1 · · · snk

k is the identity in G form
a subset R̄(S) called the relations satisfied by S. It is a normal subgroup of F (S).

Definition 1.1. Let S be a set of generators of a group G. A sequence
{r1, r2, . . . } of F (S) is a presentation of G if R̄(S) is the smallest normal sub-
group of F (S) containing {r1, r2, . . . }. We say {r1, r2, . . . } generates R̄(S). A
presentation is finite if both S and {r1, r2, . . . } are finite sets.

It is standard to denote (sn1
1 , . . . snk

k ) = sssnnn ∈ F (S) by sn1
1 · · · snk

k when this
symbol could not be confused with the product in another group.

Example 1.2. Let G = Z2, the additive group of integer pairs. Let s1 = (1, 0)
and s2 = (0, 1). Take for S the set {s1, s2}. Then {s1s2s

−1
1 s−1

2 } is a presentation
of G. Indeed, R̄(S) = [F (S), F (S)], the commutator subgroup of F (S). [11.7c]

Example 1.3. Take for S the set {s1, s2, . . . , sr}. From now on we denote
F (S) by Fr. There is a natural map from Fr to Fr−1 that maps si to itself,
i = 1, . . . , r−1, and sr to s−1

r−1s
−1
r−2 · · · s−1

1 . A nonidentity element of R̄(S) becomes
1 when you make the above substitution for sr. Therefore such an element involves
sr, and {s1 · · · sr} gives a presentation of Fr−1.

The following treatment on free products of groups, from [Wae48], appears
also in [Ma67, p. 97-100]. Let G1, . . . , Gt be groups. We define their free product
G by its properties. There are homomorphisms αi : Gi → G, i = 1, . . . , t, satisfying
this condition: For any group H and homomorphisms βi : Gi → H, i = 1, · · · , t,
there exists a unique homomorphism β : G → H with

(1.2) β ◦ αi = βi, i = 1, . . . , t.

Modern terminology might suggest the term free sum or pushout; it generalizes
for arbitrary groups the direct sum of abelian groups[11.10a]. We now show a free
product exists. From the definition it is unique up to isomorphism.

Define T (GGG) = T (G1, · · · , Gt) as those (finite) sequences (x1, · · · , xn) where
each xk is a nonidentity element of one of the groups Gi, and where consecutive
terms of the sequence are in different groups. Each g ∈ Gi acts faithfully on the
right of T (GGG) as a permutation αi(g) given by the following formula. For g ∈ Gi

and (x1, . . . , xn) ∈ T (GGG), αi(g) maps (x1, . . . , xn) to this element:

(1.3a) (x1, . . . , xng) if xn ∈ Gi and xng �= 1Gi ;
(1.3b) (x1, . . . , xn−1) if xn ∈ Gi and xn = g−1;
(1.3c) (x1, . . . , xn) if xn /∈ Gi and g = 1Gi

;
(1.3d) (x1, . . . , xn, g) if xn /∈ Gi and g /∈ 1Gi

; and
(1.3e) (g) if (x1, . . . , xn) = ∅.
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Let Per(T (GGG)) be the group of (right action) permutations of T (GGG). Then G
is the subgroup of Per(T (GGG)) that the images of the Gi under the homomorphisms
αi, i = 1, . . . , t, generate.

Lemma 1.4. The group G just defined is a free product of G1, . . . , Gt.

Proof. Express a given nonidentity element γ of G (in reduced form) as

αi1(gi1) · · ·αin(gin)

where gik
is a nonidentity element of Gik

and ik �= ik+1, i = 1, . . . , n − 1. This
expression is unique. Apply γ to ∅ (as in (1.3e)) to get (gi1 , . . . , gin

).
Suppose βi : Gi → H, i = 1, . . . , t, is any collection of homomorphisms. Define

β : G → H as follows: β(αi1(gi1) · · ·αin
(gin

)) is equal to βi1(gi1) · · ·βin
(gin

). In-
duction on the lengths of the reduced forms of two elements of G shows that β is
a homomorphism. Clearly β is the unique homomorphism satisfying (1.2). �

1.2. Fundamental groups of unions of spaces. Let X be a connected
union of finitely many differentiable manifolds. Suppose U and V are open subsets
of X with U ∪ V = X, and U , V and U ∩ V nonempty and connected. For
topological spaces Y and Z with Y a subspace of Z and y0 ∈ Y , denote the induced
homomorphism π1(Y, y0) → π1(Z, y0) by i(Y, Z)∗.

Theorem 1.5 (Seifert-van Kampen). Let x0 ∈ U ∩ V . For H a group, let
β(U) : π1(U, x0) → H and β(V ) : π1(V, x0) → H be two homomorphisms for which

(1.4) β(U) ◦ i(U ∩ V, U)∗ = β(V ) ◦ i(U ∩ V, V )∗.

Then, there is a unique homomorphism β(X) : π1(X, x0) → H with

(1.5) β(U) = β(X) ◦ i(U, X)∗ and β(V ) = β(X) ◦ i(V, X)∗.

In using Thm. 1.5, don’t forget U∩V must be connected. Neglecting this would
lead to concluding the torus has trivial fundamental group (Fig. 1).

Remark 1.6. Commutativity of this diagram characterizes π1(X, x0):

π1(U, x0)

������������
β(U)

����������������������������

π1(U ∩ V, x0)

�������������

�������������
π1(X, x0)

β(X) �� H

π1(V, x0)

������������ β(V )

����������������������������

Figure 1. Two cylinders try to share the fundamental group of a
torus, but they connect poorly.

Left cylinder → ← Right cylinder
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1.3. Proof of Seifert-van Kampen, Thm. 1.5. This is a special case of
[Ma67, p.114-22]. We give the proof in four subsections.

1.3.1. π1(U, x0) and π1(V, x0) generate π1(X, x0). Let γ : [a, b] → X represent
an element of π1(X, x0). Find t0 = a < t1 < · · · < tn = b so either U or V
entirely contains the image of γ|[ti,ti+1]

, i = 1, . . . , n. Let Ui be either U or V , so Ui

contains the image of γ|[ti,ti+1]
. As γ(ti) lies in both Ui−1 and Ui there is a path γi

in Ui−1 ∩Ui joining x0 to γ(ti) , i = 1, . . . , n− 1. Then each of the following closed
paths is in Ui for the corresponding value of i:

γ′0 = γ|[t0,t1]
γ−1
1 , i = 0, γ′i = γiγ|[ti,ti+1]

γ−1
i+1, i = 1, . . . , n − 2,

and γ′n−1 = γn−1γ|[tn−1,tn]
.

The product γ′0 · · · γ′n−1 is equivalent to γ. Write [γ] as

(1.6) i(U0, X)∗([γ′0])i(U1, X)∗([γ′1]) · · · i(Un−1, X)∗([γ′n−1]),

a product of paths, each from π1(U, x0) or π1(V, x0).
1.3.2. Condition for existence of β. It is natural to define β([γ]) from (1.6):

(1.7) β(U0)([γ′0])β(U1)([γ′1]) · · ·β(Un−1)([γ′n−1]).

We show, if (1.6) is the identity, then so is (1.7); β is well-defined.
Let F : [a, b] × [0, 1] → X be a homotopy between γ and the constant path:

F (t, s) = γs(t), γ0(t) = γ(t), and γ1(t) = x0.

Refine the subdivision t0 = a < t1 < · · · < tn = b to find s0 = 0 < · · · < sm = 1 so
Ui,j , one of U or V , contains the image under F of each rectangle

Ri,j = {(t, s) | sj ≤ s ≤ sj+1, ti ≤ t ≤ ti+1}.

Let Vi,j be the intersection of Ui−1,j , Ui−1,j−1 and Ui,j . This refinement doesn’t
change the value of (1.7). Choose a path εi,j : [a, b] → Vi,j with initial point x0 and
end point γsj

(ti) = F (ti, sj). When F (ti, sj) = x0, choose εi,j to be the constant
path, and choose εi,0 to be γi (as in §1.3.1), i = 1, . . . , n − 1.

Figure 2. Keeping book along the paths of a grid

Ui,j = V
Ui−1,j = V
Ui−1,j−1 = U

Ri−1,j−1

Ri−1,j Ri,j

F (Ri−1,j−1)

F (Ri−1,j) F (Ri,j) V

U

x0

(ti+1,sj+1)

(ti,sj)

(ti+1,sj)

ε−1
i+1,j →

•

••
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1.3.3. Grid following paths. Denote the path t ∈ [ti, ti+1] �→ F (t, sj) (resp.,
s ∈ [sj , sj+1] �→ F (ti, s)) by F|[ti,ti+1]×sj

(resp., F|ti×[sj,sj+1]
). Let γi,j be the path

εi,j(F|[ti,ti+1]×sj
)(εi+1,j)−1. Let δi,j be the path εi,j(F|ti×[sj,sj+1]

)(εi,j+1)−1. Define
gi,j to be the image under β(Ui,j) of the homotopy class of γi,j in π1(Ui,j , x0),
i = 0, . . . , n − 1; j = 0, . . . , m − 1. Note: (1.4) implies gi,j is also the image under
β(Ui,j−1) of the class of γi,j in π1(Ui,j−1, x0), i = 0, . . . , n − 1; j = 1, . . . , m. So,
we consistently define gi,m to be β(Ui,m−1), the image of γi,m in π1(Ui,m−1, x0),
i = 0, . . . , n − 1. Similarly, δi,j gives hi,j ∈ H, i = 0, . . . , n; j = 0, . . . , m − 1.

Since the boundary of Ri,j (traversed clockwise) is homotopic to a constant
path in Ri,j , its image under F is homotopic to a constant path in Ui,j . Therefore

(F|ti×[sj,sj+1]
)(F|[ti,ti+1]×sj+1

) is homotopic to (F|[ti,ti+1]×sj
)(F|ti+1×[sj,sj+1]

)

in Ui,j . Conclude:

(1.8) γi,jδi+1,j is homotopic to δi,jγi,j+1 in Ui,j .

Denote the identity in H by 1H . An application of β(Ui,j) gives
(1.9a) gi,jhi+1,j = hi,jgi,j+1, i = 0, . . . , n − 1; j = 0, . . . , m − 1.
(1.9b) As a consequence of F (t, 1) = F (a, s) = F (b, s) = x0:

gi,m = 1H , i = 0, . . . , n − 1; h0,j = hn,j = eH , j = 0, . . . , m − 1.

Finally, (1.7) is the same as

(1.10) g0,0g1,0 · · · gn−1,0.

1.3.4. (1.9a) and (1.9b) imply (1.10) is 1H . From (1.9b), g0,0 · · · gn−1,0hn,0

equals (1.10). From (1.9a), this is g0,0 · · ·hn−1,0gn−1,1. Repeat using (1.9a) and
(1.9b) to see (1.10) is g0,1g1,1 · · · gn−1,1. Inductively: (1.10) is g0,jg1,j · · · gn−1,j for
each j. With j = m, (1.9b) shows this is 1H .

Since π1(X, x0) is a pushout of the homomorphisms π1(U ∩ V, x0) → π1(U, x0)
and π1(U ∩ V, x0) → π1(V, x0), this uniquely defines π1(X, x0) [11.10b] and con-
cludes the proof.

1.4. Classical generators on an r-punctured sphere. Let Y be a sub-
space of a space X. Then Y is a retract of X if there is a continuous map f : X → Y
such that f(y) = y for y ∈ Y . The sequence of maps

Y
i(Y,X)−−−−−−→X

f−−→Y

induces the sequence of homomorphisms of groups

π1(Y, y0)
i(Y,X)∗−−−−−−→π1(X, y0)

f∗−−→π1(Y, y0)

where f∗ ◦ i(Y, X)∗ is the identity. This splitting of the sequence of groups means
π1(X, y0) is the direct product of π1(Y, y0) and the kernel of f∗.

Definition 1.7. A retract Y of X is a deformation retract of X if there exists
a continuous map F : X × [0, 1] → X for which F (x, 0) = x and F (x, 1) = f(x) for
x ∈ X, and F (y, s) = y for y ∈ Y , s ∈ [0, 1].

For each s ∈ [0, 1] the map F , restricted to X × s, induces a continuous map
π1(X, y0) → π1(X, y0). (Regard these fundamental groups as topological spaces
with the discrete topology.) Such a map is clearly independent of s. For s = 0 this
map is the identity, and for s = 1 the image of this map identifies with π1(Y, y0).
So, f∗ identifies the fundamental groups π1(X, x0) and π1(Y, y0).
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1.4.1. Defining classical generators. Chap. 2 §1.1 introduced the r-punctured

sphere: P1
z \ {zzz} def= Uzzz, r distinct points z1, . . . , zr removed from P1

z.

Figure 3. Example classical generators based at z0

•
•
•

•••

z0

z1

zi

zr

•

•

•

•
γ̄i ↗ γ̄r↘

γ̄0
↗

γ̄1↘

δ1
↗

δi
↗ ←δr

b1
↗

bi
↗

←br

•

•

•

a1
↗

ai↘
←ar

•

•

•

Let z0 be a point on Uzzz. Let Di be a disc with center zi, i = 1, . . . , r. Assume
these discs are disjoint and each excludes z0. Let bi be a point on the boundary of
Di. Regard this boundary, oriented clockwise, as a path γ̄i with initial and end point
bi. Finally, let δi be a simple simplicial (Chap. 2 Def. 2.1) path with initial point
z0 and end point bi. Assume, also, that δi meets none of γ̄1, . . . , γ̄i−1, γ̄i+1, . . . , γ̄r,
and it meets γ̄i only at its endpoint.

With D0 a disc with center z0 and disjoint from each of the discs D1, . . . , Dr,
consider the first point of intersection of δi and the boundary γ̄0 of D0. Call this
point ai. Suppose δ1, . . . , δr satisfy two further conditions:

(1.11a) they are pairwise nonintersecting, excluding their initial point z0; and
(1.11b) a1, . . . , ar appear in order clockwise around γ̄0.

Since the paths are simplicial this last condition is independent of the choice of D0,
at least for D0 sufficiently small.

With these conditions, the ordered collection of closed paths δiγ̄iδ
−1
i = γi,

i = 1, . . . , r, in Fig. 3 are classical generators (for zzz) based at z0. We say γi is a
classical loop around zi. In our case this has a precise meaning.

1.4.2. Main Theorem for classical generators of π1(Uzzz, z0). Chap. 5 deforms
classical generators compatible with deformations of the set {zzz} = {z1, . . . , zr}.
Such deformations produce very complicated sets of classical generators. Thus the
generality of our next result.

Theorem 1.8. Let (γ1, . . . , γr) by any collection of classical generators for
zzz = (z1, . . . , zr) based at z0 on the r-punctured sphere P1

z \ {zzz}. Then the homo-
topy classes [γ1] = s1, . . . , [γr] = sr generate π1(P1

z \ {zzz}, z0) with the one relation
s1 · · · sr: The Product-One condition. So, π1(P1

z \ {zzz}, z0) is isomorphic to Fr−1

through the presentation {s1 · · · sr} (Ex. 1.3).
If [γ′1] = s′1, . . . , [γ

′
r] = s′r is another collection of classical generators, then

there is a π ∈ Sr so that s′i is conjugate to s(i)π, i = 1, . . . , r.
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1.5. Proof of classical generators Thm. 1.8. For the statement on the
presentation of π1(Uzzz, z0), induct on r. For r = 0, write P1 as the union of

P1 \ {∞} = U1 and P1 \ {0} = U2

as in Chap. 3 Ex. 3.2.1. Apply Thm. 1.5 (just §1.3.1). For r ≥ 1 we show π(Uzzz, z0):
(1.12a) γ1 · · · γr is homotopic (on Uzzz) to the identity.
(1.12b) [γ1], . . . , [γr−1] are free generators of the fundamental group.

These suffice to show the statement gives a correct presentation of π1(Uzzz, z0) if
we show any relation among s1, . . . , sr is in the group generated by products of
conjugates of the product-one condition. Hints: Do an induction starting with a
nontrivial relation containing no subproduct conjugate to the product one relation,
and having a minimal number of appearances of sr. No appearances of sr is im-
possible from (1.12b); by conjugating shift the any one appearance of sr to the far
right. We divide the proof of (1.12) into 4 parts to separate the conceptual proof
from a technical preliminary.

1.5.1. Polygonal paths. We show the set of paths γ1, . . . , γr is (simultaneously)
homotopic to a set of simple polygonal paths based at z0, intersecting only at z0;
and that γ1 · · · γr is homotopic to a simple polygonal path based at z0.

Choose D0 so ai is the only intersection of δi and γ̄0, i = 1, . . . , r. This is
possible because δ1, . . . , δr are simplicial. For an integer n > 2, let γ̄∗i be the
regular n-gon inscribed in γ̄i as a clockwise path from the vertex bi. Chap. 2
Lem. 4.3 allows replacing each δi by a polygonal path homotopic to δi (with its
endpoints fixed), so as to assume our classical generators are polygonal paths.

We explain the formation of the shaded region around the polygonal path δi in
Fig. 4. The points b′i and b′′i are the vertices of γ̄∗i next to bi. Draw the lines through
b′i and b′′i parallel to the last segment of δi, and let d = dn be the maximum of the
distances between these lines and the last segment. Now continue drawing the lines
at a distance d parallel to each segment of δi. For large n: the lines parallel to the
last segment meet γ̄0 at points a′i and a′′i ; the paths δ∗i and δ∗∗i traced by these lines
on either side of δi are simple and have segments corresponding one-one with the
segments of δi. The shaded region (bounded by δ∗i , δ∗∗i , the two sides of γ̄∗i next to
bi, and the line segments ai to a′i and ai to a′′i ) meets none of the corresponding
shaded regions around δj for j �= i. In addition, the path going from ai to a′i, then
along δ∗i , and then from b′i to bi is homotopic (with ai and bi fixed) to δi through a
homotopy of simple polygonal paths that stay within the shaded region and, until
the end, do not meet δi.

Indeed, with a few choices of lines separating the elbows and ends of the shaded
region from the intermediate stretches — this may require a larger value of n — we
can make the homotopy canonical. To illustrate, consider the elbow of the last
two segments of δi. The lines K′ and K′′ (perpendicular, respectively, to the last and
second last segments of δi) that meet at P outline this elbow in Fig. 4. In this region
the homotopy takes points along the projection from P . In general, the homotopy
carries points of δ∗i along the perpendicular to the corresponding segment of δi.

Let λ∗i (resp., λ∗∗i ) be a path tracing the ray from z0 to a′i (resp., z0 to a′′i ).
Finally, let γ∗i be the part of γ̄∗i with initial point b′i and end point b′′i . Then,

γ′i = λ∗i δ
∗
i γ∗i (δ∗∗i )−1(λ∗∗i )−1, i = 1, . . . , r,

are simple, polygonal, pairwise nonintersecting (except at z0) paths that are re-
spectively homotopic to γ1, . . . , γr on Uzzz.
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Let āi be the midpoint of the arc from a′′i to a′i+1, i = 1, . . . , r − 1. Denote
the path along the two straight line segments from a′′i to āi, and then from āi to
a′i+1 by ε∗i . Then the following simple polygonal path, γ′, is homotopic on Uzzz to
γ′1 · · · γ′r, and thus to γ1 · · · γr:

(1.13) λ∗1δ
∗
1γ∗1 (δ∗∗1 )−1ε∗1δ

∗
2γ∗2 (δ∗∗2 )−1ε∗2 · · · ε∗r−1δ

∗
rγ∗r (δ∗∗r )−1(λ∗∗r )−1.

This homotopy shows the interior of a polygonal sector of the disc (marked off
clockwise) from a′1 to a′′r , together with the shaded regions of Fig. 4 and the interiors
of γ̄∗1 , . . . , γ̄∗r to be part of one connected component of P1 \ γ′.

1.5.2. Homotopy of γ1 · · · γr to 1. It suffices to show γ′ is homotopic to the
identity. The Jordan curve theorem says the complement of the simple closed
path γ′ on P1 consists of two components. For a polygonal path, however, this
is fairly easy ([He62, p. 146] or [11.3a]). The Schwartz-Christoffel transformation
([He66, p.351-3] or §6.6) gives a one-one continuous map ϕ′ from the closed upper
hemisphere on P1 to P1, analytic on the open hemisphere, that maps the equator
onto γ′. With no loss we assume ϕ′ maps onto the component excluding zr. From
the last line of §1.5.1, none of z1, . . . , zr are in the image of ϕ′. Since the closed
upper hemisphere is simply connected, so is the image of the one-one map ϕ′ on
Uzzz. Thus, γ′ is homotopic to the identity (see §6.6).

1.5.3. Retraction of Uzzz onto γ′1∪· · ·∪γ′r−1. To simplify our discussion, identity
a simple path with its collection of image points. Notice this further use of the
Jordan curve theorem (for polygonal paths). The path λ∗∗r−1 divides the interior
W of γ′ into two parts. The collection of points {z1, . . . , zr−1} is accessible from
one side of λ∗∗r−1, and zr from the other. So, {z1, . . . zr−1} and {zr} lie in distinct
components of W \ λ∗∗r−1 [11.3b]. In the above replace γ′ with following path:

(1.14) γ′′ = λ∗1δ
∗
1γ∗1 (δ∗∗1 )−1ε∗1 · · · ε∗r−2δ

∗
r−1γ

∗
r−1(δ

∗∗
r−1)

−1(λ∗∗r−1)
−1.

§1.5.2 shows there is a continuous one-one map ϕ′′ from the upper hemisphere
mapping the equator onto the path γ′′; and mapping onto the component of P1 \γ′′

that includes zr, but excludes {z1, . . . , zr−1}.

Figure 4. A polygonal thickening of δi

z0

zi

•

•

ai

a′i→
↙a′′i

bi

b′i→ ←b′′i•• •

P→•

γ̄∗i →
γ̄i→

λ∗i
↗

←λ∗∗i

←K′

←K′′
←δi

δ∗i →
←δ∗∗i
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The upper hemisphere minus (ϕ′′)−1(zr) clearly retracts to the equator. There-
fore the closure of the component of P1\γ′′ containing zr, with zr removed, retracts
to γ′′. Denote the closure of the other component by X ′′. Similarly, denote the
closure of the component of P1 \ γ′i containing zi by Xi, i = 1, . . . , r − 1. Let Yi be
the quadrilateral with vertices a′′i , āi, a′i+1 and z0, i = 1, . . . , r − 2. Retract Yi onto
the union of the two sides defined by {a′i, z0} and {a′′i , z0}. Since

X ′′ = X1 ∪ · · · ∪ Xr−1 ∪ Y1 ∪ · · · ∪ Yr−2,

this retracts X ′′ onto X1∪· · ·∪Xr−1. Apply the Schwartz-Christoffel transformation
to retract Xi \ {zi} onto γ′i, i = 1, . . . , r − 1. This retracts Uzzz onto γ′1 ∪ · · · ∪ γ′r−1.

1.5.4. [γ1], . . . , [γr−1] generate π1(P1 \ {zzz}, z0) freely. The retraction of §1.5.3
reduces this to showing [γ′1], . . . , [γ

′
r−1] generate π1(λ′1 ∪ · · · ∪ γ′r−1, z0) freely.

Let ci be a vertex of γ∗i different from b′i or b′′i (Fig. 4), i = 1, . . . , r − 1. Take
U to be γ′1 ∪ · · · ∪ γ′r−1 \ {cr−1} and V to be γ′1 ∪ · · · ∪ γ′r−1 \ {c1, . . . , cr−2}. Then
γ′1 ∪ · · · ∪ γ′r−2 is a deformation retract of U ; γ′r−1 is a deformation retract of V ;
and {z0} is a deformation retract of U ∩ V . From Thm. 1.5, π1(γ′1 ∪ · · · ∪ γ′r−1, z0)
is a free product of π1(U, z0) and π1(V, z0).

To complete the proof of the theorem, consider another r-tuple of classical
generators: [γ′1] = s′1, . . . , [γ

′
r] = s′r. Identify the point around which s′i loops as the

unique point z′ ∈ zzz for which s′i �→ 1 in the natural map π1(Uzzz, z0) → π1(Uzzz′ , z0)
where zzz′∪̇{z′} = zzz. So, there is a π ∈ Sr for which s′i loops around z(i)π. An easy
homotopy of both γ(i)π and γ′i has these properties.

• It moves only points on these paths within the outermost of γ̄(i)π and γ̄′i.
• The homotopies end so the respective bounding path to the discs about

z(i)π are the same.

At time t in the homotopy of γ(i)π denote the resulting path by γ(i)π,t. In Fig. 5: γ′i
remains constant in the homotopy; γ̄(i)π,1 is γ̄′i; and only the end portion of δ(i)π,t

varies in the homotopy. With γ(i)π,1 replacing γ(i)π = γ(i)π,0 (and the other r − 1
paths fixed), the equivalence classes in π(Uzzz, z0) give the same elements s1, . . . , sr.
With no loss, as in Fig. 5, assume γ(i)π and γ′i are respectively δ(i)πγ̄(i)π(δ(i)π)−1

and δ′iγ̄
′
i(δ
′
i)
−1. The homotopy class of δ(i)π,1(δ′i)

−1 conjugates the former to the
latter. That completes the proof of the theorem.

Remark 1.9. Massey notes [Ma67, p. 125]:

To actually apply the Seifert-van Kampen Theorem, it is usually
necessary to use the properties of deformation retracts.

2. Ramified covers from the Existence Theorem

Return to the notation of §2.1. Let ψ : Y → X be a nonconstant analytic map
between two connected compact Riemann surfaces. The first part of the Existence
Theorem is a combinatorial formula for contructing such ramified covers ψ.

2.1. Nonconstant maps of Riemann surfaces. Let ψ : Y → X be a
nonconstant analytic map of compact connected Riemann surfaces. For any subset
V of X denote ψ−1(V ) by YV . If V is a point x ∈ X, simplify YV to be Yx, the
fiber over x. Recall the definition of unramified cover from Chap. 3 Def. 7.12.
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Figure 5. Comparing two loops around z(i)π

↙ γ̄(i)π,1

γ̄(i)π,0 ↗

↓ γ̄′i
← δ(i)π,1

δ′i →

← δ(i)π

z0 z0

z′i

z′i

z′i−1 z′i−1

z′i−2 z′i−2

z′i+1 z′i+1

2.1.1. The divisor of ramification. We first attach a multiplicity to a point in
a fiber. The outcome is that all fibers of ψ will have the same degree.

Lemma 2.1. The map ψ is open and so is surjective. Two analytic functions
ψi : Y → P1

z, i = 1, 2, with exactly the same zeros and poles (with multiplicity) on
X differ by multiplication by a constant.

For some integer n, |Yx| = n for all but finitely many x ∈ X. For x ∈ X,
|Yx| ≤ n. Let D(ψ) be those x with |Yx| < n. Then YX\D(ψ) → X \ D(ψ) is an
unramified cover.

Representing restriction of ψ around any point y0 by an analytic function in a
disk allows assigning a multiplicity ey0 to y0 in Yψ(y0). This gives a degree of the

fiber Yx by deg(Yx) def=
∑

y∈Yx
ey and all fibers of ψ have degree n.

If X = P1
z, then the divisor (ψ) of the meromorphic function ψ has degree 0.

Any meromorphic function on Y comes from an analytic map where X = P1
z.

Proof. If ψ maps open sets to open sets, then the range of ψ is open. Since
X is compact, the range of ψ is also closed. As X is connected, that means the
range is the only possible nontrivial open and closed set, X. The statement that ψ
is open is local: We have only to show it maps small open sets to small open sets.
[Ahl79, p. 131] (as it is used below) shows ψ is locally an open map. Apply this
by considering two analytic functions ψi : Y → P1

z, i = 1, 2, with the same divisor
of zeros and poles on Y . Then, the ratio ψ1/ψ2 has no zeros, and no poles. It gives
an analytic map to P1

z missing ∞ for example. So, it must be constant.
Let f be a nonconstant analytic function on an open connected subset U on C,

and let z0 ∈ U . There is a neighborhood V of z0 on which f is one-one if and only if
df
dz (z0) �= 0 [Ahl79, p. 131]. Suppose df

dz (z0) �= 0. Then there is a neighborhood Uz0

of z0 for which df
dz is not 0 and f restricted to Uz0 is one-one. Let {(UY

α , ϕY
α )}α∈I

(resp., {(UX
β , ϕX

β )}β∈J) be an atlas for the manifold Y (resp. X).
Consider the set R of y ∈ Y with

(2.1)
d

dz
(ϕX

β ◦ ψ ◦ (ϕY
α )−1)(ϕY

α (y)) = 0
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for some α ∈ I, β ∈ J with y ∈ UY
α ∩ ψ−1(UX

β ). The condition is independent of
the choice of α and β (as in Chap. 3 Lem. 5.2). If R is infinite, then R has a limit
point y0. We show this leads to a contradiction.

There exists α ∈ I and β ∈ I with y0 ∈ UY
α and ψ(y0) ∈ UX

β . The zeros of
d
dz (ϕX

β ◦ ψ ◦ (ϕY
α )−1) have limit point ϕY

α (y0). So ϕX
β ◦ ψ ◦ (ϕY

α )−1 is constant in
a neighborhood of ϕY

α (y0) [Ahl79, p. 127], and ψ is constant in a neighborhood of
y0. The points of Y with a neighborhood on which ψ is constant is an open set
contained in R. Any accumulation point of it is therefore an accumulation point of
R. The above argument shows this set is closed. Since Y is connected, the existence
of y0 shows ψ is constant on all of Y , contrary to assumption. So R is finite.

Each y ∈ Y \ R has a connected neighborhood Uy of y to which the restriction
of ψ is a one-one function. Let x ∈ X \ ψ(R). For each y ∈ R, let Uy be a
neighborhood of y with x /∈ ψ(Uy). As ψ is one-one on Uy, Uy contains at most one
point of Yx. The cover {Uy}y∈Y of the compact space Y contains a finite subcover.
Therefore Yx is finite. Now consider neighborhoods of points of Yx.

Let Vx be a connected neighborhood of x contained in ψ(Uy) for each y ∈ Yx.
Then the connected components of YVx

are {Uy ∩ YVx
}y∈Yx

, and the restriction of
ψ to each of these is one-one. From Chap. 3 Def. 7.12, ψ restricted to YX\ψ(R) is a
cover, and the fibers have constant cardinality (Chap. 3 [9.21b]).

Now consider a fiber Yx with x ∈ D(ψ). Expression (2.1) generalizes. Any
point y ∈ Yx gives a well-defined integer ey: The minimal e ≥ 1 with

de

dze
(ϕX

β ◦ ψ ◦ (ϕY
α )−1)(ϕY

α (y)) �= 0.

This is the ramification index of ψ at y (Chap. 2 Def. 7.6). Suppose |Yx| = t.
[Ahl79, p. 131] shows f = ϕX

β ◦ ψ ◦ (ϕY
α )−1 is e to 1 in a neighborhood of ϕY

α (y)
with y removed. So, in some small punctured neighborhood V 0

x = Vx \{x} of x, the
punctured neighborhoods U0

1 , . . . , U0
t above V 0

x have this property: ψU0
i

: U0
i → V 0

is everywhere ei to 1. Since the degree of each fiber over x ∈ Vx0 is n, conclude∑
y∈Yx

ey = n. This is the formula stated in the lemma.
Now assume X = P1

z. So, Chap. 4 §5.3.1 assigns to ψ a well-defined divisor:
Y0 − Y∞. Its degree is deg(Y0) − deg(Y∞) = n − n = 0. Finally, let f be any global
meromorphic function on Y . Then, locally f is a ratio of two holomorphic functions
on a disk. At each point of the disk this defines a map to P1

z which is analytic, even
at the zeros of the denominator (Chap. 2 §4.6). So, f is an analytic map to P1

z. �

We often refer to a cover ψ : Y → X by the pair (Y, ψ). With the hypotheses
of Lem. 2.1, call (Y, ψ) a ramified cover of X of degree n: deg(ψ) = n. Then D(ψ)
consists of the branch points of ψ.

Definition 2.2. Let ψ : Y → X be an analytic map of 1-dimensional complex
manifolds (not necessarily compact or connected). If (ψ)−1(K) is compact for
each compact subset K of X and |(ψ)−1(x)| = n for all but a discrete subset of
points x ∈ X, then (Y, ψ) is a finite ramified cover of degree n. Denote the set
{x | |Yx| �= n} by D(ψ).

2.1.2. s-equivalence of covers. Let ψi : Y i → X, i = 1, 2, be two finite ramified
covers of X. Then (Y 1, ψ1) and (Y 2, ψ2) are s(trong)-equivalent (as ramified covers
of X) if there is a one-one and onto continuous map ψ : Y 1 → Y 2 for which
ψ2 ◦ ψ = ψ1. Colloquially: There is an isomorphism that commutes with the
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projection maps to the base. In §3.2.2 this corresponds to the notion of absolute
s-equivalence; there is no extra condition on the s-equivalence of these covers.

Then, ψ is automatically an analytic isomorphism [11.2]. Clearly D(ψ1) =
D(ψ2). Using the phrase s-equivalence differentiates this from other equivalences
of covers that appear later. The compactification process for covers of complex
manifolds in higher dimensions does not necessarily produce a manifold, as it does
in dimension 1 (Thm. 2.6). Still, the notion of s-equivalence makes sense and we
extend its use to many situations.

Let D be a finite subset of the connected 1-dimensional compact complex man-
ifold X. Cor. 2.9 classifies s-equivalence classes of finite ramified covers ψ : Y → X
with D(ψ) ⊆ D. Restricting ψ to YX\D(ψ) gives an unramified cover. Therefore
explicitly completing such a classification requires explicitly presenting the funda-
mental group π1(X \ D, x0) for x0 ∈ X \ D.

2.2. Constructing ramified covers. Now take X to be the Riemann sphere,
P1 = P1

z. Versions of these results work in the general case [11.11].
2.2.1. Product-One Condition. Label points of D(ψ) as {zzz} = {z1, . . . , zr}. Let

z0 ∈ P1 \ D(ψ) = Uzzz. Let (γ1, . . . , γr) = γγγ be classical generators for π1(Uzzz, z0).
A labeling yyy = (y1, . . . , yn) of the points of Y lying over z0 determines a transitive
permutation representation T (yyy) of π1(Uzzz, z0) of degree n. This is as in Chap. 3
Thm. 7.16, except we now have additional information. Denote T (yyy)([γi]) by gi ∈
Sn, i = 1, . . . , r, and let G(ggg) be the subgroup of Sn the gi s generate.

Lemma 2.3. With the hypotheses above, g1 · · · gr = 1. Conversely, given ele-
ments gi ∈ Sn, i = 1, . . . , r satisfying g1 · · · gr = 1, there exists a unique homo-
morphism ψ∗ : π1(Uzzz, z0) → Sn mapping γi to gi, i = 1, . . . , r. This canonically
produces a(n unramified) cover ψ : Y 0 → Uzzz whose components correspond one-one
to the orbits of G(ggg) on {1, . . . , n}.

Proof. Thm. 1.8 says π1(Uzzz, z0) is a free group on γγγ modulo the product one
relation [γ1 · · · γr] = 1 in the fundamental group. This implies the quotient relation

[γ1 · · · γr] = [γ1] · · · [γr] = g1 · · · gr = 1.

Conversely, the product-one relation on the gi s implies there is a homomor-
phism having the desired properties. The corresponding permutation representa-
tions on the orbits of G(ggg) correspond to connected covers of Uzzz. �

Definition 2.4. We call the r-tuple ggg = (g1, . . . , gr) in Lem. 2.3 a branch cycle
description of the cover ψ : Y → P1 with respect to γγγ.

The group G(ggg) is the monodromy group of the ramified cover (Y, ψ) (with
respect to yyy). Refer to an r-tuple ggg′ ∈ Sr

n for which there is β in Sn with β−1giβ =
g′i, i = 1, . . . , r, as absolutely equivalent to ggg.

2.2.2. Compactification of unramified Riemann surface covers. The first part
of Riemann’s Existence Theorem, the part so technically useful, is that there is a
unique compactification of any finite cover ψ0 : Y 0 → Uzzz to a cover ψ : Y → P1

z of
compact Riemann surfaces. We now show this.

Let Di be the disc about zi in Fig. 3, i = 1, . . . , r. Consider YDi → Di, the
restriction of ψ over Di. Then, γ̄i generates π1(Di \ {zi}, bi) which maps naturally
to π1(P1 \ D(ψ), bi). Identify π1(P1 \ D(ψ), bi) with π1(P1 \ D(ψ), z0) using the
path δi (of Fig. 3). Apply unique pathlifting along δi (Chap. 3 Lem. 7.13). So, the
labeling on yyy uniquely labels points of Y over bi.
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With this, the permutation from γ̄i on the fiber over bi is gi. Write YDi\{zi}
as a disjoint union of connected components ∪ti

j=1Mi,j . Up to s-equivalence as
a cover of Di \ {zi}, each Mi,j corresponds to an orbit of π1(Di \ {zi}, bi) on
{1, 2, . . . , n}. Disjoint cycles in the decomposition of the generator gi determine
the orbits (Chap. 2 Prop. 7.4). The degree of Mi,j as a cover is the length of its
corresponding cycle, i = 1, . . . , t. Thus, gi determines the covers Mi,1, . . . , Mi,ti

(and their degrees).
Suppose zi = 0 and D0 is a disc about the origin in C. Then, for each integer

e > 0, the s-equivalence class of the connected cover of degree e is represented by

M ′ = {(w, z) ∈ C × C | we = z}D0\{0}
proj. on z−−−−−−−−→D0 \ {0}.

For each z ∈ D0 \ {0}, let Dz be a disc about z contained in D0 \ {0}. The
components of M ′

Dz
, with their projections to D0 − {0}, give an atlas on M ′.

Lemma 2.5. The space M ′ ∪ {(0, 0)} = M has a complex manifold structure
(extending that of M ′) that makes it a ramified cover of D0 with exactly one point
over 0. Indeed, M is analytically isomorphic to a disc.

Proof. The mapping (w, z) �→ w gives a homeomorphism of M ′ ∪ {(0, 0)} to
the subset of C that lies over D0 via the map w �→ we. This subset is a disc around
the origin, so it is complex analytically isomorphic to D0. With this identification
of M with D0, add it to the atlas to conclude the manifold property. Compactness
of the inverse image of a compact subset of D0 follows easily (Def. 2.2). �

2.2.3. From unramified to ramified covers. Now for Riemann’s Existence The-
orem: Equivalence classes of ramified covers ψ : Y → X with D(ψ) contained
in a given set D′ correspond exactly to classes of permutation representations of
π1(X \ D′, z0) (Chap. 3 §7.2.2). Our next two results give formal restatements.

Theorem 2.6. Let zzz = {z1, . . . , zr} be a collection of r distinct points of P1
z.

There is a one-one correspondence between connected unramified covers of Uzzz and
connected covers of P1 ramified over a subset of zzz.

Proof. From the opening remarks of this subsection we must show that if
ψ′ : Y ′ → P1 \ D′ is an unramified cover, then there exists a unique ramified cover
ψ : Y → P1 such that YP1\D′ is equivalent to (Y ′, ψ′).

Use the notation prior to Lem. 2.5. For each i = 1, . . . , r, it shows how to add
just one point mi,j to each component Mi,j , j = 1, . . . , ti, of Y ′Di\{zi} to obtain a
disjoint union ∪ti

j=1M̄i,j = Yi of manifolds with these properties.
(2.2a) There is a ramified covering map ψi : Yi → Di.
(2.2b) ψ−1

i (Di \ {zi}) is equivalent to Y ′Di\{zi}.
(2.2c) M̄i,j is analytically isomorphic to a disc.

The identification of M̄i,j with a disc in (2.2c), j = 1, . . . , ti; i = 1, . . . , r, added
to an atlas for Y ′ gives an atlas for Y = Y ′

⋃
i,j{mi,j}. Extend ψ′ to ψ : Y → P1

by mapping mi,j to zi, j = 1, . . . , ti; i = 1, . . . , r. Then YDi is equivalent to Yi,
i = 1, . . . , r. Now we show Y is a compact manifold.

Since Y has an atlas, it is a manifold if it is Hausdorff. But P1 is Hausdorff.
Thus if y1, y2 ∈ Y with ψ(y1) �= ψ(y2), then we get ψ−1(U1) and ψ−1(U2), disjoint
open sets, respectively, containing y1 and y2, by taking U1 and U2 to be disjoint
open sets of P1, respectively, containing ψ(y1) and ψ(y2). Also, Y ′ is a manifold.
Thus we only need consider y1, y2 ∈ Y distinct points with ψ(y1) = ψ(y2) = zi for
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Figure 6. Virtual neighborhoods awaiting a disc call—see Fig. 7

some i = 1, . . . , r. Therefore y1 = mi,A and y2 = mi,k for some K �= k between 1
and ti. In particular, M̄i,A and M̄i,k are disjoint open sets, respectively, containing
y1 and y2. The Hausdorff property follows.

For z ∈ P1 let Dz be a disc neighborhood of z. If Dz \ {z} contains no points
of D′, then each component of YDz

contains a point of ψ−1(z). Thus the open sets
YDz form a neighborhood base for Yz. Let U = {Uα}α∈I be an open cover of Y .
The fiber Yz is contained in a finite union Uz of the sets Uα, so YDz ⊂ Uz for some
choice of Dz. Since P1 is compact, P1 = ∪t

i=1Dzi
and Y = ∪t

i=1Uzi
. Thus U has a

finite subcover, and Y is compact.
The theorem is complete if we show ψ : Y → P1

z is unique. Let ψ1 : Y 1 → P1 be
a ramified cover with Y 1

P1\D′ equivalent to (Y ′, ψ′), and therefore to YP1\D′ . Thus
there is an analytic isomorphism ϕ : Y 1

P1\D′ → YP1\D′ . If ϕ extends to Y 1 then
Lem. 2.1 shows Y 1 and Y are analytically isomorphic. Let y ∈ (ψ1)−1(zi) for some
i = 1, . . . , r. Let U be a connected open neighborhood of y contained in some
coordinate neighborhood with ψ1(U) contained in Di. Since U is connected, ϕ
maps U \ψ−1

1 (zi) into M̄i,j for some j. Riemann’s removable singularities theorem
extends ϕ to y uniquely [11.2b]. �

Conspicuous among covers of Uzzz that now compactify to a manifold are those
from an algebraic function f(z) ∈ E(Uzzz, z0), labeled as X0

f in Chap. 3 Prop. 3.12.

Definition 2.7. Call the manifold compactification Xf of X0
f (or more slop-

pily, of f) from Thm. 2.6 its rs-compactification. This theorem says any manifold
compactification of X0

f will have a unique complex extending structure. Still, this
notation differentiates Xf from a different compactification that might not have a
manifold structure (as in Chap. 3 §4.2).

2.3. Combinatorial RET, algebraic and abelian covers. Let ϕ : X → P1
z

be an analytic map of compact Riemann surfaces with zzz the branch points of ϕ.
For z′ ∈ P1

z consider Dϕ,z′ = Dz′ , the divisor of ϕ − z′ on X (Chap. 3 §5.3.1). For
z′ = ∞, interpret Dϕ,∞, the polar divisor, as counting (with multiplicity) points
on X over ∞.

2.3.1. An atlas from a compact cover. For z′ �∈ zzz ∪ {∞}, and Dz′ =
∑n

j=1 xj ,
choose a neighborhood Uz′ of z′ and Uxi so ϕ is invertible on Uxi . As in Chap. 3
Prop. 3.12, use (Uxi , ϕ) as a coordinate chart around xi as ϕ

def= wxi : Uxi → Uz′ ⊂
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Uzzz \ {∞} ⊂ Cz. We extend this around ramified points (when z′ ∈ zzz) and the
possibility z′ = ∞, where ei is the ramification index of xi in the fiber Xz′ (§2.1),
and {x1, . . . , xt} = Xz′ . First, assume z′ �= ∞. As in applying (2.2), for some
coordinate neighborhood (Uxi

, ψxi
) of xi, (with ϕxi

(xi) = 0) there is a branch of
eith root of the function ϕ ◦ ψ−1

xi
: C → C. So, there is a well defined function

— designate it wxi
= ϕ1/ei — one-one in a neighborhood of xi with wxi

giving a
coordinate chart about xi. (Again select Uz′ to avoid ∞ and any other points of
zzz.) If z′ = ∞, use wxi

= 1/ϕ1/ei instead.
Definition 2.8. Call {(Ux, wx)}x∈X the atlas for X from ϕ. In basing a

construction on this atlas, we must guarantee the result does not depend on the
choice of branches of eith roots; we have made no canonical choice for these here.

2.3.2. Algebraic and abelian covers of P1
z. Combined with Nielsen classes (§3.2),

Cor. 2.9 is the statement we use most often in describing types of covers.
Corollary 2.9. Let zzz = {z1, . . . , zr} as in Thm. 2.6. Each set of classical

generators (γ1, . . . , γr) = γγγ for zzz based at z0 ∈ P1
z \ D′ determines a one-one

correspondence between equivalence classes of the following sets:
(2.3a) connected covers ψ : Y → P1

z with D(ψ) ⊆ D′ and deg(ψ) = n; and
(2.3b) r-tuples ggg = (g1, . . . , gr) ∈ Sr

n with G(ggg) transitive, and g1 · · · gr = 1.
For a representative ψ : Y → P1

z of (2.3a) and a labeling yyy = (y1, . . . , yn) of ψ−1(z0),
the correspondence produces a unique representative ggg of the class of (2.3b); and
the disjoint cycles of gi identify with points of ψ−1(zi), i = 1, . . . , r.

Proof. From Thm. 2.6, elements of (2.3a) correspond to equivalence classes
of unramified covers of Uzzz. Excluding the last line, the corollary follows from the
discussion prior to Def. 2.4. Given a representative ψ : Y → P1 of a class of (2.3a),
and a labeling yyy of ψ−1(z0), the discussion following Def. 2.4 shows connected
components of YDi\{zi} correspond uniquely to the disjoint cycles of gi, i = 1, . . . r,
in the correspondence of (2.3). Then, (2.2) gives a correspondence of the points of
ψ−1(zi) with the components of YDi\{zi}, i = 1, . . . , r. This gives the corollary. �

Chap. 2 Thm. 8.8 describes all abelian algebraic functions of z. We compare
that precise description with Cor. 2.9. An abelian cover ϕ : X → P1

z is one that is
the compactification of a cover of Uzzz with abelian monodromy group. The same ter-
minology is useful in describing nilpotent or solvable covers of any Riemann surface
(or of any manifold if there is an appropriate construction of the compactification).

Definition 2.10 (Algebraic cover of P1
z). Call a cover of compact Riemann

surfaces ϕ : X → P1
z algebraic if there is a second analytic map f : X → P1

w so that
for some z′ ∈ Uzzz, f separates points in the fiber Xz′ : f(x′) �= f(x′′) for distinct
points x′, x′′ ∈ Xz′ . Then, C(z, f) def= C(X) is the field of functions of X.
If ϕ′ : X ′ → P1

z is s-equivalent to ϕ (§2.1.2), then ϕ is algebraic if and only if ϕ′ is.
Proposition 2.11 (Algebraists’ RET). Every algebraic cover ϕ : X → P1

z

is s-equivalent to to an rs-compactification (Def. 2.7) Xf of an algebraic function
(Chap. 3 Prop. 3.12). The lattice of fields between C(z, f(z)) and C(z) is dual to
the lattice of covers ϕY : Y → P1

z through which ϕ factors.
Suppose L̂ is the Galois closure of C(z, f(z)) = L over C(z), with branch points

zzz = {z1, . . . , zr}. Then a set of classical generators, γ1, . . . , γr, for π1(Uzzz, z0) de-
fines a set of embeddings ψi : L̂ → Pzi,ei with ei the ramification index of f over zi.
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Consider the restrictions gzi,ψi ∈ Gf of the canonical generator of G(Pzi,ei/Lzi)
to L̂, i = 1, . . . , r (Chap. 2 Lem. 7.9). Then (gz1,ψ1 , . . . , gzr,ψr ) = ggg generates
GL̂/C(z) and satifies the product-one condition.

Any abelian cover of P1
z is the rs-compactification of an explicit algebraic func-

tion f from branches of log. So, each abelian cover of P1
z is an algebraic cover.

Proof. Consider the function f : X → P1
w. As in Rem. 2.14, this produces an

analytic structure on X. The phrase, f is a meromorphic function on X, means f
and ϕ give same analytic structure on X.

As usual form Uzzz ⊂ P1
z. Let V be an open set in ϕ−1(Uzzz) on which ϕ maps

one-one to a disk D in P1
z. Use the notation ϕ−1

V for the inverse map. Then,
fD = f ◦ϕ−1

V : D → P1
w is meromorphic. Now we show the analytic continuations of

fD along paths in Uzzz satisfy Chap. 2 (1.1), properties. Chap. 2 Prop. 6.4 guarantee
fD is an algebraic function of z.

Let z0 ∈ D, x1 ∈ V over z0 and let γ∗ : [a, b] → X be the unique lift to ϕ−1(Uzzz)
starting at x1. Consider analytic continuation of fD along γ ∈ Π1(Uzzz, z0): fD,γ(t)
is the function defined by f ◦γ∗(t). This gives an analytic continuation according to
Chap. 2 Def. 4.1. Further, analytic continuation gives only finitely many possible
functions, the functions defined by f at the finite set of points above z0. Similarly,
test what happens as we approach the points z′ ∈ zzz. We evaluate f points with a
limit on X. So the values remain bounded around a point of the range.

Now consider L̂, the Galois closure of C(z, f(z)) = L over C(z), with branch
points zzz = {z1, . . . , zr}. First note that each element among the r classical gen-
erators γ1, . . . , γr defines an embedding of L̂ in the corresponding Pzi,ei

. Write
γi = δiγ̄iδ

−1
i (as in Fig. 3), then δi gives an analytic contuation of f and all its

conjugates to a disk neighborhood about zi. Then, Chap. 2 Lem. 7.9, gives the
desired embedding ψi. Generation and product-one conditions follow because they
hold for the classical generators.

Finally consider when the cover ϕ has abelian monodromy. Chap. 2 (8.8) gives
a branch cycle description with values in an abelian group. This was the hypothesis
for producing an abelian function through branches of log. So, Chap. 2 Thm. 8.8
says branches of log display this unique cover (up to s-equivalence). �

2.3.3. New covers from subfields of algebraic function fields. Def. 3.5 explains
normal fiber products of compact Riemann surface covers. This shows Prop. 2.11
directly gives many covers with nonabelian monodromy group as algebraic. §6
explains why any of the competing definitions of algebraic apply to algebraic covers.

Many uses of Riemann’s Existence Theorem (including for the Inverse Galois
Problem) require knowing covers are algebraic and more. Given f attesting to an
algebraic cover, there is a unique h(w) = wn +

∑n−1
j=0 uj(z)wj ∈ C(z)[w] (monic

and irreducible in w) relating f to z in Prop. 2.11. We eventually need the minimal
field (of definition) containing all coefficients (in z) of those uj s, j = 0, . . . , n − 1.
We usually want the minimal such field as f varies. It is inefficient (sometimes
hopeless), outside special cases, to compute f or h to find this out. There should
be a good reason for doing such calculations. For example, theory might show
there is a good choice of f , yet give reasons for looking more deeply at the algebraic
relation. Our examples will show when theory is not yet sufficient to tell everything
we want. Then, computing h may give us new clues about theory.



2. RAMIFIED COVERS FROM THE EXISTENCE THEOREM 167

The best situation is that among these fields, as f varies, there is one that is
minimal in that any nontrivial isomorphism of that field gives a new cover. This is
the situation when the field of moduli is a field of definition (§6.2); §8.6 gives the
first step in investigating this possibility and variant questions. This is a question
that tacitly assumes there is such an f : One reason why Thm. 2.13 is so important.

Given that ϕ : X → P1
z is algebraic, we know that nonconsant elements of

C(X) give all ways that X covers the Riemann sphere.
Corollary 2.12. Each field L properly between C and C(X) corresponds to a

cover ψ : X → Y with Y algebraic and the embedding f ∈ C(Y ) �→ f ◦ ψ ∈ C(X)
identifies C(Y ) with L. Conversely, a cover ψ corresponds to subfield L.

Proof. For w ∈ L nonconstant, x ∈ X �→ w(x) gives a cover ϕw : X → P1
w.

Apply Thm. 2.11 to L between C(X) and C(w). Prop. 6.3 shows the converse. �

Though we do not complete showing all covers of compact Riemann surfaces
are algebraic until Chap. 5 §??, we record that here. Examples in the remainder of
this chapter emphasize aspects of applying Riemann’s Existence Theorem. Several
concentrate on showing the historical attention given to finding functions displaying
covers as algebraic.

Theorem 2.13. Each cover ϕ : X → P1
z of compact Riemann surfaces is not

only algebraic, it is P1-algebraic.
Remark 2.14 (Warning on constructing f in Def. 2.10). Suppose X is any

compact Riemann surface and f : X → P1
w is any differentiable map with but

finitely many points at which df is 0. There are many such maps. Thm. 2.6 says f
induces a complex structure on X. Chances are, however, that complex structure
will differ from that we started with. That is why it is difficult to construct an f
that demonstrates a cover of P1

z is algebraic.

2.4. Cuts and impossible pictures. Chap. 3 §7.2.3 discusses problems with
traditional renderings of covers. Even the case when the degree n is 2, as in § 7.1.
Assuming Y has a presentation as a sphere with g handles in R3, presenting the
map ψ by a picture in R3 can be confusing. Still, something akin to Fig. 7 appears
in many books; for example, [Con78, p. 243].

It includes all the usual elements, especially the cuts. We understand from
[Ne81] that Gauss suggested cuts to Riemann (see §10.2). We don’t rely on these
cuts. Still, it will be valuable to see what they represent and how we can use symbols
from them to draw pictures of the covers. The short and general description in §2.4.3
suffices for an alternate description of the manifold. The slower treatment in §2.4.1
establishes that the idea behind cuts is that covers are a locally constant structure.

2.4.1. The simplest possible cuts. The left of Fig. 7 represents a disc snipped
and separated along a radius on the nonpositive real axis R≤0 def= {x ≤ 0}∪̇{∞}
from −∞ to 0. Our perspective is taken from looking along the front edge. So
the cut side that is on top has label T and the edge along the bottom has label B.
The mathematical reality, however, is that (unlike the figure) we shouldn’t separate
the two sides of the cut (on either disk) by lifting one above the other. Rather, we
intend just to remove the cut R≤0, including the points (0 and ∞) at the ends of the
cut. To continue the explanation, call the result of this Uz,l and the corresponding
figure on the right Uz,r. At each point z′ of either of these two figures, the ring of
functions we call analytic in a disc about z′ (entirely within Uz,l or Uz,r) identifies
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with the ring of analytic functions on P1
z about that same disc regarded as on P1

z.
Now let S be an open strip on P1

z along the cut. Remove from S the negative real
axis R<0 def= {x < 0}∪̇{∞} to leave two open substrips on each side of S.

We want to consider the copies ST,l and SB,l (resp. ST,r and SB,r) on Uz,l

(resp. Uz,r). These appear in Fig. 7. We also need two copies of S, Sl and Sr.
Identify the analytic functions on each with those of S, exactly as you would expect
from S being on P1

z.
The complex space X0 we construct to cover U0,∞ consists of four pieces:

Uz,l, Uz,r and Sl and Sr. The map from all four pieces to P1
z is exactly from

the identification of each with a subset of P1
z. The only item left unsaid is the

identification of points of Uz,l, Uz,r and Sl and Sr between each of these four
pieces. We don’t want to identify these with points of P1

z for this purpose. That
would just give (two copies of) the manifold U0,∞ back. Here is the right final
identification.

(2.4a) Points of ST,l identify with points of the corresponding strip on Sl, but
SB,l identifies with the corresponding strip on Sr.

(2.4b) Identify points of ST,r with the points of the corresponding strip on Sr,
but identify SB,r with the corresponding strip on Sl.

(2.4c) Make no further identifications.
Consider the path γ̄ : [0, 1] → U0,∞ by t ∈ [0, 1] �→ e−2πit and let γ̄1 be its lift

to X starting at 1 ∈ Uz,l. We follow it to what happens as it gets to the different
pieces. As t increases to 1

2 , within the points of SB,l, switch to points we identify
with them on Sr. Now cross R<0 on Sr, to get to points that identify with points
on ST,r. Finally, complete γ̄1 around to 1 on Uz,r. Total result: Traversing the
unique lift of γ̄ (a clockwise path) starting at 1 ∈ Uz,l ends at 1 ∈ Uz,R. Exercise:
Do the same with the lift of γ̄ starting at 1 ∈ Uz,R to see it ends at 1 ∈ Uz,l.

Figure 7. Connecting two copies of P1
z to double cover P1

z

Left Disk Right Disk

T
B B

T

S ↑

ST,l ↓

SB,l ↑

ST,r ↓

SB,r ↑

2.4.2. Any cycle, and any one cut. Instead of using the labels l(eft) and r(ight)
in §2.4.1, we might have used x1 and x2 by associating everything on the left with
the point 1 ∈ Uz,l renamed to x1, and everything on the right with the point 1 ∈ Uz,r

renamed to x2. There was no loss in our picture of changing left to right to regard
it as going from bottom to top. We generalize this in two steps. First: consider any
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integer n, two distinct points z′1 and z′2 on P1
z and any simple, piecewise simplicial

path δz′
1,z′

2
: [a, b] → P1

z starting at z′1 and ending at z′2.
Let Uδz′

1,z′
2
,j be a copy of P1

z minus the range of δz′
1,z′

2
, j = 1, . . . , n. Think of

these copies listed from left to right, according to their numbering (Uδz′
1,z′

2
,j on the

far right). Let Sδz′
1,z′

2
be a thin open strip playing the same role toward δz′

1,z′
2

as did

S toward R≤0 (starting from ∞ and going toward 0 along the negative real axis).
Then, consider copies of Sδz′

1,z′
2
, Sδz′

1,z′
2
,j , j = 1, . . . , n, with their corresponding

substrips Sδz′
1,z′

2
,j,T (on the left of δz′

1,z′
2
) and Sδz′

1,z′
2
,j,B (on the right of δz′

1,z′
2
). Let

γ̄ : [0, 1] → Uz′
1,z′

2
by t �→ z′2 + r0e

−2πit+t0 so γ̄ meets δz′
1,z′

2
precisely once and

not when t = 0 (γ̄(0) = z0 �∈ δz′
1,z′

2
). Label the point on Uδz′

1,z′
2
,j above z0 as xj ,

j = 1, . . . , n.
Lemma 2.15. Let g ∈ Sn. Then, there is a canonical equivalence on the union

of the open sets Uδz′
1,z′

2
,j and Sδz′

1,z′
2
,j, j = 1, . . . , n, so the following holds.

(2.5a) The resulting equivalence classes form a complex manifold X0 giving an
unramified cover ϕ0 : X0 → Uz′

1,z′
2
.

(2.5b) The unique lift of γ̄ starting at xj ends at (j)g, j = 1, . . . , n.
So, (g, δz′

1,z′
2
) produces a canonical ramified cover ϕ : X → P1

z of compact Rie-
mann surfaces, ramified only over z′1 and z′2, the completion of ϕ0 from Thm. 2.6.

Proof. We do the case g = (1 2 · · · n) and leave the adjustments for the gen-
eral case as an exercise. Most of even this case imitates the case n = 2. To simplify
notation, drop extra reference to the path δz′

1,z′
2
. The map of the union of the Sj s

and Uj s to Uz′
1,z′

2
is by identifying the points (and the local complex functions) on

these sets with those on P1
z. The only item left unsaid is the identification of points

of the Sj s with corresponding points of the ST,j s and SB,j s.
(2.6a) Identify points of ST,j with the points of the corresponding strip on Sj ,

but identify SB,j with the corresponding strip on Sj+1.
(2.6b) Make no further identifications, except for j = n, we take j + 1 to be 1.

Do the rest of the lemma as [11.17a] requests. �

Remark 2.16 (Locally constant structures). Chap. 3 Ex. 8.18 uses that de-
gree n unramified covers are equivalent to locally constant bundles on {1, . . . , n}.
Such structures, over Uzzz for example, are equivalent to looking at elements of
Hom(π1(Uzzz), Sn). In Lem. 2.15, the sets Sj and Uj are simply connected. So above
these sets, the cover consists of n connected copies of each of these sets. Using cuts
is equivalent to explicitly laying out this locally constant structure.

2.4.3. Any r rooted cuts. Look again at the case of one cut. We may turn this
into two rooted cuts by selecting any point z0 along the cut. For simplicity assume
for now it is not one of the endpoints of the cut. Now follow the procedure below.

Fig. 3 has the notation for the construction of classical generators. We show
how the paths δ1, . . . , δr correspond one-one with r rooted cuts by the following
simple device. Extend δi to a path δ̄i by adding the ray from bi to zi, i = 1, . . . , r.
Thm. 1.8 says the rooted bush formed by the union of δ̄1, . . . , δ̄r has simply con-
nected complement, an essential property for having a collection of cuts on Uzzz.

Any sequence of covers Y
ϕu−→P1

u

ϕu,z−→P1
z gives three covers for which we would

like an algorithm to precisely relate branch cycle descriptions. Especially, we have
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applications that allow computing classical generators for P1
u automatically from

classical generators for P1
z. This would allow constructing a branch cycle description

for ϕu immediately from such a description for ϕz = ϕu,z ◦ ϕu (§6.3).
Suppose ϕ : X → P1

z is a ramified cover with branch cycles ggg from the classical
generators that give δ̄1, . . . , δ̄r. This assumes a labeling x1, . . . , xr of Xz0 . Then,
we form a cover ϕc : Xc → P1

z from the cut construction canonically identifies with
ϕ. Here are the ingredients.

(2.7a) Label copies of P1
z as P1

z,j = P1
j , j = 1, . . . , r. On each remove the points

labeled z0, z1, . . . , zr and call the result Pj .
(2.7b) Use each element gi and the cut δ̄i from z0 to zi to attach the Pj s along

the lift of the ith cut. When done, compactify what we get.

We use the word triangle on a Riemann surface to mean a(clockwise oriented)
boundary of a topological disk with the boundary divided into three oriented sim-
plicial segments (edges) by three points called its vertices (Fig. 8). Call the triangle
with its interior (which makes sense as the region to the right of the boundary) a
(simplicial) simplex. The proof of Prop. 2.18 consists of describing these attach-
ments and forming from them a natural triangulation of the result.

Definition 2.17. A triangulation of a compact Riemann surface X is a cover of
it by simplices satisfying these conditions. The simplex sides meet other simplices in
their sides (in opposite orientation), and no two simplices have overlapping interiors.
Let nv (resp. ne, ns) be the number of vertices (resp. edges, simplices). The Euler
characteristic of the triangulation is the alternating sum nv − ne + ns.

Form a pre-manifold P±j (not Hausdorff) from Pj by replacing each point z

along any one of the δ̄i s (minus its endpoints) by two points: z+ and z−. We put a
new topology on a quotient relation on the union of {P±j }n

j=1. This uses an expected
neighborhood basis at all points, except the pairs labeled z+ and z−: Disks not
meeting any of the cuts δ̄1, . . . , δ̄r. The right neighborhood basis around z+ and
z− on a cut use the following. Write Dj,z, a disk around z (on δ̄i), as a union of
D+

j,z and D−j,z: D+
j,z (resp. D−j,z) is all points on and to the left (resp. right) of δ̄i.

Proposition 2.18. Compactifying X0
c gives a cover ϕx : Xc → P1

z unramified
over z0. A map giving the equivalence to ϕ takes xj to the point identified with z0

on P1
j . Let ti be the number of disjoint cycles in gi, i = 1, . . . , r. The cuts from

δ̄1, . . . , δ̄r produce a triangulation of Xc with ns = 2nr simplices, 3nr sides and
2n +

∑r
i=1 ti vertices. So the Euler characteristic of Xc is 2n +

∑r
i=1 ti − nr.

Precise cut pasting. Form X0
c as an equivalence relation on ∪n

j=1P±j . Sup-
pose gi maps k to l and z lies on δ̄i. Then, identify z− ∈ P±k with z+ ∈ P±l . In the
resulting set, take a neighborhood of z− to be D+

l,z ∪ D−k,z identified along the part
of δ̄i running through z.

Interpret the path δiγ̄iδ
−1
i = γi in Fig. 3 as follows.

(2.8a) The lift of δi starting at z0 on P1
k rides along the right edge of the gi-cut

on P1
k until it gets to γ̄i.

(2.8b) The initial point of γ̄i is on the −-edge of the gi-cut on P1
k; it ends at the

−-edge of the gi-cut on P1
l .

(2.8c) The lift of δ−1
i starting at zj on P1

l rides along the − edge of gi-cut on P1
l

until it gets to z0.
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So traversing the lift of γi from z0 ∈ P1
k will end at z0 ∈ P1

l . Consider the
small clockwise circle about z0 denoted γ̄0 in Fig. 3. Our construction shows that
traversing a lift of γ̄0 has the same effect on the points over z′ in the range of γ̄0

as the product Π(ggg) = 1 has on the integers {1, . . . , n}. It leaves them fixed. So, a
deleted neighborhood of z0 has above it n disjoint copies of that neighborhood on
X0

c . According to Lem. 2.5, the compactification does not ramify over z0.
Triangulate P1

z using the cuts δ̄1, . . . , δ̄r and the proof of Thm. 1.8. Especially
recall §1.5.2 showing the outside of the product of the classical generator paths
bounds a disk. From this, draw paths µi from zi to zi+1, i = 1, . . . , r − 1, and µr

from zr to z1 with the following properties. The closed path µ1 · µ2 · · ·µr bounds
a closed (topological) disk ∆̄∞ that meets the δ̄i s only at the endpoint zi s. From
any point z∞, interior to ∆̄∞, draw paths µ′1, . . . , µ

′
r, intersecting only at their

beginning point, entirely in ∆̄∞ from z∞ to the respective zi s.
Triangulate P1

j by listing the three ordered edges of the triangles:

(2.9)
(δ̄i, µi, δ̄

−1
i+1), i = 1, . . . , r − 1, (δ̄r, µr, δ̄

−1
1 ),

((µ′i)
−1, µ′i+1, µ

−1
i ), i = 1, . . . , r − 1, (µ′r)

−1, µ′1, µ
−1
r ).

Now, triangulate Xc using the following simple principle. Each of the 2r tri-
angles in (2.9) bounds a simplex with exactly two endpoints in zzz. Let S be one of
these. Remove the two points from zzz in the boundary; call this S0. It is simply-
connected, and ϕc : Xc → P1

z is unramified over it. So, S0 has n connected com-
ponents S0

1 , . . . , S0
n over it. With each take the closure in Xc (adding back points

of Xc over zzz). These simplices give the triangulation of Xc. Just count to get the
statement of the proposition. �

Figure 8. Cuts for a triangulation of Xc when r = 3

z0

z1

z2

z3

µ1↘

µ′1
→ µ2

↗

µ′2
↗

µ3↘

µ′3↘

δ̄1
↗

δ̄2
↗ ←δ̄3

Remark 2.19. The expression for the Euler characteristic in Prop. 2.18 is
2− 2gggg = χX , appearing in Prop. 3.10. This shows, all triangulations of a compact
Riemann surface X from presenting ϕ using cuts, have the same Euler character-
istic. We leave the following observations to the many topology books that treat
Euler characteristic in detail and generality. We will do exercises in that direction
to illustrate how it works.
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(2.10a) χX is an invariant of the homeomorphism class of the compact of X
(whether from cuts or not).

(2.10b) If the Euler characteristic is 2 then X is topologically a sphere: genus 0.
(2.10c) If the Euler characteristic is 0 then X is topologically a torus (as in Chap. 3

Fig. 2): genus 1.

To conclude these results from a triangulation of X in either case requires only
laying out on the sphere (resp. torus) an equivalent triangulation [11.6].

Remark 2.20 (Using a branch point as a base point). The beginning literature
on Riemann surfaces has figures with cuts. Often the cuts don’t have an obvious
base point z0 attached to them. That early literature is usually about the nature
of integrals of meromorphic differentials around closed paths. So the fundamental
group action is through the first homology group H1(Uzzz). As in Lem. 7.1, analytic
continuations of the primitive give a complicated analytic continuation action (of
course, not through a finite group). Since this is about integration, [11.16b] explores
how to use a branch point as a base point for the cuts.

2.5. Residues and traces. Cauchy’s Residue Theorem (Chap. 2 §5.4.4) im-
plies the sum of the residues of any meromorphic differential ω on P1

z is 0. We prove
the same holds on any compact Riemann surface X. Then we give Abel’s famous
necessary condition for a divisor on X to be the divisor of a meromophic function
ϕ : X → P1

z. That it is also sufficient is the cornerstone of the theory of Riemann
surfaces (§7.6 for surfaces of genus 0 and 1, and Chap. 5 §?? in general).

2.5.1. Sum of the residues is 0. Let ω ∈ M1(X) be a meromorphic differential
on the compact Riemann surface X. Chap. 2 §4.3 has the definition of the residue
of a meromorphic differential at z0 ∈ Cz. Since X is compact, ω has but finitely
many poles (as in the argument for Lem. 2.1). So, it has only finitely many points
at which there is a nonzero residue. There are two approaches to showing the sum
of the residues of ω is 0. We use here Green’s Theorem, to have available the
exterior calculus for later. Another approach, reducing the sum of the residues to
exactly Cauchy’s Theorem in the plane comes from uniformization [11.11].

2.5.2. Orientation and Green’s Theorem. When we say a path bounds a closed
disk D̄′ in X we mean here that the oriented path has the disc on its left. Suppose X
is 2-dimensional differentiable manifold with atlas {Uα, ϕα}α∈I . Use (xα, yα) for the
variables of the range of ϕα : Uα → R2. For α, β ∈ I, use Fβ,α = ϕβ◦ϕ−1

α : R2 → R2

for the transition function on ϕα(Uα ∩ Uβ). A differential 2-form on X consists of
giving fα(xα, yα) dxα ∧ dyα for each α ∈ I, satisfying these two conditions.

(2.11a) fα(xα, yα) : R2 → C is differentiable on Uα.
(2.11b) fβ(Fβ,α(xα, yα)) = Det(J(Fβ,α(xα, yβ)))fα(xα, yα) where J(F ) denotes

the Jacobian matrix as in Chap. 3 Lem. 3.2.

[11.4] reminds that 2-forms appear to form integrals over 2-dimensional subsets of
X. The change of variables (xα, yα) �→ (yα, xα) would change the sign of this 2-form.
In the case fα(xα, yα) is invariant under this transformation, the new contribution
to integrating over Uα would subtract from, not add to, the integral. Fortunately,
that is not an allowable transformation of coordinates on a 1-dimensional complex
manifold. The (xα, yα) coordinates come from the complex coordinates xα + iyα.
Any analytic change of xα + iyα leaves the sign of the determinant positive [11.4a].
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Definition 2.21 (Orientation). An orientation on a differentiable dimension
2 manifold is a choice of subatlas for which the determinant of the coordinate
transformation Jacobian is always positive.

Proposition 2.22 (Green’s Theorem). Suppose ω is meromorphic 1-form in
a domain D ⊂ X. The residue of ω has a well-defined meaning at each x′ ∈ D.
Denote the set of x′ ∈ D at which ω has a nonzero residue by Rω(D). Let γ
be a disjoint union γ1, . . . , γt of simple closed paths on D, where each γi is the
counterclockwise boundary of a closed topological disk D̄i ⊂ D. Assume ω has no
poles on γ and all its residues are in ∪t

i+1D̄i. Then, 1
2πi

∫
γ

ω =
∑

x′∈Rω(D) Resx′(ω).
In particular, if D = X, then 1

2πi

∫
γ

ω = 0.
More generally, let ω′ be any differentiable differental 1-form on the domain

D \ ∪t
i+1D̄i as above. Then, there is a differential 2-form dω′ on D so that

(2.12)
∫

γ

ω =
∫

D\∪t
i=1D̄i

dω.

Proof. We show the last paragraph first. Use the notation from above for a
2-dimensional differentiable manifold. Then, on ϕα(Uα) from the coordinate chart
(Uα, ϕα), express ω′ as fα(xα, yα) dxα + gα(xα, yα) dyα. The production of the
differential 2-form from ω′ comes from the exterior derivative:

(2.13)
d(ω′) = dfα ∧ dxα + dgα ∧ dyα

= ∂fα

∂yα
dyα ∧ dxα + ∂gα

∂xα
dxα ∧ dyα = ( ∂gα

∂xα
− ∂fα

∂yα
) dxα ∧ dyα.

We must establish this is a 2-form: (2.11b) holds [11.23b]. Then, the integration
on the right of (2.12) is independent of the coordinate chart. We already know that
is true of the integration on the left from Chap. 2 Lem. 2.3. Then, the conclusion
is a consequence of Green’s Theorem from vector calculus in the plane. While
[Rud76, p. 272] has a complete treatment, as our paths are semi-simplicial, the
case of bounding by rectangles suffices.

To apply the result to the first paragraph requires only noting that if we are
on a 1-dimensional complex manifold, then locally an analytic differential has the
form fα(zα) dzα. In that case the Cauchy-Riemann equations immediately imply
d(fα(zα) dzα) = 0 [11.4b]. �

Remark 2.23. Apply Thm. 2.25 to the translate of ϕ by a constant, ϕ − c,
c ∈ C. Conclude deg(Dz′) is constant running over all z′ ∈ P1

z, a case of Lem. 2.1.
2.5.3. Traces of differentials and functions. Let ϕ : X → P1

z be an analytic
map of compact Riemann surfaces. Use notation from the coordinate chart from
ϕ (Def. 2.8). Denote meromorphic differentials on X by Γ(X,M1). Suppose ω ∈
Γ(X,M1), and zzz is the branch point set of ϕ. For z′ �∈ zzz, consider Dz′ =

∑n
j=1 xj .

Since z′ is not a branch point, there is a neighborhood Uz′ of z′ and Uxi
so ϕ is

invertible on Uxi
. To keep our neighborhoods straight, denote the inverse of ϕ on

Uxi
by ϕ−1

i . For each i ∈ {1, . . . , n}, ϕ−1
i : Uz′ → Uxi

is a section for ϕ. Denote
the local variable on Uxi by wi. On ϕi(Uxi) write ω as

hi(wi ◦ ϕ−1
i (z)) d(wi ◦ ϕ−1

i (z)).

Define t(ω) on Uz′ as a differential in z by
∑n

i=1 hi(wi ◦ ϕ−1
i (z)) d(wi ◦ ϕ−1

i (z)).
We extend this around ramified points (when z′ ∈ zzz) where ei is the ramification

index of xi in the fiber Xz′ and {x1, . . . , xt} = Xz′ . Let ζei
= e2πi/ei , exactly as in

Lem. 2.5. To simplify notation designate ϕ as z. The only extension of t(ω) that
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gives the same values over a deleted neighborhood of Uz′ requires the expression∑t
i=1

∑ei−1
j=0 hi(ζj

ei
z1/ei)d(ζj

ei
z1/ei) for t(ω). Write dz = eiz

ei−1
ei dwi to reexpress

the contribution around xi as

(2.14)
ei−1∑
j=0

hi(ζj
ei

z1/ei)

eiz
ei−1

ei

dz.

So, (2.14) is a Laurent series in z1/ei times dz, symmetric in {ζj
ei

z1/ei}ei−1
j=0 , the

conjugates of z1/ei over C{{z}}. Conclude: Each term in t(ω), the trace of ω is a
Laurent series in z (times dz), and t(ω) is a differential on P1

z.
Remark 2.24. There is a similar definition of trace for meromorphic functions

(elements of C(X)) on X. Further, the following extensions are also easy: We may
replace P1

z by any Riemann surface Y (not necessarily compact) and ϕ : X → Y is
a ramified cover. Recall: Regard meromorphic differentials (resp. functions) on Y
as meromorphic differentials (resp. functions) on X by pullback (Chap. 3 §5.3.3).

Theorem 2.25. Given a ramified cover ϕ : X → Y of Riemann surfaces, the
trace t = tX/Y from meromorphic differentials on X to those on Y is a C-linear.
It maps homolomorphic differentials to holomorphic differentials. In particular, if
Y = P1

z, then the range of t on holomorphic differentials is 0.
If ω ∈ Γ(Y,M1), then t(ϕ∗(ω)) = deg(X/Y )ω.

Proof. Consider the statements on holomorphicity. If ω is holomorphic, each
hi above is holomorphic. From (2.14), t(ω) has a pole of order no more than ei−1

ei

at z′. The order, however, of the pole must be an integer. That means it has no
pole at z′ and ω is holomorphic. As there are no holomorphic differentials on the
sphere (Chap. 3 Ex. 5.17), t(ω) vanishes.

More generally, if ω is any differential, then its trace has the same sum of
residues as does ω. This comes back to the case the differential is locally dxi/xi

with its trace locally reexpressed as
∑ei−1

j=0 h(ζj
ei

z1/ei)/eiz
ei−1

ei dz with hi = 1/xi.
The final equation is a consequence of the definitions and Rem. 2.24. �

2.6. Abel’s necessary condition. With X a compact Riemann surface, let
Γ(X, Ω) be the vector space of global holomorphic differentials on X. We don’t
know its dimension yet, though Lem. 6.14 shows it is gX = gggg (as in Thm. 3.10).
Suppose D0 =

∑n
i=1 x0

i and D∞ =
∑n

i=1 x∞i are two degree n divisors on X. We
allow some points repeated with multiplicity.

Consider those n-tuples of paths γγγ = (γ1, . . . , γn) for which there is σ ∈ Sn,
with γi having beginning point x0

i and end point x∞(i)σ, i = 1, . . . , n. Denote these by
Π1(X, D0, D∞). If σ is the appropriate permutation, define the endpoint evaluation
map by ED0,D∞(γγγ) = σ. When the support of D∞ consists of distinct points, this
defines π uniquely, otherwise it is a coset of the subgroup of permutations stabilizing
the ordered set (x∞1 , . . . , x∞n ).

2.6.1. Integrating a basis of holomorphic differentials. Abel’s necessary condi-
tion tests for existence of a meromorphic degree n function on X whose divisor of
zeros (resp. poles) is D0 (resp. D∞). It is tacit that D0 and D∞ have no common
support and are both positive divisors. Lem. 2.1 says the divisor of zeros and poles
determine a function up to multiplication by a constant.
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The test on integrals is made efficient by using a basis B def= (ω1, . . . , ωu) for
Γ(X, Ω). We integrate the entries of B along elements of Π1(X, D0, D∞). Such
integrals are equivalent to evaluating analytic continuations of a branch of a prim-
itive (Chap. 2 §4.3). So, the monodromy theorem says results will only depend on
homotopy classes of such paths (with their endpoints fixed; Chap. 2 Thm. 8.3). De-
note these π1(X, D0, D∞). For these definitions we may allow common support to
D0 and D∞. When, however, D0 = D∞, write π1(X, D0) for the homotopy classes
of n-tuples of closed paths. In this case, the paths in an ordered n-tuples of paths
may each have a different end point than beginning point. The case D0 = nx0 is
allowed, to indicate an n-tuple of closed paths.

From Thm. 2.6, each meromorphic function on X gives an analytic map ϕ :
X → P1

z. This gives a map from γγγ ∈ π1(X, D0, D∞) to the integral of B over γγγ:

IntD0,D∞ = IntX,D0,D∞(γγγ) def=
∫

γγγ

B = (
n∑

j=1

∫
γj

ϕ1, . . . ,

n∑
j=1

∫
γj

ϕu).

Theorem 2.26. The range of IntX,mx0 , for x0 ∈ X, is an abelian subgroup LX

of Cu, independent of either z0 or m ≥ 1. A change of basis for Γ(X, Ω) changes
LX by the action (on the left) of some element of GLn(C).

Suppose there is a nonconstant analytic map ϕ : X → P1
z with D0 = ϕ−1(0)

and D∞ = ϕ−1(∞). Then, ker(IntD0,D∞) �= ∅ and the range of IntD0,D∞ is LX .
Let zzz be the branch points of ϕ, and suppose 0 �∈ zzz (resp. ∞ �∈ zzz). Then,

π1(Uzzz, 0) (resp. π1(Uzzz,∞)) has a faithful left (resp. right) action on ker(IntD0,D∞).
Therefore, {ED0,D∞(γγγ)}γγγ∈ker(IntD0,D∞ ) contains the monodromy group Gϕ of ϕ.
This holds even if 0 ∈ zzz (resp. ∞ ∈ zzz) using a tangential base point at 0 (resp. ∞).

2.6.2. Proof of Thm. 2.26 and integrations along γ ∈ π1(Uzzz, z0). Consider
γγγ,γγγ′ ∈ π1(X, mx0). Then, the component wise product γγγ ·γγγ′ = (γ1 · γ′1, . . . , γ1 · γ′1)
is in π1(X, mx0). Apply Int to these to see the range is independent of m and is an
abelian group. Given another basis B′, there exists A ∈ GLn(C) so that A(B) = B′.
Therefore A(

∫
γ
(B)) =

∫
γ

A(B) has range in A(LX).
Now suppose ϕ exists. Start with the case D0 and D∞ have n distinct points

in their support. Let γ ∈ π1(Uzzz, 0,∞), and define γγγ = (γ1, . . . , γn) so γi is the
unique lift of γ starting at x0

i . Write γ : [0, 1] → Uzzz to define (γ1(t), . . . , γn(t)) for
t ∈ [0, 1], an ordering of ϕ−1(t).

Apply Thm. 2.25 to IntD0,D∞(γγγ) by designating the trace from ϕ by tϕ. Then,
IntD0,D∞(γγγ) is just (

∫
γ

tϕ(ω1), . . . , tϕ(ωu)). Since each of the integrand entries is
0, this shows that any element of π1(Uzzz, 0,∞) defines an element of ker(IntD0,D∞).

If either D0 or D∞ has support with multiplicity, connect 0 and ∞ by paths
γz′ and γz′′ to respective points z′ and z′′ that lie (excluding endpoints) entirely in
Uzzz. Let γ denote a path in Uzzz connecting z′ and z′′. There is still an n-tuple of
lifts of the path γ0 · γ · γ−1

∞ : (0, 1) → X0 (avoiding endpoints). Now form the paths
to replace t �→ (γ1(t), . . . , γn(t)) by taking the closure of these lifted paths in X.
The integral is 0, again from Thm. 2.25.

Similarly, we may compose on the right of IntD0,D∞ by π1(Uzzz,∞) so long as 0
and ∞ are not in zzz. Suppose, however, 0 ∈ zzz (the case for ∞ is analogous). Then,
π1(Uzzz, 0) doesn’t make sense.

Chap. 2 §8.4 has the notion of a tangential base point. We need a convenient
(nonempty) simply connected open set Dvvv tangent to 0 in Uzzz. The choice there was
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a disk with 0 on the boundary, defined by a tangent vector vvv to 0. Let λ : [0, 1] → D̄vvv

be a path with these properties: λ(0) = 0, restriction to (0, 1] has range in Dvvv

and λ(1) = z′ ∈ Dvvv. Consider paths (minus beginning and endpoint) given by
λ(0,1] · · · γλ−1

(0,1], γ representing an element of π1(Uzzz, Dvvv, z′). This has n distinct
lifts to X. Their closures have their beginning and end points in D0.

Up to homotopy, these paths don’t depend on z′ or λ (though it does on Dvvv).
So, up to homotopy, composition of these paths defines a group π1(Uzzz, Dvvv) with an
action on the left of ker(IntD0,D∞). The isomorphism class of the group is the same
no matter the choice of Dvvv. There is, however, no canonical isomorphism between
the groups if you change Dvvv to another tangential disk [11.16a].

3. Nielsen classes and Hurwitz monodromy

This section introduces combinatorial group theory that helps display the myr-
iad covers from Cor. 2.9. §4 uses this to illustrate Riemann’s Existence Theorem.
We suggest the reader go between the two sections on a first reading; we put many
concepts together in this section. That includes interpretation of the genus of a
compact surface, and the related fiber product and Galois closure of compact cov-
ers topics. Braid and Hurwitz monodromy representations are critical to this book.
[Ar25], [Ar47], [Bi75], [Boh47], [Ch47], [KMS66], [Ma34], [Mar45] hint at
early literature on the Braid group. None, however, of these sources apply these to
the families of Riemann surface covers. Further, the Hurwitz monodromy group is
a modest player in them though some of their combinatorics, especially [Boh47]
and [KMS66], appears in our picture.

3.1. Artin Braids and Hurwitz monodromy. Let Fr be the free group
on the elements of S = {s1, . . . , sr}. Since Fr is a free group, any r words
w1, . . . , wr in S determine a homomorphism of Fr into itself by mapping the ordered
r-tuple (s1, . . . , sr) = sss respectively to (w1, . . . , wr). So, given sss, any other r-tuple,
(s′1, . . . , s

′
r), of generators of Fr determines an element of the automorphism group

Aut(Fr) of Fr. Denote the set of (ordered) r-tuples of generators of Fr by GFr .
3.1.1. Automorphisms of π1(Uzzz, z0) permuting classical generators. Certain au-

tomorphisms of π1(Uzzz, z0) play a big role from here on. Chap. 5 describes the
geometry that produces them. Here they are a combinatorial tool.

Let Qi be the permutation of GFr
that sends entries of (s1, . . . , sr) = sss (in

order) to the new r-tuple of generators

(3.1) (s1, . . . , si−1, sisi+1s
−1
i , si, si+2, . . . , sr), i = 1, . . . , r − 1.

The Artin braid group (of degree r), is the subgroup of permutations of GFr
that

Q1, . . . , Qr−1 generate. We denote it Br.

Lemma 3.1. Any sss ∈ GFr gives a faithful map ψsss : Br → Aut(Fr): Q ∈ Br

maps to the automorphism that takes sss to (sss)Q. Suppose Q ∈ Br and α ∈ Aut(Fr).
Then, Q acts on α by this formula: (sss)αQ def= (sss)Q−1αQ. The action of Br on
inner automorphisms of Fr is trivial. Also, ψsss is a 1-cocycle on the group Br:
(QQ′)ψsss = ((Q′)ψsss)(Q)ψQ′

sss .

Proof. The effect of Q ∈ Br on any one sss ∈ GFr
determines it. So, ψsss is

faithful. Notice that conjugation by w commutes with the action of Qi on sss. As
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these are generators of Br, this implies αQ = α for Q ∈ Br if α is conjugation by
w. Check how both sides of the cocycle condition act on sss:

(sss)QQ′ = (sss)(QQ′)ψsss = ((sss)Q)Q′ = (((sss)Q′Q′−1)(Q)ψsss)Q′ = ((sss)(Q′)ψsss)(Q)ψQ′

sss .

This concludes the lemma. �

3.1.2. Hurwitz monodromy quotient of the braids. The word cocycle in Lem. 3.1
has a more complicated meaning than in Chap. 3 §5.4.1 where it was a condition
on transition functions. This is a group cocycle, for a group acting on a nonabelian
group (rather than on a module). Our emphasis is that ψsss is a cocycle, not a
homomorphism. The Hurwitz monodromy group (of degree r) is the quotient of
Br by the normal subgroup generated by

(3.2) Q(r) = Q1Q2 · · ·Qr−1Qr−1 · · ·Q2Q1.

Denote this quotient group by Hr.
Observations from the following proposition will appear in examples of §4. It

simplifies reading Chap. 5 to be already acquainted with these. Let R̄ be the normal
subgroup of Fr that s1 · · · sr = usss generates (Ex. 1.3). Denote Fr/R̄ by Gr.

Proposition 3.2. The following properties hold for Br (acting on Gr).

(3.3a) Each Q ∈ Br maps s1 · · · sr to itself and si to a conjugate of sj for some
j (dependent on i). This induces a homomorphism Ψr,∗ : Br → Sr (the
Noether representation) mapping Qi to (i i+1) ∈ Sr, i = 1, . . . , r.

(3.3b) The Qi s have these relations: QiQj = QjQi, 1 ≤ i ≤ j ≤ r − 1; j �= i − 1
or i + 1, and QiQi+1Qi = Qi+1QiQi+1, i = 1, . . . , r − 2.

(3.3c) Elements of ker(Br → Hr) induce inner automorphisms of Gr.

Proof. Each formula is a simple computation on the effect of sides of the
equation on elements of S. For example, since S is a set of generators, to see (3.3a)
note that the result of applying any Qi to S is another generating set. Then, induct
on the length of a word in the Qi s to conclude the result from the application of
Qi which maps si to a conjugate of si+1 and si+1 to si.

The first relation of (3.3b) is obvious, for Qi and Qj with i and j separated,
move indices with no common support. The other formula follows from a renaming
of the indices and showing that Q1Q2Q1 = Q2Q1Q2 in its application to (s1, s2, s3):

(s1, s2, s3)Q1Q2Q1 = (s1s2s
−1
1 , s1s3s

−1
1 , s1)Q1 = (s1s2s3s

−1
2 s−1

1 , s1s2s
−1
1 , s1)

(s1, s2, s3)Q2Q1Q2 = (s1s2s3s
−1
2 s−1

1 , s1, s2)Q2 = (s1s2s3s
−1
2 s−1

1 , s1s2s
−1
1 , s1).

Finally, consider an extension of this computation.

(s1, . . . , sr)Q(r) = (s1s2s
−1
1 , s1s3s

−1
1 , . . . , s1srs

−1
1 , s1)Qr−1 · · ·Q1

= (ussss1u
−1
sss , s1s2s

−1
1 , s1s3s

−1
1 , . . . , s1srs

−1
1 ).

As usss has image the identity in the group Gr, Q(r) induces conjugation by s−1
1 in

Gr. If Q ∈ Br maps (s1, . . . , sr) to (s′1, . . . , s
′
r), then QQ(r)Q−1 gives this chain of

mappings: sss �→ sss′ �→ (s′1sss
′(s′1)

−1)Q−1 = s′1sss(s
′
1)
−1. Everything in ker(Br → Hr) is

a product of powers of elements of form QQ(r)Q−1. So, this shows (3.3c). �
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3.2. s-equivalences on Nielsen classes. The original definition of Nielsen
class is from [Fri77]. Special cases appearing in [Fri73], and many illustrating
examples related to elliptic curves in [Fri78]. They loom large in the books of
Matzat-Malle and Voelklein. The former calls them generating s-systems [MM95,
p. 26] (our r is their s) and the latter uses the name ramification type [Vö96, p. 37]
for the most closely related definition.

An old literature on simple branched covers influenced classical geometers
([Cl1872], [Hu1891]). This continued through papers of Lefschetz, Segre and
Zariski. Simple branched covers apply to the moduli space of genus g curves, knot
types and Lefschetz pencils (of surfaces). Our interest came through complex mul-
tiplication and modular curves. We found every finite group produces a modular
curve-like setup (Chap. 5 §??). S(trong)-equivalences and r(educed)-equivalences
classes on elements of Nielsen classes give geometric meanings to some valuable
group properties. These showed the Inverse Galois Problem fit very generally with
many classical problems. A reader will require time to acclimate to these.

3.2.1. Setup for Nielsen classes. Consider any cover of compact connected Rie-
mann surfaces ϕ : X → P1

z with r branch points zzz. Denote the degree of the cover
by n. Thm. 2.6 shows one way to picture how that cover arises. Choose an ordered
r-tuple of classical generators sss for π1(Uzzz, z0). Then ϕ and an ordering of the points
of X over z0 determines the image of the entries of sss in the monodromy group G
of the cover: Each si in sss maps to some gi ∈ G.

Conversely, given sss and ggg = (g1, . . . , gr) generators of G satisfying the product-
one condition g1 · · · gr = 1, interpreting sss as cuts (§2.4.3) attached according to the
branch cycle description ggg produces ϕ (Def. 2.4).

As sss runs over all classical generators, Thm. 1.8 gives this data attached to ϕ:

(3.4a) an associated group G = G(ggg);
(3.4b) a permutation representation T : G → Sn; and
(3.4c) conjugacy classes C = (C1, . . . ,Cr) of G into which entries of ggg fall in

some order (denoted ggg ∈ C).

Further, running over all possible classical generators sss, the collection of images
of sss (branch cycle descriptions ggg) that correspond to ϕ all fall in this set:

(3.5) Ni(G,C, T ) = {(g1, . . . , gr) |
r∏

i=1

gi = 1, G(ggg) = G ≤ Sn, ggg ∈ C}.

We often use Π(ggg) in place of
∏r

i=1 gi. Then, (3.5) is the Nielsen class of (r-
tuples in G) corresponding to (G,C, T ). Elements in this set are Nielsen class
representatives.

3.2.2. The s(trong)-equivalences on Ni(G,C, T ). Consider the subgroup of Sn

that normalizes G and permutes entries of C. Denote this NSn
(G,C) = NT (G,C).

For convenience we list some equivalences on a Nielsen class that will appear later.
For N any group between G and NT (G,C), let n ∈ N act on ggg ∈ Ni(G,C, T ) by

ggg �→ ngggn−1 def= (ng1n
−1, . . . , ngrn

−1).

Denote the orbits for this action by Ni(G,C, T )/N .
We reserve a special notation, for two cases:

(3.6a) Ni(G,C, T )abs when N = NT (G,C) for absolute s-equivalence classes (of
Nielsen class representatives); and
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(3.6b) Ni(G,C, T )in when N = G and T is the regular representation (acting on
cosets of the identity subgroup), for inner s-equivalence classes.

In applyings Prop. 3.2, for an element Q ∈ Br, when possible use the notation
q for its image in Hr. For all s-equivalences, Prop. 3.2 gives an action of Hr that
preserves these equivalence classes. Here is how the generator qi ∈ Hr acts on
ggg ∈ Ni(G,C, T )/N , corresponding to (3.1):

(3.7) (ggg)qi
def= (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gr), i = 1, . . . , r − 1.

As in Chap. 3 §7.1.2 denote the elements g ∈ G with (1)T (g) = 1 by G(T, 1).
Suppose G is abelian. Then, the action of q ∈ Hr permutes the entries of ggg

according to Ψr,∗(q) ∈ Sr. This holds for inner classes. We give some standard sit-

uations that generalize this using the commutator notation (g1, g2)
def= g1g2g

−1
1 g−1

2 .
Let G∗ = (G, G) = 〈(g1, g2) | g1, g2 ∈ G〉 be the commutator subgroup of G.

For G any finite group and HN G, suppose T is a transitive permutation rep-
resentation of G and TG/H is the induced representation of G/H from the cosets
of G(T, 1)/(G(T, 1) ∩ H ≡ G(T, 1) · H/H. The next lemma follows from the defi-
nitions. We will see this situation come up often. We do not assume C is a set of
conjugacy classes whose elements lie outside H. So it is possible some entries of C
will become trivial mod H.

Lemma 3.3. Mapping ggg ∈ Ni(G,C, TG) to the r-tuple with entries reduced mod-
ulo H produces a natural map ψG,C,TG;H : Ni(G,C, TG) → Ni(G/H,C/H, TG/H).
This commutes with the action of Br: ψG,C,TG;H is Br equivariant (Chap. 3 §7.1.3).

Any N between G and NSn(G,C) that also normalizes H produces an Hr equi-
variant map Ni(G,C, TG)/N → Ni(G/H,C, TG/H)/(N/H).

3.3. Normal fiber products and Galois closure. We inspect the fiber
product of two compact Riemann surfaces ϕi : Xi → P1

z by comparing two natural
choices. According to Prop. 4.9 the naive fiber product X1 ×P1

z
X2 will produce

an analytic manifold at a point (x′1, x
′
2) lying over z′ ∈ P1

z if and only if at least
one of the corresponding pairs of ramification orders ex′

i/z′ is 1, i = 1, 2. It also
showed there really should be be d = (ex′

1/z′ , ex′
2/z′) distinct points (with ramifica-

tion orders [e′1, e
′
2] over z′) in this fiber product corresponding to the pair (x′1, x

′
2).

Riemann’s Existence Theorem combinatorially gives that by forming a fiber prod-
uct in the category of compact Riemann surfaces (Prop. 3.4).

3.3.1. Fiber products of compact Riemann surfaces. For a given compact Rie-
mann surface Y let Cc

X be the category of finite covers ϕ : X → Y of compact
Riemann surfaces where a map between two ϕi : Xi → Y , i = 1, 2, is a map of
Riemann surfaces ψ : X1 → X2 that commutes with the maps to Y : ϕ2 ◦ ψ = ϕ1.
Let yyy be the union of the branch points for ϕ1 and ϕ2, and denote Y \{yyy} by Uyyy. It
is often useful to indicate lengths of disjoint cycles of an element g ∈ Sn by symbols
like (si,1) · · · (si,ti) (Chap. 3 §7.1.4).

Let ϕ0
i : X0

i → Uyyy be the restriction of ϕi over Uyyy. Compatible with Def. 1.3,
form the unramified fiber product map ϕ0

1 ×Uyyy ϕ0
2 : X0

1 ×Uyyy X0
2 → Uyyy. This may

have several components, even if each of the X0
i are connected (see and Chap. 3

§8.6.1 and§ 5.1). Thm. 7.16 uses an ordering of points above some base point y0.
With this it corresponds to components of the fiber product a pair of subgroups
H1 and H2 of π1(Uyyy, y0). The component of the fiber product corresponds to the
subgroup H1 ∩ H2. The maximal pointed cover of Uyyy through which both pr1 and
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pr2 factor comes from the subgroup 〈H1, H2〉 = H generated by H1 and H2. Then,
the monodromy group of the fiber product component defined by (H1, H2) is the
fiber product GH1 ×GH

GH2 .

Proposition 3.4. Let ϕ1 ×c ϕ2 : X1 ×c
Y X2 → Y be the extension of ϕ0

1 ×Uyyy ϕ0
2

to the unique manifold completion of X0
1 ×Uyyy

X0
2 given by Cor. 2.9. This satisfies

the categorical fiber product in the category Cc
Y .

Suppose Y = P1
z (write zzz for yyy), and 1ggg and 2ggg are respective branch cycles

relative to a classical set of generating homotopy classes for π(Yzzz, z0) and orderings
of the points Xi,z0 of Xi above z0, i = 1, 2. Branch cycles for ϕ1 ×c ϕ2 are then

((1g1, 2g1), . . . , (1gr, 2gr)) ∈ GH1 ×H GH2

given by their action on the orbit of points on the component over z0.
Let zi ∈ zzz and let x′1 (resp. x′2) be a point of Xi above zi. Assume x′k corresponds

to the orbit of kgi labeled by its disjoint cycle kg′i (of length ks′i) in the disjoint cycle
decomposition of kgi, k = 1, 2. Then, points of ϕ1 ×c ϕ2 : X1 ×c

P1
z

X2 over both
x′1 and x′2 correspond one-one with orbits of (1g′i, 2g

′
i) on pairs of letters in the

respective orbits of the cycles 1g
′
i and 2g

′
i.

Proof. Since ϕ1 ×c ϕ2 is a map of compact Riemann surfaces, it is in the
right category. To show it is a fiber product consider what happens if we have
maps of compact Riemann surfaces ϕ : W → Y , and ψi : W → Xi, i = 1, 2, so that
ϕi ◦ψi = ϕ, i = 1, 2. We only need show there is a unique map α : W → X1 ×c

Y X2

that suits the other maps. Restrict all the existing maps and Riemann surface covers
over Uyyy, and use 0 superscripts to indicate that. Our previous understanding of
fiber product produces the corresponding α0 : W 0 → (X1 ×c

Y X2)0. Now apply the
unique completion property of Cor. 2.9 to get α which then automatically has all
desired properties.

Almost everything else is a restatement of previous propositions, though we
comment further on the last paragraph of the statement. By relabeling the points
in the fibers of Xi over z0, assume with no loss that 1g

′
i acts as (a1 . . . ae1) and 2g

′
i

acts as (b1 . . . be1). The final statement says that (1g′i, 2g
′
i) has d = (e1, e2) orbits

of length [e1, e2] on the pairs {(au, bv)}1≤u≤e1,1≤v≤e2 [11.12a]. �

Definition 3.5. In Prop. 3.4, ϕ1 ×c ϕ2 : X1 ×c
Y X2 → Y is the normal fiber

product of ϕ1 and ϕ2.

Remark 3.6 (Use of the word normal). In many problems the fiber product
appears as an auxiliary construction. Whether the naive or normal is a better
choice depends on circumstances. Usually, however, the normal is best. In our
category Cc

Y it would appear we are stuck with considering only manifolds. For
higher dimensional manifolds this result does not work, because it is possible that
two manifold (ramified) covers ϕi : Xi → Pn, with n ≥ 2, i = 1, 2, have no manifold
fiber product. That is, there is no manifold completion of the fiber product with
these properties:

(3.8a) It is the expected fiber product restricted over the unramified locus.
(3.8b) It is a finite cover of Pn.

The correct extension of the Prop. 3.4 uses normal analytic sets (§8.5).
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3.3.2. Geometry of the Galois closure. Consider a cover f : Y → X of degree
n = deg(f) with an attached permutation representation Tf = T : G → Sn. When
f is an unramified cover, Chap. 3 §8.3.2 constructs the Galois closure of this cover.
We want to do the same when the cover ramifies. While the construction goes
through using either the naive or normal fiber product (§3.3), we emphasize the
latter. So, from this point, when we say fiber product of two covers, we are referring
to the normal fiber product.

When f is unramified, we took the fiber product Y n
f

def= Y n
X of ϕ, n times. Now

take the normal fiber product, so the resulting set is a manifold. Then, Y n
X has

components where each point has at least two of the coordinates identical. These
form the fat diagonal. Remove components of this fat diagonal to give Y ∗, which
(exactly as in Chap. 3 Thm. 8.9) has as many components as (Sn : G). List one
of these components as Ŷ . Points in Ŷ over the branch points no longer have the
form of an n-tuple of points in Y . The stabilizer in Sn of Ŷ is a conjugate of G.
Normalize by choosing Ŷ so the stabilizer is actually G.

Lemma 3.7. Then, ϕ̂ : Ŷ → X is Galois with group G.
If X = P1

z and the cover was in the Nielsen class Ni(G,C, T ), with T : G → Sn

a faithful permutation representation, the cover ϕ̂ has the same conjugacy classes
C, but the representation is the regular representation. The Galois cover Ŷ → Y
has group G(1) = G(T, 1) where T acts on G(1) cosets. The next lemma (from
[Fri77, Lem. 2.1]) is just the compactified version of Chap. 3 Lem. 8.8.

Lemma 3.8. The centralizer of G in NSn(G,C) induces the automorphisms of
X that commute with ϕT .

Consider any permutation representation T ′ : G → Sn′ . This provides ϕT ′ :
XT ′ → P1

z; XT ′ is the quotient X̂/G(T ′, 1) (with G(T ′, 1) as in §3.2.1).
From Thm. 2.6 the next observations follow from the analogous statements for

unramified covers in Chap. 3 §8.3. A cover (Y, ψ) is Galois if the order of Aut(Y, ψ)
is n, as big as it can be. The construction above gives a unique minimal Galois
cover Ŷ

ψ̂−→X fitting in a commutative diagram, the Galois closure diagram

(3.9)
Ŷ

ψ̂Y−→ Y

ψ̂ ↘
�ψ

X

Suppose X = P1
z, and ggg is a branch cycle description of the cover with respect

to canonical generators of π1(Uzzz, z0). The group Aut(Ŷ , ψ̂), isomorphic to G(ggg),
canonically identifies with elements of Sn̂ that centralize the image of G(ggg) in its
right regular representation where n̂ = deg(ψ̂).

For any subgroup H of Aut(Ŷ , ψ̂) let H̄ be the subgroup of π1(P1 \ D(ψ), z0)
that maps onto H. From H̄ we obtain a cover ψH : YH → P1 (Chap. 3 Thm. 8.9)
that fits in a commutative diagram

(3.10)
Ŷ

ψ̂H−→ YH

ψ̂ ↘
�ψH

P1
z

where Y → YH is Galois with group isomorphic to H. This is a version of the
classical Galois correspondence.
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Corollary 3.9. Let TH be the coset representation of the group G(ggg) corre-
sponding to a subgroup H. Then TH(ggg) = (TH(g1), . . . , TH(gr)) is a description of
the branch cycles for the cover ψH : YH → P1.

Proof. Let TH̄ be the coset representation of π1(P1 \D(ψ), z0) corresponding
to the subgroup H̄, and let Ĥ be the kernel of the map from π1(P1 \D(ψ), z0) given
by [γi] → σi, i = 1, . . . , r, as in Cor. 2.9. Recall that Ĥ is the maximal normal
subgroup of π1(P1 \D(ψ), z0) contained in H̄, and the quotient H̄/Ĥ is isomorphic
to H. Then (TH̄([γ1]), . . . , TH̄([γr])) = TH(ggg). Since the left side consists of a
branch cycle description for (YH , ψH), this concludes the corollary. �

3.4. Riemann-Hurwitz and the genus of a cover of P1
z. Let ggg correspond

to ψ : Y → Pz
1 as in Cor. 2.9. Indicate lengths of disjoint cycles of gi by the

symbol (si,1) · · · (si,ti
) (Chap. 3 §7.1.4). Points of Y corresponding to cycles of

length greater than 1 are ramified points of ψ. The index of gi, ind(gi), is the
integer

∑ti

j=1(si,j − 1) = n − ti.
3.4.1. The appearance of gggg. Consider the quantity gggg defined by the Riemann-

Hurwitz formula:

(3.11) 2(n + gggg − 1) =
∑

zi∈D(ψ)

ind(gi).

Note!: The following lemma requires Y to be connected. Chap. 3 Ex. 5.12 defines
the differential dψ of the function ψ.

Proposition 3.10. The expression tψ =
∑

zi∈D(ψ) ind(gi) − 2n is even. So,
gggg in (3.11) is an integer. Further, tψ is the degree of the divisor (dψ). Finally,
tψ = tggg depends only on Y , and not on ψ or n, and gggg = (tψ +2)/2 is nonnegative.

Proof. The determinant of (the matrix for) gi is (−1)ind(gi) (Chap. 3 §7.1.4);
check for each disjoint cycle. The product-one condition implies an even number
of gi s have determinant −1. So, for an even number of gi s, ind(gi) is odd. In
particular,

∑r
i=1 ind(gi) is even, and gggg is an integer.

Suppose {ϕα, Uα}α∈I is the coordinate chart for Y from ψ (Def. 2.8). We may
assume the local expression for ψ at y ∈ Y is ψ ◦ ϕ−1

α (zα) with ϕα(y) = 0. Then,
the leading term is auzu

α (au �= 0) and the divisor of dψ at y is yu−1. For y over z,
if z ∈ C, then u = ey. If, however, z = ∞, then u = −ey, and the divisor of dψ at
y is −ey − 1. The expression −ey − 1 summed over y ∈ Y∞ is the same as the sum
over ey − 1 − 2ey. Since

∑
y∈Y∞

ey = n (Lem. 2.1), this gives the formula.
Now use that Y is connected so that G(ggg) is transitive. We show

r∑
i=1

ind(gi) − 2(n − 1)

is nonnegative. When all the σ’s are 2-cycles the result follows if r ≥ 2(n−1). That
is immediate from the first part of Lem. 3.11. To reduce to that case, write each gi

as
∏ind(gi)

u=1 hu,i with each hu,i a 2-cycle. With hhhi = (h1,i, . . . , hind(gi),i), replace ggg by
the juxtaposition of these hhhi s: hhh = (hhh1, . . . ,hhhr). Then, hhh satisfies the product-one
condition and 〈hhh〉 is transitive. (It is Sn: Chap. 3 [9.15e].) Further, ghhh = gggg. So,
the general formula for the genus of ggg follows from the case for 2-cycles.

We have only to show gggg does not depend on ψ. If ψ∗, however, is another
function, then tψ and tψ∗ are the respective degrees of the two differentials dψ and
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dψ∗ on the compact Riemann surface Y . The result follows from the statement in
§5.3.1 that these degrees are equal. �

3.4.2. Non-negativity of gggg. Let Ni(G,C, T ) be the Nielsen class for the group
G and r of its conjugacy classes C, with T : G → Sn faithful and transitive.

Lemma 3.11 (2-cycle Braids). For ggg ∈ Ni(G,C, T ), tggg =
∑r

i=1 ind(gi) − 2n
is independent of the choice of ggg. When ggg consists of 2-cycles in Sn generating a
transitive subgroup, (tggg + 2)/2 = gggg ≥ 0.

Proof. The index of an element in Sn is independent of its conjugacy class.
Since the conjugacy classes of entries of any ggg ∈ Ni(G,C, T ) differs only by permu-
tation from any other, the expression tggg is independent of the choise of ggg.

Now apply transitivity of G(ggg) and assume ggg has entries consisting of 2-cycles.
There must be a series of n − 1 entries of ggg so that, after the first, each consists
of (i1, i2) with i1 in the support of the previous 2-cycles, and i2 is not. Apply an
element Q ∈ Br to ggg to braid these so the n − 1 entries just chosen come together
as the first n− 1 of the 2-cycles (for help, see [11.8]). Then, the product of the first
n − 1 2-cycles is an n-cycle.

Now we use the product-one condition:
∏n−1

i=1 gi

∏r
i=n gi = 1. Since

∏n−1
i=1 gi is

an n-cycle, that implies
∏r

i=n gi is also. Therefore 〈gi, i ≥ n − 1〉 is also transitive.
Now apply the previous argument to (gn, . . . , gr) to conclude there are at least n−1
of them, giving a total of at least 2(n − 1). This concludes the proof. �

Definition 3.12 (The genus). Prop. 3.10 defines the genus gψ of a compact
Riemann surface Y presented as a cover ψ : Y → P1

z.
Other books on Riemann surfaces give examples of computing gY from (3.11).

Rarely, however, do they discuss a branch cycle description of ψ and such examples
are usually abelian covers from branches of logs (Thm. 8.8 as in Prop. 2.11).

A topologist might say they have an easier proof of the Riemann-Hurwitz
formula. That suggested proof is likely dependent on having a triangulation of
Y . The formula then interprets as expressing the Euler characteristic of Y (see
Rem. 2.19). There are many ways to prove this formula. No matter what the
proof, interpreting the integer gggg, the genus of Y , is the key point.

3.5. Hurwitz spaces; inner s-equivalence and conjugacy classes. For
each s-equivalence we must consider sets of corresponding covers.

3.5.1. Notation for Hurwitz spaces. Suppose Ni(G,C) is a Nielsen class with
r conjugacy classes. Then, any cover in the Nielsen class has an attached set zzz of
r distinct branch points. Label the space of these unordered branch points as Ur.
§4.2.1 identifies Ur with (P1

z)
r \∆r/Sr. For each s-equivalence, the classes of covers

with a given zzz as branch point set is the same as the number of s-equivalence classes
in the Nielsen class.

Label the collection of equivalence classes of covers in a given s-equivalence class
by using the notation H, denoting a Hurwitz space, usually with extra decoration
to indicate the type of s-equivalence classes.

There are |Ni(G,C, T )abs| absolute s-equivalence classes of covers with branch
points zzz ∈ Ur with the data (G,C, T ) attached to them. Prop. 2.18 shows it
requires a choice of classical generators (or cuts) canonically corresond these two
sets. Denote the set of classes of Ni(G,C, T )abs covers by H(G,C, T )abs. A point
ppp ∈ H(G,C, T )abs has as a representative a cover ϕppp : Xppp → P1

z.
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Inner s-equivalence of covers, corresponds exactly to (3.6b). The following pairs
correspond to a point ppp ∈ HG

def= H(G,C)in:

(3.12) (ϕ̂ : X̂ → P1
z, G(X̂/P1

z)
α−→G).

A given such pair is quivalent to (ϕ̂′ : X̂ ′ → P1
z, G(X̂ ′/P1

z)
α′

−→G) if
(3.13) ψ̂ : X̂ → X̂ ′ with ϕ̂′ ◦ ψ̂ = ϕ̂ induces α′.

For example: Suppose g ∈ G maps X̂ → X̂, changing α by conjugation by g.
Then, composing α with g gives a cover inner equivalent to (3.12). On the other
hand, composing α with an outer automorphism of G gives a new equivalence class.

Proposition 3.13. Given a (faithful) permutation representation T : G → Sn,
there is a natural map Ψin,abs : H(G,C)in → H(G,C, T )abs by

(ϕ̂ : X̂ → P1
z, G(X̂/P1

z)
α−→G) �→ ϕ : X̂/α−1(G(T, 1)) → P1

z.

This map is |NSn
(G,C)/G)| to 1 over every point of H(G,C, T )abs.

Definition 3.14. An element ggg ∈ Ni(G,C) is a H-M (Harbater-Mumford)
representative if r is even and ggg = (g1, g

−1
1 , . . . , gr/2, g

−1
r/2).

Example 3.15 (Comparing Hr inner and absolute orbits). There is a general
problem that arises when applying prop. 3.13. Suppose ggg1 and ggg2 represent two
distinct elements of H(G,C)in that lie over the same element of H(G,C, T )abs.
When is there a q ∈ Hr that takes ggg1 to ggg2?

With Tn the standard representation of Sn, each element of H(An,C, Tn)abs has
exactly two from H(An,C)in above it. Suppose ggg is an H-M rep. from g1, . . . , gr/2

where there is α ∈ Sn \ An such that αgiα
−1 = G−1

i , i = 1, . . . , r/2. Then,
(ggg)q = αgggα−1 with q = q1q3 · · · qr−1 ∈ Hr. That solves relating the inner and
absolute Hr orbits in this case.

3.5.2. Conjugacy classes and multiplier groups. Many times one conjugacy class
will appear several times in C. It is easy to label conjugacy classes in Sn. One
tricky event is when several entries of C are distinct conjugacy classes in G(ggg) ≤ Sn,
but generate the same conjugacy class in Sn. We give easy examples here.

Suppose C is a conjugacy class in a group G consisting of elements having order
m. Then, for k ∈ (Z/m)∗ denote the kth powers of elements of C by Ck. For a
collection C of conjugacy classes use the notation Ck, k ∈ Ẑ∗ (integers relatively
prime to the order of elements in C).

Definition 3.16. Call C, conjugacy classes in G, a rational union if Ck = C
(both sides counted with multiplicity) for all k ∈ Ẑ∗. There is always a natu-
ral rationalization C′ of C: The minimal rational collection of conjugacy classes
containing C.

Let Tn be the standard representation of Sn, n ≥ 3. As in Chap. 3 §7.1.4,
indicate conjugacy classes in Sn with a simple notation. Give Ci by its cycle type:
(si,1) · · · (si,ti

), i = 1, . . . , r. As
∑ti

j+1 si,j = n, it is often (not always) convenient
to order the si,j by size: si,j ≤ si,j+1. Recall: This class is in An if and only if
n − ti (its index, §3.4) is even.

For any homomorphism ψ : H → G (containment of H in G is the standard
case) a conjugacy class C in H generates a conjugacy class CG in G: For g ∈ C,
CG is the collection of conjugates of g in G.
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Definition 3.17 (Multiplier group). Let C be a conjugacy class C in G whose
elements have order m. The multipier group of C is MC

def= {k ∈ (Z/m)∗ | Ck = C}.
The multiplier field KC is the fixed field in Q(e2πi/k) of MC.

3.5.3. Multiplier groups and fields in An. Each conjugacy class in Sn is rational.
It is more complicated for An. The following results give valuable examples.

Lemma 3.18. For a conjugacy class C in An, there are two possibilities for
CSn = (s1) · · · (st) : CG = C, or CG = C∪̇hCh with h = (1 2). The former happens
if and only if there is an even length cycle or a product of an odd number of disjoint
2-cycles that centralizes any g ∈ C. The latter happens if and only if

(3.14) all the sj s are odd, j = 1, . . . , t, and distinct.

Proof. Suppose h is either an m-cycle with m even or it is product of m
disjoint 2-cycles with m odd. Then Sn = An∪̇hAn. If h centralizes g ∈ C, then the
orbit of hAn on g is the same as that of An and CSn

= C.
Conversely, by the class equation if CSn is larger than C, some nontrivial ele-

ment of Sn \ An centralizes g. Suppose m is the length of a disjoint cycle in g and
there are tm of these. Denote by gm the product of all these disjoint m-cycles in g.
Write g as the product of these gm s running over all distinct integers m. Denote
the centralizer of (1m+1 . . . (tm − 1)m+1) . . . (m 2m . . . tmm) by Cm. Then, the
centralizer of g is isomorphic to the direct product of the Cm s.

Now we check that the group Cm is the wreath product

Z/m 5 Stm
= (Z/m)tm ×sStm

(Chap. 3 §8.4)

regarded as a subgroup of Smtm . The copy of (Z/m)tm identifies with products of
powers of the disjoint cycles in gm. A π ∈ Stm

maps (i1, . . . , itm
) ∈ (Z/n)tm to

(i(1)π, . . . , i(tm)π). Example: π = (1 2) acts in Smtm
as (1 m+1)(2m+2) · · · (m 2m),

a product of m disjoint 2-cycles. If m is even then Cm contains an m-cycle, that is
not in Amtm . If m is odd, but larger than 1, a 2-cycle π ∈ Stm acts as a product of
m disjoint 2-cycles in Amtm

. So, Cm is in Amtm
if and only tm is 1 and m is odd.

That concludes the proof. �
Assume g ∈ C with CSn = (s1) · · · (st) satisfies (3.14), the only possible non-

rational conjugacy classes in An. The next proposition checks which of those are
rational when C = (n) (n is odd); [11.18b] outlines the general case [Fri95b, p. 332].

Recall: pu exactly divides n (written pu||n) if pu divides n, but pu+1 does not.
Also, use Euler’s Theorem that if p is an odd prime, the invertible integers (Z/pu)∗

(of Z/pu) is a cyclic group.
Proposition 3.19 (Irrational Cycles). Consider the case n > 4 is odd and

g ∈ C with CSn = (n). Suppose n is not a square. Let J be those primes p that
exactly divide n to an odd power pu(p). For any p ∈ J , let k ∈ (Z/n)∗ have these
properties: its image in (Z/pu(p))∗ generates this cyclic group; and its image in
(Z/p′u

′
)∗ is 1 for primes p′ �= p that divide n. Then, gk and g are not conjugate in

An: C is not a rational conjugacy class.
Denote

√∏
p∈J(−1)(p−1)/2p by αn. For all odd n, KC = Q(αn).

Conversely, if n is an odd square, gk is conjugate to g in An for all k ∈ (Z/n)∗:
C is a rational conjugacy class.

Proof. Suppose n is not a square. With k (and p ∈ J) as in the statement,
we show gk and g aren’t conjugate in An. With no loss, g = (1 . . . n). So gk maps
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i �→ i+k mod n, i = 1, . . . , n. Multiplication by k gives a permutation τk of the
integers modulo n. Then, τ−1

k gτk equals gk:

(ki)τ−1
k gτk = (i)gτk = (i + 1)τk = ki + k.

We characterize those k with τk not in An. Apply the Chinese remainder
theorem to write (Z/n)∗ =

∏t
i=1(Z/pui

i )∗ with p1, . . . , pt distinct (odd) primes. So,
it suffices to check if τk ∈ An for k = kkki = (1, . . . , 1, ki, 1, . . . , 1); the only non-
identity entry is ki, a generator of the cyclic group (Z/pui

i )∗, in the i-th position.
Consider what happens with k equal (k1, 1, . . . , 1).

First, assume t = 1, u1 = u and k1 = k. Consider the cycle structure of τk

Z/pu. Multiplication by k on integers of Z/pu exactly divisible by pi, i < u, gives
one orbit of length pu−i − pu−i−1. For each i between 0 and u − 1, this cycle has
even length—not in An. (The orbit for i = u has length 1.) Thus, the permutation
is a product of u elements not in An (and it fixes exactly one integer). The total
permutation from multiplication by k is in An if and only if u is even.

For the general case, write Z/n as Z/pu1
1 × Z/n′. Multiplication by k is the

identity on the second coordinate. Thus, it stabilizes each coset Z/pu1
1 × k′ with

k′ ∈ Z/n′. In particular, τk is the product of n′ elements coming from the first case
above. Thus, τk ∈ An if and only if u1 is even. The converse comes by noting it
suffices to check the elements kkki above.

Finally, we identify the field Q̂n. Identify the kernel of µ : (Z/n)∗ → Z/2 by
k ∈ (Z/n)∗ maps to τk mod An. In the above notation, kkki goes to 1 if and only if

i ∈ J . The unique quadratic extension of Q inside Q(ζpj ) is Q
(√

(−1)(pj−1)/2pj

)
.

Conclude by noting the kernel of µ is of index 2 in (Z/n)∗ and it fixes αn. �

Example 3.20. Suppose C1, C2 and C3 are respectively the conjugacy classes
of the 5-cycles in A5 given by g1 = (1 2 3 4 5), g2 = (1 3 5 2 4) and g1 again. Then,
C1, C2, C3 is not a rational union because the conjugacy class of g1 appears with
multiplicity 2, while its square appears only with multiplicity 1. The collection
C′ = (C1, C2, C1, C2) is its rationalization.

Example 3.21 (Rational conjugacy classes in A9). The conjugacy classes of
A9 that don’t remain the same in S9 are those that become (1)(3)(5) of (9) in S9.
In general, counting the partitions of n into distinct odd integers is a nontrivial
combinatorial business (see [11.18d]). [Al99] says the number of partitions of n by
odd distinct integers equals partitions of n with all parts �= 2, at least 6 apart and
at least seven apart if both parts are even. For n = 25 this count is

12 = |(25), {(i, 25 − i), 1 ≤ i ≤ 9, i �= 2, (1, k, 25 − k − 1), 7 ≤ k ≤ 9}|.
According to Prop. 3.19, there are two rational conjugacy classes A9 that be-

come (9) in S9. From [11.18b] the two conjugacy classes C for which CSn = (1)(3)(5)
are not rational and MC = Q(

√
−3 · 5).

4. Applications of the Existence Theorem

This section should surprise the reader at how simple group theory, starting
with dihedral groups, reveals serious classical topics. We develop two skills.

• Creating notation for calculating collections of covers.
• Finding algebraic functions to give coordinates on such collections.
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For any group G denote by Aut(G) the full set of automorphisms of G, and
by Inn(G) the autmorphisms induced by conjugation by G. The first nonabelian
group that comes up in Galois theory is the dihedral group. Prop. 2.11 shows all
abelian covers are algebraic. Covers ϕ : X → P1

z with dihedral monodromy group,
even when X has genus 0, are not obviously algebraic. Part of Abel’s Theorem
is equivalent to displaying functions that show this. There is more to such covers
than one would expect from its group theory alone.

We start slowly with dihedral covers, because there is so much history in them,
especially about coordinates. §4.1 is a case that function theoretically is almost
trivial, though its applications require careful coordinates.

4.1. Dihedral —a ka Tchebychev —polynomials. Suppose a degree n
cover ϕ : X → P1

z has genus 0 (gX = 0) and branch cycles ggg = (g1, . . . , gr) (relative
to some choice of classical generators) with at least one totally ramified place.
That means some gi, say gr, is an n-cycle in G(ggg) ≤ Sn. At first examples use the
standard representation Tn of Sn restricted to G(ggg). Apply Riemann-Hurwitz to
conclude

∑r−1
i=1 ind(gi) = n − 1.

4.1.1. Cyclic covers and Redei functions. An element of Sn has index n − 1
if and only if it is an n-cycle. We draw conclusions from this and the product-
one condition, Π(ggg) = 1. If there is another n-cycle among the branch cycles,
then r = 2. By conjugating by an element of Sn we may take g1 = (1 . . . n)
and g2 = g−1

1 . There is unique absolute Nielsen class of genus 0 covers with at
least two n-cycles: Ni(Z/n,Cn,n, Tn)abs. Further, in that class there is exactly one
absolute s-equivalence class representing the Nielsen class: C consists of C and
C−1, a conjugacy class in Z/n and its inverse. The case n = 2 is trivial.

For n ≥ 3, there are ϕ(n)/2 inner Nielsen classes of such covers,

Ni(Z/n, (Cj ,C−j))in, with (j, n) = 1, j ≤ n/2.

As C contains one element, there are two inner s-equivalence class representing each
Nielsen class: One with g ∈ C (resp. g−1 ∈ C−1) the branch cycle for z1 (resp. z2);
another with the branch cycles switched.

These abelian covers we can produce by hand. Cases like this where G has a
nontrivial center present special problems, as we’ll see later. Just consider P1

w → P1
z

by w �→ wn: 0 and ∞ map respectively to 0 and ∞. Put the branch points
anywhere using α ∈ PGL2(C) (say α = z−z1

z−z2
) that maps z1, z2 to 0,∞. Then,

w �→ α−1((α(w))n) gives a representing cover ϕC,C−1,zzz : P1
w → P1

z in the absolute
s-equivalence class with branch points zzz = {z1, z2}. Further, it is zi that maps to zi,
i = 1, 2, by ϕC,C−1,zzz. We’ve explicitly written a representative of very s-equivalence
class of covers in the Nielsen class.

§4.2.1 discusses r-equivalence classes. In this equivalence, all the covers ϕC,C−1,zzz

are equivalent. There is just one element in any Nielsen class, for we can put the
branch points where we want, and switch the branch points, too. Recall: P1

z(Fq)
the values on the Riemann sphere in the finite field Fq (Chap. 2 [9.19]).

Example 4.1 (Redei functions). The problem solved by Redei functions is
to consider the collection of covers ϕC,C−1,zzz up to changing ϕ to α−1ϕ ◦ α with
α ∈ PGL2(Q). Assume n ≥ 3 is odd. That is we trying to describe rational r-
equivalence repesentatives in this Nielsen class. If ϕ has coefficients in Q, then the
set {z1, z2} is a Q-set (see Lem. 6.4). [LN83] discusses Redei functions in detail.
They give the easiest examples of exceptional functions f : P1

w → P1
z that map
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one-one when restricted to P1
w(Fq), for infinitely many prime powers q. They are

perfect for standard cryptography applications, as are Dickson polynomials and
other dihedral cover examples.

The branch points {0,∞} and {z1, z2 | z1 =
√

m, z2 = −√
m, m a square-free

integer represent the Q absolute r-equivalence classes [11.15a].
4.1.2. Twisted Chebychev —a ka Dickson —polynomials. Here are the condi-

tions for absolute Nielsen classes of Chebychev covers ϕ : X → P1
z:

(4.1a) X has genus gX = 0 and deg(ϕ) is an odd prime p;
(4.1b) G ≤ Sp is a subgroup of Z/p ×s(Z/p)∗ def= Ap (acting on Z/p);
(4.1c) C has an entry, say Cr, that is a p-cycle; and
(4.1d) ϕ is not a cyclic cover.

Tacitly the permutation representation throughout is the degree p representation

Tp on Z/p. Recall, we represent elements of Ap by 2 × 2 matrices
(

a 0
b 1

)
with

multiplication from matrix multiplication (Chap. 3 Rem. 7.4). Using §4.1.1, we
have just one p-cycle of conjugacy classes. Elements of order p are conjugate in

Ap to
(

1 0
1 0

)
. Denote this conjugacy class Cp. The other conjugacy classes in Ap

correspond one-one with non-identity elements of (Z/p)∗. Denote the corresponding
conjugacy class to a ∈ (Z/p)∗ by Ca. For A a subgroup of (Z/p)∗, Z/p ×sA is the
corresponding subgroup of Ap. Prop. 4.2 and Cor. 4.3 is from [Fri70].

Proposition 4.2. There is only one absolute Nielsen class satisfying (4.1).
It is Ni(G,C)abs with C = (C−1,C−1,Cp)

def= C(−1)2·p and G = Z/p ×s 〈−1〉.
Further, there is one element in this Nielsen class. More generally, for any odd
n > 0, there is a unique absolute representative in the absolute Nielsen class of
Ni(Dn,C(−1)2·n)abs.

Proof. With no loss in an absolute Nielsen class take branch cycles so that

ggg has gr =
(

1 0
1 0

)
. The other gi s are in Ca, a ∈ (Z/p)∗ \ {1}, which acts as

multiplication by a on Z/p. If ma is the order of a, then this action has p−1
ma

orbits
of length ma, and one orbit of length 1. The index of such a gi is thus p−1

ma
(ma −1).

Now apply Riemann-Hurwitz (3.11) using that gX = 0: p−1 =
∑r−1

i=1
p−1
mai

(mai
−1).

The expression m−1
m (m ≥ 2) is at least 1

2 , with equality if and only if m = 2
(ma = −1. Since r − 1 ≥ 2, the result is r − 1 = 2, and gi ∈ C−1, i = 1, 2.

Now we see there is only one element in this Nielsen class. Fix g3, and take g1 =( −1 0
b 1

)
, with g2 determined by the product-one relation: g1g2g3 = 1. Normalize

further by conjugating the 3-tuple by a power of g3:(
1 0
−k 1

)( −1 0
b 1

)(
1 0
k 1

)
=

( −1 0
b+2k 1

)
.

So, by choosing k so b + 2k = 0 mod p gives a unique representative of Ni(Z/p ×s

〈−1〉,C(−1)2·p)abs.
�

Up to reduced equivalence, we may place the three branch points zzz = {z1, z2, z3}
by whatever three points we want. Given ϕ : X → P1

z (unique up to equivalence)
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in this equivalence class, we find a polynomial Tp(w) with branch points −2,+2,∞
reduced equivalent to it. Further, from the branch cycle description there is exactly
one unramified point of X over each of −2 and +2 (use the corresponding between
points over branch points and disjoint cycles of the branch cycles). So, by ordinary
equivalence, put these at −1,+1,∞ respectively. This is a less trivial case than
previously for producing a function on the covers to show they are algebraic.

Corollary 4.3.

Proof. There is one element in the absolute s-equivalence classes of polyno-
mials with dihedral group cover. Suppose f is a monic degree n polynomial over F̄
that gives a branched cover P1

T → P1
z with two finite branch points z1, z2 ∈ F̄ , both

ramified of order 2. The following observations occur in [Fri70]. The geometric
Galois group of the Galois closure is a dihedral group. If n is odd, then the Nielsen
class of the cover is Ni(Dn,C

n·2
n−1

2 ·2
n−1

2
). Further, since the normalizer of Dn in

Sn has no center, any cover with branch points {∞, z1, z2} in this Nielsen class is
determined up to a unique isomorphism. So, if the unordered branch points are
defined over F , then the cover is represented by a unique polynomial over F . As
z1 + z2 are defined over F , changing z to z − ( z1+z2

2 ) normalizes further to assume
the branch points sum to 0. Call these normalized Chebychev polynomials. From
these observations the following are clear. For any d ∈ F ∗, and odd positive inte-
ger n define the Dickson Polynomial Dn(a, w) to be an/2Tn(a−1/2w). As a varies
we get all the normalized Chebychev polynomials. Clearly two such polynomials
are isomorphic over F if and only multiplication by some b ∈ F maps the branch
points of one to the other. �

If, however, n is even, the conjugacy classes defining the Nielsen class are
distinct and the branch points all are defined over F . A compensating fact is that
NSn

(Dn) has a nontrivial centralizer ZSn
(Dn) = 〈(1 . . . n)n/2〉 in Sn (multiplication

by -1 leaves 1 + n/2 invariant modulo n. [Tu95] [Wel69] [LN73] [Mu80-02]

4.2. PGL2(C) action, r-equivalence and hyperelliptic covers. §3.5 ex-
plains the sets of covers in H(G,C, T )abs and other s-equivlaence classes. The
group PGL2(C), as one-one analytic maps of P1

z enters immediately to give from
each s-equivalence class, a new equivalence (r(educed)-equivalence) from it.

4.2.1. Pr as (P1
z)

r/Sr and r-equivalence. Identify the elements of Pr (Chap. 3
§4.3) as nonzero monic polynomials in a variable z of degree at most r. For example,
if (a0, a1, . . . , ar) represents a point of Pr, and z0 �= 0, by scaling it by 1

z0
assume

with no loss z0 = 1. Then, take the polynomial associated to this point as zr +∑r−1
i=0 (−i)r−iar−iz

i. There is a natural permutation action of π ∈ Sr on the entries
of (P1

z)
r: π : (z1, . . . , zr) �→ (z((1)π, . . . , z(r)π). Denote the set of distinct r-tuples of

elements of (P1
z)

r by Ur = (P1
z)

r \ ∆r. Call ∆r the fat diagonal: The locus were
two or more equal entries.

Proposition 4.4. Represent the natural quotient map

Ψr : (z1, . . . , zr) ∈ (P1
z)

r �→ {zzz} ∈ (P1
z)

r/Sr

by sending (z1, . . . , zr) to the polynomial
∏r

i=1(z − zi) in z: If zi = ∞, replace
(z − zi) by 1. This canonically identifies Ψr with degree n! analytic map of complex
manifolds (P1

z)
r → Pr [11.14a]. Identify unordered sets of r branch distinct points
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as an affine subspace Ur of Pr; the complement of the classical discriminant locus
Dr identified with the image of ∆r [11.14b].

If ϕ : X → P1
z represents an s-equivalence class of covers in a given Nielsen

class Ni, then the collection {α ◦ ϕ : X → P1
z}α∈PGL2(C) gives the set of covers

r-equivalent to ϕ. To any cover ϕ : X → P1
z, associate the unordered collection of

its branch points zzz ∈ Pr. This branch point map produces a map we will never lose
sight of in the rest of this book.

Suppose we have a group G, conjugacy classes C in G, a permutation repre-
sentation T : G → Sn and G ≤ N ≤ NSn(C). For covers in the set of r-equivalence
classes use the notation H(G,C, T )/N rd. We have a special notation Habs,rd and
Hin,rd for the associated reduced absolute and inner equivalence classes of covers.

The action of α ∈ PGL2(C) on (P1
z)

r by (z1, . . . , zr) �→ (α(z1), . . . , α(zr)) maps
Ur into itself.

Proposition 4.5. The actions of PGL2(C) and of Sr on Ur commute. This
gives a complex analytic map Ψrd

r : (P1
r)

r → PGL2(C)\(P1
r)

r/Sr
def= Jr factoring

through the space PGL2(C)\(P1
r)

r def= Λr. For all r the spaces Λr and Jr are normal
affine varieties, though for r ≥ 5, neither is a manifold.

Then, Ψrd
r induces a natural map of any Hurwitz space H(G,C, T )/N rd to Jr.

Proof. [11.14c] �

Refer to the induced map Λr → Jr also as Ψrd
r when that causes no confusion.

Corollary 4.6. The space J4 (resp. Λ4) naturally identifies with P1
j \ {∞}

(resp. P1
λ \{0, 1∞}) and Λ4 → J4 compactifies to a Galois covering map with group

S3, ramified over j = 0, j = 1 and j = ∞ with branch cycles identified with
((1 3 5)(2 4 6), (1 2)(3 4)(5 6), RETURN .

4.2.2. Hyperelliptic covers. For G ≤ Sn denote its intersection with An by
+G: Indicating the elements of positive sign in this representation. For any degree
n cover ϕ : X → Y , its monodromy group Gϕ is a subgroup of Sn. Similarly,
for any finite group G consider the collection of faithful transitive permutation
representations (up to permutation equivalence, +PG that give an embedding of G
in an alternating group. In that case

Lemma 4.7. If G has no normal subgroup of index 2, then +PG consists of all
faithful permutation representations of G. This holds if G is generated by elements
of odd order, or if G is 2-perfect.

Conversely, suppose HN G and has index 2. Then, RETURN

Proof. +
T G = G for each T ∈ +PG if and only if consists of faithful permuta-

tion representations. �

Example 4.8 (H-M reps. and r-equivalence). Recall the definition of H-M
reps. from Def. 3.14. In the Nielsen class Ni(G,C, T )abs, consider an H-M rep.
Suppose r = 4. Reduced equivalence when r=4 comes about because of the linear
fractional transformations that flip any two pairs of branch points. In particular, the
setup for q1q

−1
3 action on an H-M rep. takes the representative ggg = (g1, g

−1
1 , g2, g

−1
2 )

to (g−1
1 , g1, g

−1
2 , g2). The action of this element fixes the absolute class ggg if there is

some element g ∈ NSn
(C) that conjugates the first 4-tuple to the second. (If we

were doing inner r-equivalence, g would be in G.)
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In all cases you get the following conclusion about any cover ϕ : X → P1
z

(in an H-M rep. orbit) if this happens. There is another map ϕ′ : X → P1
z and

α : P1
z → P1

z having order 2, so α ◦ ϕ′ = ϕ. Take P1
wtobethequotientofP1

z by α:
Giving a map µ : P1

z → P1
w branched at two points. Example case: the cover is

cyclic of odd prime degree p. The degree 2 cover, however, is not a Galois cover
with group Dp.

4.3. Involution dihedral covers. Last week we produced modular curves
from dihedral involution-covers. Today (Wed. Mar. 19, at 3PM) I’ll generalize this
to a much larger class of j-line covers that we may compare with modular curves.
This retains observations from Riemann’s generalization of Abel’s Theorem.

We do this by reflecting on application valuable properties of ALL finite groups.
The analog: Dihedral groups are to modular curves as general p-perfect groups are
to generalizing j-line covers. Modular curves come in series related to a prime
p. The analog says each finite group comes with a series related to any prime p
dividing its order.

This approach to the regular version of the Inverse Galois problem has a valu-
able structure.

1. It includes the most famous theorems in diophantine geometry as special
cases.

2. It exposes difficult modular representation problems beyond what group
theorists classically study. (John Thompson noted some are analogs to such topics
as the Golod-Shafarevich class field tower.)

3. Modular representation theory interprets simple properties of the Modular
Tower levels.

Once we get by the initial definitions (like the mapping class group), the re-
lation to group theory comes clear. We saw last time that modular curves are
algebraic precisely because of the relation between j-invariants that comes from
the dihedral involution realizations. So, parameter spaces for dihedral involutions
covers are algebraic using specific coordinates from Abel’s Theorem. The next step
is developing analogs of this to Modular Towers through theta nulls. I’ll conclude
today with the first topic in that direction – half-canonical classes.

2. Finding all abelian covers of a compact surface is equivalent to finding all
functions on the surfaces. How is it tacit in this description to know the surface is
algebraic? Example: From the fundamental group, you know about abelian covers.
Yet, ... The distinction between hyperelliptic and general: You know a hyperelliptic
surface is algebraic.

5. Braid orbits

Take r = 4 and G = S5. Let C1 and C3 be the conjugacy classes of 2-cycles
in S5, C2 the conjugacy class of a 3-cycle and C4 the conjugacy class of a 5-cycle.
Consider the Nielsen class Ni(S5,C)/S5 = Ni+:

{ggg = (g1, . . . , g4) | g1g2g3g4 = 1, 〈ggg〉 = S5 and ggg ∈ C}/S5.

(5.1a) How many elements are in Ni+?
(5.1b) Let ψ : π1(Uzzz) → S5 map a fixed set ḡ1, . . . , ḡ4 into some element of

Ni+. Why is the cover corresponding to such a homomorphism a genus 0
compact Riemamn surface minus a finite set of points?
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(5.1c) Represent S5 on the 10 unordered distinct pairs of integers from {1, . . . , 5}:
T : S5 → S10. Example: (1 2 3 4 5) has two orbits on these 10 pairs. What
are the lengths of the disjoint cycles of T applied to an element of the
conjugacy class of a 3-cycle in S5?

(5.1d) Compose ψ with T to get T ◦ ψ = ψ′ : π1(Uzzz). What is the genus of the
curve at the top of the corresponding cover X = Xψ → P1

z?
(5.1e) Does the isomorphism class of Xψ depend on ψ (assuming ψ is in the

Nielsen class Ni+)?

5.0.1. Genus of the corresponding degree 10 covers. Let ggg be a branch cycle
description of the cover from Ni+ in [11.20]. Compute the genus g of +T (2)

ppp from
Riemann-Hurwitz:

(5.2) 2(10 + g − 1) =
4∑

i=1

ind(R(gi)).

Suppose g1 and g3 are 2-cycles from S5. Then, R(gi) has shape (2)(2)(2) in the
representation R, i = 1, 3. Similarly, if g2 is a 3-cycle, R(g3) has shape (3)(3)(3).
Finally, R(g4) has shape (5)(5). Thus, the total contribution to the right side of
(11.21) is 2 · 3 + 6 + 2 · 4 = 20 and g = 1.

Next: Compute Ni+ modulo conjugation by S5. Choose S5 representatives
with g4 equal g∞ = (1 2 3 4 5)−1. Divide Ni+ into two sets T1 and T2: ggg ∈ T1 has
g1 and g2 with no integers of common support, and ggg ∈ T2 has g1 and g2 with
one integer of common support. Conjugate by a power of ggg∞ to assure elements
of T1 have g1 = (1 j) with j = 2 or 3. Similarly, elements in T2 have 1 as common
support of g1 and g2. From this, list Ni+,abs.

5.0.2. Covers with group A5. (3)(3)(3)(5): Suppose g3 = (1 2 3).

(5.3a) Ramification: g1g2 is (2)(2), assume missing integer is 1, so to get product
a 5-cycle: may assume g1g2 is (2 5)(3 4). Now everthing is fixed and need
only count number of ways to write g1g2 is a product of two three cycles.
Hint: Products of two 3-cycles giving (2 5)(3 4): You get one element from
(4 2 5)(2 3 4). Now conjugate the pair ((4 2 5), (2 3 4)) by the centralizer of
(2 5)(3 4), the group 〈(2 5)(3 4), (2 4)(3 5)〉.

(5.3b) If g1g2 is (3), then conjugate by 〈g3〉 to assume common integer is 1, and
g1g2 = (1 4 5). Hint: Take (g1, g2) = ((1 4 3), (1 3 5), and then conjugate
by 〈(2 3), (1 4 5)〉.

(5.3c) If g1g2 is (5). Then, product can’t be of type (2)(3) (Riemann-Hurwitz),
and have only to assure the (5) times g3 doesn’t fix anything. That
means can’t have 2 �→ 1, 3 �→ 2 or 1 �→ 3. Also, since by conju-
gation by 〈(4 5), (1 2 3)〉 can assume (1 5 ? ? ?) resulting in (1 5 2 4 3) or
(1 5 3 2 4). Hint: For each of (1 5 2 4 3) or (1 5 3 2 4), we need to count
all the ways to write this 5-cycle as a product of two 3-cycles. For
(1 2 3 4 5), assume the integer 1 is the common integer to the 3-cycles.
So, (g1, g2) = ((1 2 3), (1 4 5)). Then, by conjugating by 〈(1 2 3 4 5)〉, gives
the five cases where g1 and g2 have any desired integer in common.

(5.3d) Up to equivalence, there are exactly 4 covers from a), 6 covers from b)
and 10 covers from c), or 20 total covers. Also, by applying powers of q1

to case c) you get 10 total in two orbits of length five. Same for b), two
orbits of length 3, and for a), two orbits of length two.
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5.0.3. Non-rigid An covers. Consider n ≥ 5, odd and squarefree. Let C be
conjugacy classes of (g1, g2, g3) ∈ A3

n with g1 = (1 2)(3 4), g2 = (1 3 5 6 7 . . . n)
and g3 = (1 2 . . . n)−1. Check: Geometric monodromy is An. Representatives for
conjugation of Sn on Ni(Sn,C)/Sn, i = 3, . . . , (n + 1)/2:

ggg′j = ((1 2)(j j+1), (1 3 . . . j j+2 j+3 . . . n), g′3).

RETURN

Question 5.1. Exists f : P1
y → P1

z in Q[y]?

If yes, derivative is g(y) = (y − a)(y − b)yn−3 ∈ Q[y]. Conclude: a, b either in
Q or conjugate over Q. Further f(x) =:

yn/n − (a+b)yn−1/(n−1) + abyn−2/(n−2) + d;

and f(a) = f(b). With d ∈ Q, b/a = α, simplify: (n − 2)(αn − 1) = n(αn−1 − α).
Divide by α − 1:

hn(α) = (n − 2)αn−1 − 2(α + · · · + αn−2) + (n − 2),

divisible by (α − 1)2. Then, f over Q exists when ∈ Q[α] of degree 2 divides
hn(α)/(α − 1)2. Mathematica: hn(α)/(α − 1)2 irreducible over Q for odd n ≤ 31.

5.1. Nontrivial components of fiber products.

5.2. Reduced Nielsen classes and mapping class orbits. Automorphisms
of ϕ̂ identify with the centralizer of G in NR(G,C). Point over z0 gives G(X/P1

z)
α−→G.

A ψ̂ (in (3.12)) is unique if G has no center: There exists a unique total family

(5.4) T in
G,C = T in → Hin × P1

z,

Hin is a fine moduli space. The (minimal) field of definition of T in
ppp → ppp × P1

z is
Q(ppp) [FV91].

Proposition 5.2. Get (G,C) regular realizations over Q from ppp ∈ Hin(Q).
Necessary: Hin has a Q component (C is a rational union).

5.2.1. Reduced Nielsen classes. Notation for M4 generators: γ0 = q1q2, γ1 =
q1q2q1, γ∞ = q2. Product one:

1 = q1q2q1q1q2q1 = γ2
1 = q1q2q1q2q1q2 = γ3

0 .

Compute Qi s [Fri90]:

Q1 = (2 5 3 6 4)(7 9 8), Q2 = (1 4 9 8 5)(3 6 7), Q3 = (2 5 3 6 4)(7 9 8).

Consider w-equivalence classes Ni(A5,C34)abs/Q for Ni(A5,C34)abs. Action
of M4 = H4/Q produces a (ramified) cover Habs,rd → P1

j \ {∞}. Compactify to
ϕ̄abs,rd : H̄abs,rd → P1

j with branch cycles (γ′0, γ
′
1, γ∞) [Fri99, §7.4]:

γ′0 = (2 1 4)(3 7 8)(5 6 9), γ′∞ = (1 4 9 8 5)(3 6 7).

Note: The monodromy group is A9. This is a cover with (0, 1,∞) as branch points;
the cusp widths are 1, 3 and 5.
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5.2.2. Organizing braid orbits with the sh-incidence matrix. First take r = 4.
The sh-incidence matrix summarizes a pairing using sh on γ∞ orbits.

For a general reduced Nielsen class, list γ∞ orbits as O1, . . . , On. The sh-
incidence matrix A(G,C) has (i, j) term |(Oi)sh ∩ Oj |. Since sh has order two on
reduced Nielsen classes, this is a symmetric matrix. Equivalence n × n matrices A
and TAtT running over permutation matrices T (tT is its transpose) associated to
elements of Sn. List γ∞ orbits as

O1,1 , . . . , O1,t1 , O2,1 , . . . , O2,t2 , . . . , Ou,1 , . . . , Ou,tu

corresponding to M̄4 orbits. Choose T to assume A(G,C) is arranged in blocks
along the diagonal.

Lemma 5.3. If Aj is the jth block of A(G,C), then Aj doesn’t break into smaller
blocks. So, M̄4 orbits form irreducible blocks in the sh-incidence matrix.

Proof. With no loss assume one M̄4 orbit and two blocks, with orbit listings
as O1, . . . , Ok, Ok+1, . . . , Ot. As, however, there is one orbit, for some j ≤ k,
|(Oi)sh ∩ Oj | �= 0 for some i > k. This contradicts there being two blocks. �

In practice it is difficult to list the γ∞ orbits. So, we start with the H-M reps.,
apply sh, then complete the γ∞ orbits and check |(Oi)sh ∩ Oj |. Sometimes we’ll
then be done. The case (A5,C34) illustrates this. Denote (as above) the γ∞ orbits
of ggg1 and ggg2 by O(5, 5; 1) and O(5, 5; 2); γ∞ orbits of

((5 1 3), (2 4 5), (1 5 4), (1 2 3)) and ((3 2 4), (5 1 3), (1 5 4), (1 2 3))

by O(3, 3; 1) and O(3, 3; 2); and of (ggg1)sh by O(1, 2).

Table 1. sh-Incidence Matrix for Ni0

Orbit O(5, 5; 1) O(5, 5; 2) O(3, 3; 1) O(3, 3; 2) O(1, 2)
O(5, 5; 1) 0 2 1 1 1
O(5, 5; 2) 2 0 1 1 1
O(3, 3; 1) 1 1 0 1 0
O(3, 3; 2) 1 1 1 0 0
O(1, 2) 1 1 0 0 0

5.2.3. The sh-incidence matrix for general r. For general r, denote q1 · · · qr−1

at the Hurwitz monodromy level to be the shift shr, so sh4 is what we call the shift
above. Ideas for r = 4 generalize to indicate cusp geometry for general r.

The element shr plays the role of a shift in two ways. Consider an r-tuple
σ̄σσ = (σ̄1, . . . , σ̄r) of free generators of Fr. The effect of shr on σ̄σσ is to give

(σ̄σσ)q1 · · · qr−1 = (σ̄1σ̄2σ̄
−1
1 , . . . , σ̄1σ̄rσ̄

−1
1 , σ̄1σ̄1σ̄

−1
1 ).

In specializing to a Nielsen class the effect of shr is to the shift the Nielsen class
representative entries by 1. Iterate this r times to see the effect of shr

r is conjugation
on σσσ by the product σ̄1 · · · σ̄r of these generators.

Such a conjugation commutes with the action of the braid group. So we have
an interesting interpretation for the action of conjugating by shr on the generators
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q1, . . . , qr. Define q0 to be sh−1
r q1shr. Then, conjugation by shr on the left of the

array (q0, q1, . . . , qr−2, qr−1) maps its entries to

shr(q0, . . . , qr−1)sh−1
r = (q1, q1q2q1q

−1
2 q−1

1 , q1q2q3q2q
−1
3 q−1

2 q−1
1 , . . . )

= (q1, q2, . . . , qr−1, q0).

To see the effect of conjugation of shr on qr−1 use that shr
r is in the center of Hr

(or of Br). Then, q0 = shr
r(q0)sh−r

r = shrqr−1sh−1
r .

Denote qr−1qr−2 · · · q1 by sh′r. Notice (sh′r)
r has exactly the same effect on σσσ

as does shr
r. In Hr use that q1 · · · qrqr · · · q1 = 1 to see shr

r(sh
′
r)

r = 1, so shr
r = z

has its square equal to 1. When r = 4 the group M4 is exactly Hr/〈sh4
4〉 = Hr/〈z〉.

An especially handy description of z in this case is q1q
−1
3 . In general there is a

shr-incidence matrix. As in the case r = 4, it suffices to choose the image of qv

in M̄r for some value of v. It doesn’t make any difference which v, though for
r = 4 it was convenient to take v = 2. Call the resulting element γ∞. List the γ∞
reduced orbits as O1, . . . , Ot and define A(G,C) to be the matrix with (i, j) term
|(Oi)shr ∩ Oj |. For general r it won’t be symmetric.

6. Coordinates and covers

We will use covers of P1
z as a record of an algebraic relation in one variable.

Finding convenient ways to label such covers is necessary for applications. The test
for the effectiveness of the labeling is how well it answers old questions and helps
formulate new approaches to old topics. The first natural label to attach to a cover
is its unordered set zzz of branch points. We know a lot about an r branch point
cover if we know its Nielsen class and its branch points. Yet in practise that isn’t
enough information to answer questions that have guided 200 years of intensive
work on genus 1 curves. The following points related to coordinates will occur in
the remainder of this chapter.

(6.1a) Relation and implication of the definition of algebraic cover of P1
z in

Chap. 2 to that of cover in §2.
(6.1b) Genus 0 dihedral involution covers (of P1

z) correspond to rational functions
P1

w → P1
z and implications of this for explicitly presenting genus 0 and

genus 1 covers of P1
z.

(6.1c)
(6.1d) Isomorphism classes of 1-dimensional complex tori correspond to PGL2(C)

equivaleces classes of points of Ur, and its analog for all Nielsen classes.
(6.1e) The universal covering space of Uzzz is the upper half plane and related

examples of uniformization.

6.1. Algebraic covers and projective space. Chap. 2 (1.1) and (1.2) gave
two definitions of analytic function f(z) being algebraic function and related by an
equation m(w, z) = 0 to z. From this Chap. 3 Prop. 3.12 preduced an unramified
cover ϕ0 : X0 → Uzzz. Its key point is that there are n = degw(m) distinct values w′

for which m(w′, z′) = 0 for z′ ∈ Uzzz.
Example 6.1. From Chap. 2 §8.2 (see Chap. 3 4.3.3), a genus 1 degree 2 cover

ϕ : X → P1
z is algebraic. The unique cover of Uzzz up to s-equivalence (§2.1.2) is the

algebraic set X0
zzz = {(z, w) | m(z, w) = 0} with m(z, w) = w2 −

∏4
i=1(z − zi). If one

of the zi s is ∞ replace z − zi by 1. Since the completion of X0 to a ramified cover
is unique, this also gives ϕ : X → P1

z up to s-equivalence. Abel’s Theorem §7.6
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shows they are also 1-dimensional complex tori. It further shows all 1-dimensional
tori are algebraic. RETURN How can we use this to see all genus 1 surfaces are
complex tori, and that all genus 0 curves are analytically isomorphic to P1

z?
Definition 6.2 (General algebraic cover). Continue Def. 2.10. Let ϕ : Y → X

be an analytic map of compact Riemann surfaces with xxx the branch points of ϕ.
We say ϕ is algebraic if Y is an algebraic cover (with some unspecified map to P1)
and there exists an analytic map ψ : Y → P1

w so that for some x′ ∈ Xxxx, ψ separates
the points in the fiber Xz′ .

Proposition 6.3. A cover ϕ : X → P1
z is algebraic if and only if C(X) has

sufficient algebraic functions to separate all points on X. This implies that if X is
algebraic and X → Y is a cover, then Y is also algebraic.

A tentative definition of algebraic, called P1-algebraic, appears in Chap. 3
Def. 3.3. We start by explaining why it is typical to use the phrase algebraic
on a manifold to mean it has an embedding in PN . Then, we consider the classical
Luroth Theorem as a use of coordinates that leads us to note the complication in
practical checking for decompositions of a cover.

6.1.1. Invariants and automorphisms of (P1)N . Recall the definition of P1-
algebraic from Chap. 3 (3.3). Ideas: Every algebraic manifold has a Galois cover
by a P1-algebraic manifold, and every P1-algebraic manifold is algebraic (Segre em-
bedding). Both PN and (P1)N are simply connected [11.9d]. Yet, the spaces PN

are not P1-algebraic, for they have no analytic maps to P1
z Chap. 3 [9.11e]. What

do we get from algebraic that is better than uniformization?

6.2. Fields of definition, fields of moduli and Branch Cycle Lemma.
Lemma 6.4. If ϕ : X → P1

z has definition field K, then its branch points zzz
form a K-set.

What you need from an algebraic structure to define the field of moduli. What
you need from a cover to define these two quantities. One thing we can define is
the definition field of the branch points zzz over a cover ϕ : X → P1

z.
Lemma 6.5 (Branch point control). Suppose ϕ : X → P1

z is algebraic, and the
branch points zzz have K as a field of definition. Then, there is a cover ϕ′ : X ′ → P1

z

over K̄ with these properties.
(6.2a) ϕ′ is algebraic and has K̄ as its definition field.
(6.2b) There exists analytic ψ : X → X ′ with ϕ′ ◦ ψ = ϕ.

Proof. �
Give a cover that has field of moduli R, but not field of definition R.
6.2.1. Labeling Riemann surfaces and counting representatives of Nielsen classes.

Prop. 2.18 gives a precise way to label a particular Riemann surface: Show the
branch points and cuts on P1

z, and give ggg ∈ Ni(G,C, TG). As we see in Chap. 5,
if there is more than one s-equivalence class, equations for the cover won’t have
coefficients in functions of the branch points alone. That is very significant, and
likely counter intuitive to the reader at this point. Many applications require find-
ing a cover that has special coefficients (like over Q). Inspecting actual equations
for such a matter is rarely helpful if r ≥ 4. So, what is the irrelevant information,
and what to display?

Notation that memorably labels the conjugacy classes can be helpful in display-
ing expectations from the Branch Cycle Lemma about the position of the branch
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points for a cover over R, or the p-adics or over Q. This is especially significant
when two distinct conjugacy classes Ci,Cj happen to be the same when extended
to Sn through TG : G → Sn. A graphic using a particular ggg representative of the
Nielsen class can be revealing if it displays the real points lying over the real line on
P1

z. This is pretty much the game when r = 3, and it will be especially fruitful in
applying to covers of the P1

j when they are reduced Hurwitz spaces of some Nielsen
class. Our most crucial cases have several Hr orbits. When we know how to do so,
we might present select representatives of those orbits.

Often our conjugacy classes have special shapes that allow computing the num-
ber of s-equivalence classes in a Nielsen class directly. Sometimes, however, it is
good to know there is a pure computation for this count coming directly from the
structure constant formula for the group ring Z[G] (for example, [Se92, §7.2] or
[Vö96, p. 54]). Let m be constant on conjugacy classes C1, . . . ,Cr and g ∈ G.
Value of m on Ci is m(Ci). Denote

∑r
i=1

∑
ui∈Ci

m(u1 · · ·urg) by I(m;C, g). If
m = χ is an irreducible character of G, I(χ;C, g) =

r∑
i=1

∑
ui∈Ci

χ(u1 · · ·urg) = χ(y)
r∏

i=1

χ(ui)/χ(1)r.

Take χ1, . . . , χs the irreducible complex characters of G. Then, I(m;C, g) =∑
i miI(χi;C, g). Write m = miχi. Consider ψG = 1

|G|
∑s

i=1 χi(1)χi: 1 at 1G and
0 otherwise. So, I(ψG;C, g) counts solutions of u1, . . . , urg = 1 with ui ∈ Ci:

N(C1, . . . ,Cr, g) = |G|r−1
s∑

i=1

r∏
j=1

χi(Cj)χi(g).

6.3. Branch cycles for sequences of genus 0 covers. §2.4.3 describes the
association of r rooted cuts with classical generators for π1(Uzzz, z0). We acknowledge
[MP93] and [CG95] for their approach to the following computational problem.

Problem 6.6. Starting from ϕ : P1
u → P1

z and given ḡ1, . . . , ḡr ∈ π1(Uzzz, z0)
classical generators, find an algorithm computing classical generators for P1

u from
among the following collection of elements.

(6.3) RETURN

Genus 0 and how to handle the appearance of such without knowing it is
analytically OR topologically isomorphic to the sphere. The key point is to have
that any oriented triangle bounds a disk, and then it is possible to replace a general
tree with vertices by a collection of simple rooted cuts that then give a system of
classical generators. Triangulate classical generators, and then consider lifts of the
triangles to a cover using the cut version of Fig. 3 (§2.4.3).

6.3.1. Luroth’s Theorem. Consider a rational function f ∈ C(w) of degree n.
From Chap. 2 [9.4a],

zzz =
{

z′ ∈ C | (f(x) − z′,
df

dx
) = 1

}
∪ {∞}.

Let S = {f−1(zzz)} ∪ {∞}. From Ex. 3.14 (and Chap. 2 Thm. 6.4), f : P1
w \ S → Uzzz

is a cover that extends to a map of compact manifolds f̄ : P1
w → P1

z. Suppose f
is indecomposable: Not a composition f1(f2(z)) with deg(fi) > 1, i = 1, 2. Being
indecomposable is equivalent to the Galois closure group Gf being a primitive
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subgroup of Sn. show exactly what permutations of points in the fiber of this cover
extend to an automorphism of the cover (for most f , none) [9.21i].

6.4. Belyi’s covers of P1
z. Suppose ϕ : X → P1

z is a map of compact Riemann
surfaces with r branch points zzz. Define the Jr-invariant to be the corresponding
point J(ϕ) of Ur/PGL2(C) = Jr. Suppose J(ϕ) is in K. The algebraic half of the
Existence Theorem says X is w-equivalent to a cover over K̄. In particular, two
independent functions ϕ1 and ϕ2 on a compact Riemann surface X give a canonical
embedding of X as a projective variety over K̄. If J(ϕ1) ∈ K̄, then so is J(ϕ2).
RETURN

6.4.1. Covers defined over Q̄. Special case of Lem. 6.5: 3 branch point covers
strongly equivalent to covers over Q̄. From Lem. 6.5 we know that if any cover
ϕ : X → P1

z has branch points over Q̄, then it is equivalent to a cover with definition
field in Q̄. So, to construct a cover ϕ : X → P1

z equivalent to the given one over Q̄,
with only three branch points, it suffices to find a map h : P1

z → P1
w that map the

set zzz into the set {0, 1,∞}.
Proposition 6.7. Each zzz ∈ P1

z(Q̄) has

P1
z

f1−→P1
w1

→ · · · fu−→P1
wu

with fu ◦ · · · ◦f1 having branch points 0, 1,∞ and zzz ⊂ f−1(0, 1,∞). More generally,
if zzz ∈ P1

z(K) with K of transendence dimension t over Q, then there is a similarly
result, with f having t + 3 (or fewer) branch points.

Main use: GQ faithful on projective systems of 3 branch point covers. Use
g = g(X) for genus of Riemann surface X. Subtopics:

• List of 3 branch point Sn,g covers
• Observations giving Belyi’s result
• Compare Sn,g covers with Belyi maps with Guralnick’s genus g problem
• Some nonrigid 3 branch point covers

(6.3a) Find g1 : P 1
z → P 1

u1
with f1(zzz) in branch point locus, branch points of g1

in Q.
(6.3b) With g1(zzz) in Q, compose with g2 : P 1

u1
→ P 1

u2
so g2 ◦ g1 has 3 branch

points.
Induct on maximal degree of zzz support and r. Always assume {z1, z2, z3} =

{0, 1,∞}.
Step a: Map by f , irreducible polynomial for branch point of maximal degree

over Q. Adds branch points of f to list, but new branch points are zeros of df
dz :

have lower degree.
Step b: Write z4 = a/b, a, b ∈ Z. Choose ψ(z) = zu(z − 1)v: logarithmic

derivative is u/z + v/(1 − z). Assure z4 is a branch point by choosing u, v ∈ Z so
u/z4 + v = (1 − z4). This reduces the branch points by one.

6.4.2. Three branch point Sn,g covers. Call a cover ϕ : X → P1
z an Sn,g cover

if g(X) = g and deg)ψ) = n.
Lemma 6.8. Fix g. There are infinitely many n ≥ 1 for which there are three

branch point covers ϕ : X → P1
z, with g(X) = g and having monodromy Sn.

Proof. Take n = m1+ · · ·+ms. Modify Sn,0 covers:

g1 = (1 . . . m1) · · · (m1+ · · · + ms−1+1 . . . n).
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Genus 0: Take
g2 = (m1−1 . . . 1)(m1+m2−1 . . . m1+1) · · ·

(n − 1 . . . n − ms+1)(m1 m1+m2 . . . n).

Then, ind(g1) = n − s and ind(g2) = n − s − 1. Compute g1g2 = g3:

(m1 m1 − 1 m1+m2 m1+m2 − 1 . . . n n−1).

So, ind(g3) = 2s − 1. RET gives genus 0 covers. For Sn, select m1, . . . , ms accord-
ingly.

For g = 1 covers, switch 1 and 2 in g1, but not in g2. This changes nothing
from conclusions, except adding 2 to index of g3:

(m1 2 1 m1−1 m1+m2 m1+m2 − 1 . . . n n−1).

That concludes the proof. �

6.4.3. Comparison with the genus g problem. Belyi produces three branch point
ϕ : X → P1

z, usually composed of many maps between P1 s. The construction rarely
provides covers that are primitive.

Question 6.9. Does X, over Q̄ have a three branch point cover ϕ : X → P1
z

with primitive monodromy.
Help from the literature. Fix g with g > 6. By [GN95], only < ∞ly many X

of genus g have three branch point covers with solvable monodromy ([Fri99, §5-§6]
for genus 0 problem).

Conjecture 6.10 (Guralnick). Genus g three branch point primitive covers
of P1

z with monodromy neither Sn, Z/2 5Sn, An or Z/2 5An (for some n) are finite.
The hardest case will be the 3 branch point case, though the likely result is

more precisely the following. There is a function N(g), quadratic in g, and either
n ≤ N(g) or one of the following holding.

(6.4a) The Galois closure of ϕ : X → P1
z has genus at most 1 and G is cyclic,

dihedral with n a prime or n is a prime or prime squared and the Galois
closure is an elliptic curve (affine case).

(6.4b) g = 0 or 1 and the monodromy group G satisfies G = An, Sn, Am 5 S2 ≤
G ≤ Sm 5 S2 (n = m2).

(6.4c) g = 0 or 1 and G = Am or Sm with n = m(m − 1)/2. 4. g > 1 and
G = An or Sn.

Of course, if we have f : X → Y primitive and Y has genus h > 0, then for
h > 1, n ≤ g, so only finitely many and if h = 1, then either n is bounded in terms
of g or G = An or Sn (these last two statements are in Guralnick-Neubauer from
the first Seattle meeting and these hold in positive characteristic as well which is
noted in my MSRI paper [the other volume].

The work left is in dealing with symmetric and alternating groups acting on
k-sets with 3 or 4 branch points and in dealing with some product actions where
the group is essentially Sm 5 S2 acting with n = (m(m − 1)/2)2. Kay, Dan and I
should have shortly a complete list of g = 0 aside from the open cases listed above
(i.e. ones not involving symmetric groups) and John Shareshian and I are working
on symmetric groups with possibly all of us working on the product case.

Question 6.11 (Easier Question). Compatible with Lem. 6.8, are the [X] ∈
Mg having an Sn,g cover of P1

z dense?
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6.4.4. Non-rigid An covers. Consider n ≥ 5, odd and squarefree. Let C be
conjugacy classes of (g1, g2, g3) ∈ A3

n with g1 = (1 2)(3 4), g2 = (1 3 5 6 7 . . . n)
and g3 = (1 2 . . . n)−1. Check: Geometric monodromy is An. Representatives for
conjugation of Sn on Ni(Sn,C)/Sn, i = 3, . . . , (n + 1)/2:

ggg′j = ((1 2)(j j+1), (1 3 . . . j j+2 j+3 . . . n), g′3).

Question 6.12. Exists f : P1
y → P1

z in Q[y]?
If yes, derivative is g(y) = (y − a)(y − b)yn−3 ∈ Q[y]. Conclude: a, b either in

Q or conjugate over Q. Further f(x) =:

yn/n − (a+b)yn−1/(n−1) + abyn−2/(n−2) + d;

and f(a) = f(b). With d ∈ Q, b/a = α, simplify: (n − 2)(αn − 1) = n(αn−1 − α).
Divide by α − 1:

hn(α) = (n − 2)αn−1 − 2(α + · · · + αn−2) + (n − 2),

divisible by (α − 1)2. Then, f over Q exists when ∈ Q[α] of degree 2 divides
hn(α)/(α − 1)2. Mathematica: hn(α)/(α − 1)2 irreducible over Q for odd n ≤ 31.

6.4.5. Belyi’s Theorem in positive characteristic.
Proposition 6.13. Let K be an algebraically closed field of characteristic p >

0. A projective curve X over K has definition field K if there is a finite map
ϕ : X → P1

z over K with only tame ramification and at most three branch points.
Further, if a projective curve X has field of definition F̄p, then it admits a finite map
ϕ : X → P1

z with only tame ramification and at most three branch points if there is
at least one finite map ϕ′ : X → P1

z over F̄p with with only tame ramification.

Proof. The first statement follows from knowing that a deformation of tame
covers that leaves the branch points fixed doesn’t change the equivalence class of
the cover. This is one half of Grothendieck’s main theorem on the fundamental
group of a cover. The second statement is very simple. The map Cpn−1 : P1

z → P1
w

by z �→ zpn−1−1 maps all elements of F∗pn to 1. The cover Cpn−1 is tamely ramified
(and ramified only over 0 and ∞. So, by choosing n so that Fpn contains all branch
points, Cn maps these down to 0, 1, ∞. �

The hypothesis of existence of a tame cover ϕ : X → P1
z is Säidi’s; he noted

more than the simple argument in the proof of Prop. 6.13. In characteristic p ≥ 3,
such tame covers exist by an analog of an argument of Lefschetz. This say you
may project the curve X from a nonsingular projective embedding in P3 to get a
simple branched cover over the algebraic closure of the finite field. (The arithmetic
form of the argument of [FJ78, Lem. 2.1] applies since we may take the finite field
cardinality to be arbitrarily large.) [Schr02, §6] raises all these points, then takes
it one step further to deal with removing the hypothesis of existence of a tame cover
when p = 2.

[Schr02, §5] allows going from showing the general curve of genus g over C has
a presentation in the Nielsen class Ni(An,C3r ) to finding an open algebraic set of
curves of genus g = r+1 over F̄2 in this Nielsen class. [Schr02, Cor. 5.3] proves the
space of isomorphism classes of curves over F̄2 in this Nielsen class has dimension
at least 2g − 3. In the language of Chap. 5 §?? and [Fri89], the moduli dimension
of the Nielsen class Ni(An,C3r ) is 2g − 3 for r ≥ n. The expectation is that the
moduli dimension is actually 3g − 3 (r ≥ n + 1): full moduli. Schroer’s argument,
though it quotes [FKK01], does not identify the two components — separated by a
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spin lifting invariant ([Fri95a, Ex. III.12], [Fri96] and Chap. 5 §??) — that occur
in these two families. We expect full moduli for both components. Even if the
Nielsen class Ni(An,C3r ) has full moduli dimension, unlike the case where p ≥ 3, it
is unclear (even over C) if that implies each genus g curve has a representing cover
with only odd order ramification.

6.5. Higher genus versions of Thm. 1.8 and uniformization. We now
generalize Thm. 1.8 for any compact Riemann surface X. A proof along the lines
of that theorem works, but with some technical difficulties (see [11.11]).

6.5.1. Homology of a manifold and triangulations. We tacitly assume a com-
pact Riemann surface has a triangulation, say it is given by an analytic map to
P1

z.

Lemma 6.14. Let X be a compact Riemann Surface and Γ(X, ΩX) its space
of global holomorphic differentials. With χX the Euler characteristic of X, the
dimension u ≤ (2 − χX)/2 = gX .

Theorem 6.15. Let X be a compact Riemann surface. Let {x1, . . . , xr} = {xxx}
be r distinct points on X. There is a number g = g(X) such that for x0 ∈ X \{xxx} =
X0, there are closed paths

(6.5) α1, . . . , αg; β1, . . . , βg; γ1, . . . , γr

based at x0 so their homotopy classes generate π1(X0, x0) with the one relation

(6.6) [α1][β1][α1]−1[β1]−1 · · · [αg][βg][αg]−1[βg]−1[γ1] · · · [γr].

That is, Thm 6.15 says π1(X, x0) is isomorphic to the quotient of the free group
on (symbols given by) homotopy classes of the (6.5) paths, by the smallest normal
subgroup containing expression (6.6). In addition, let (U, ϕ) be any coordinate
neighborhood (with trivial fundamental group) in an atlas for X (Chap. 3 Def. 1.5)
so that U contains {x0, x1, . . . , xr}. Then we may take γ1, . . . , γr any set of paths
that ϕ maps to a collection of classical generators relative to (ϕ(x1), . . . , ϕ(xr))
based at ϕ(x0) in ϕ(U).

Example 6.16 (A sphere with g handles—the case r = 0). Cut out 2g disjoint
discs from the sphere; then join the boundaries of these discs in pairs by cylinders
that slightly flare at the ends. We may embed any compact Riemann surface (having
genus g) in R3 as a sphere with g handles. This is easy to prove for the complex
torus of Chap. 3 Ex. 3.2.2 —it is homeomorphic to a sphere with one handle. The
general fact, however, is more difficult [Spr57, Chap. 5]. If follows, however, quite
easily from the uniformization of such a Riemann surface (g ≥ 2) by the disk. PUT
THE ARGUMENT OF A POLYGONAL DOMAIN HERE.

Nevertheless, assuming this, it is easy to draw paths representing generators of
the fundamental group of a sphere with g handles (Fig. 9). Take g nonintersecting
paths ᾱ1, . . . , ᾱg each of which goes like a bracelet around the handles; and g
further nonintersecting paths β̄1, . . . , β̄g where β̄i travels along the ith handle from
the unique point of intersection, mi, of ᾱi and β̄i to the edge of the first hole cut in
the sphere, then along the sphere to the other hole defining the handle, and, finally,
back along the handle to mi. In addition, these paths are chosen so that ᾱi and β̄j

do not intersect for i �= j, and the crossproduct ttt(αi)×ttt(βi) of the tangent vectors
to ᾱi and β̄i at mi (§1.b) points outward.
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Figure 9. A sphere with one handle (g=1) pretties itself
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To obtain paths based at some specific point x0 draw paths δi from x0 to mi

and let αi = δiᾱi(δi)−1 (resp., βi = δiβ̄i(δi)−1), i = 1, . . . , g. It is convenient to
choose x0 off the handles.

6.6. The Schwarz-Christoffel Transformation. Given a polygon P with
vertices A1, . . . , An and clockwise interior angles πα1, . . . , παn, we want to map the
interior Π of this polygon on the Upper-half plane H in a one-one conformal fashion
onto H. We actually do the opposite, f : H → Π. Let a1 < a2 < · · · < an map
respectively to a1, . . . , an by f . We can assign three of these points arbitrarily, and
f is one-one on H. [Hil62, Thm. 17.5.3] says: Let D be the interior of a simple
closed curves C and f : K → D onto conformally. Then, f is continuous on K̄ and
the correspondence between K̄ and D̄ is one-one and bi-continuous.

Since such an f is locally one-one, f−1 is locally defined on D which is simply-
connected. So, by the Monodromy Theorem (Chap. 3 Thm. 6.11) any branch of f−1

extends to D, and it is one-one. The next two subsections (based on [?, p. 372–374])
show f is the same as the function

(6.7) F (z) = C1

∫ z

a1

(t − a1)α1−1 · · · (t − an)αn−1 dt + C2.

To define F locally around any convenient point in H (say z0 = i) as in Chap. 2
§3.4, use a branch Fi(z) of log(z − ai) around z0. Then, interpret the integral for
F to be a primitive (antiderivative) of

∏n
i=1 e(αi−1)Fi(z). Since H is analytically

isomorphic to a disk, this choice of F extends analytically to all of H (Chap. 2
Prop. 3.6).

6.6.1. Differential properties of F . There are two components to the comple-
ment of a simple closed polygonal path [11.3a]. The interior is the component UP

that consists of points with nonzero winding number with respect to P . So, UP is
simply connected according to Chap. 2 §8.3. Apply the Riemann mapping theorem
to show there exists an analytic one-one f : H → UP . We want to identify f .

Consider the differential equation

(6.8)
d(log(h′(z))

dz
=

h′′

h′
=

n∑
j=1

αj − 1
z − aj

def= g(z).
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Note that g is a linear fractional transformation with simple poles at aj and cor-
responding residue αj − 1. Also, g vanishes at ∞ because the sum of the interior
angles adds to 2π. Then, F = h is a solution of (6.8). Then, To show that f is
also, we show the logarithmic derivative f ′′

f ′ of f ′(z) has the residues and poles of
g and it vanishes at ∞. As the properties of g come from its being meromorphic
on the whole plane, that first requires showing we can analytically continue f to
anywhere in the whole plane minus a1, . . . , an.

Remark 6.17 (Point of the logarithmic derivative). The expression h′′

h′ is in-
variant under composition by elements of PGL2(C) having the form z �→ ah(z) + b

for a ∈ C∗, b ∈ C. Conversely, if DA(h) = h′′

h′ = h′′
1

h′
1
, then h1(z) = ah(z) + b: This

differential equation DA(h) = DA(ah(z) + b) characterizes invariance of functions
under the action of the affine group A = C ×sC∗ as in [11.25c].

6.6.2. Schwarz’s famous reflection principle. Define f in the lower half plane
by crossing (aj , aj+1) and reflecting its values across that line exactly as Schwartz
did it [Sc1890, A paper from 1866]. Suppose h is any function on a domain D in
the upper half plane that extends continuously to the line segment (a, b) ⊂ R (on
the boundary of D). Denote the set of points of D reflected in the x-axis by D̄.
Further, assume h maps (a, b) to Lh(a),h(b)

def= {h(a) + t(h(b) − h(a)) | t ∈ (0, 1)}.
Let ¯ Lh(a),h(b) denote reflection of points z ∈ C in the line through Lh(a),h(b). Then,
¯ Lh(a),h(b) : z �→ A(A−1(z)) with A(z) = (h(b) − h(a)( (z−a)

(b−a) ) + h(a).

Lemma 6.18. The formula h(w) def= ¯h( ¯ )wLh(a),h(b) defines a function analytic
on D ∪ D̄ ∪ (a, b) and equal to h(z) for z ∈ D.

Proof. If A−1(h(z)) extends analytically to D ∪ D̄ ∪ (a, b), then so does h(z).
This reverts us to the case h takes (a, b) to the line segment (0, 1). [Ahl79, p. 172-
173] emphasizes in the proof of this case, that it comes to extending the real and
imaginary part of such an h to be harmonic. This he does by the formulas ((h)(z̄) =
u(z) and −�(h)(z̄) = v(z) for z ∈ D. The tricky part is showing the points of (a, b)
are also in the domain of harmonicity of the extending function V (z): V (z) = v(z)
for z ∈ D, −v(z̄) for z ∈ D̄, and 0 on (a, b). For t ∈ (a, b), this is an application
of the Poisson integral [Ahl79, p. 168] PV defined on any small disk Dt about
t by the boundary values of V on that disk. The function V − PV vanishes on
the intersection of Dt and the real line, and on the boundary of the disk in the
upper half-plane. By the maximum principle for harmonic functions, V − PV is
identically zero on the upper half of the disk, and similarly on the lower half of the
disk, concluding the proof. �

Apply this to D = H: We analytically continue f to the lower plane by ex-
tending f = f (0) to a function f

(0)
i on D ∪ D̄ ∪ (ai, ai+1) = Ui for some i. The

effect is that we analytically continued along a path crossing (ai, ai+1) from the
upper half plane to the lower half plane, and then took the unique function defined
on the simply connected (even contractible) set Ui. From the reflection principle,
the analytic function f

(0)
i maps the lower half plane to the original (open) polygon

reflected in the line through f(ai) and f(ai+1). Now work with f
(0)
i in the lower

half plane, and apply the same principles. We can extend it back up into the upper
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half plane using any of the line segments (aj , aj+1). Denote f
(0)
i by f (1). This ana-

lytically continues to the whole upper half plane (along a path) through (aj , aj+1).
The result is a function f

(1)
j on H that maps H to the interior of a new polygon.

By the reflection principle, the new polygon is just the result of reflecting the
original polygon in two different lines. Note: Composition of two such reflections
is an affine transformation: M : C → C by z �→ a′z + b′ for some a′ ∈ C∗ on the
unit circle and b′ ∈ C. So the effect of the analytic continuations that end in the
upper half plane is to give polygons congruent to the original polygon. On H, since
f (1) is composition with an affine transformation, we have DA(f) = DA(f (1) (see
Rem. 6.17). The differential operator provides a function DA(f)invariant under the
different analytic continuations of f in the domain C \ {a1, . . . , an}.

6.6.3. Singularities of analytic continuations of f . The Scharz-Christoffel trans-
formation that maps H onto the sector at angle 0 < απ < π is f(z) = zα. We know
f at aj maps an interior angle of π radians to one of αjπ radians, and it analytically
continues around aj . The residue of f ′′

f ′ for such a function f is well-defined up to
a change of variables in f in a neighborhood of a punctured disk around aj . With
no loss, for the computation of the residue, f to be a branch of (z −aj)β = eβ log(w)

with w = z − aj (Chap. 2 §8.2). Knowing that analytic continuation around the
counterclockwise upper disk, gives a change of angle of αjπ, shows β is αj . So, the
residue of f ′′

f ′ at aj is given by the residue of αj(αj − 1)zαj−1/αjz
αj = (αj − 1)1/z,

which is αj − 1. Conclude that f ′′

f ′ has the right residues and is meromorphic
everywhere. So, f = F for some choice of C1 and C2.

6.7. Monodromy and hypergeometric functions. [Ahl79, p. 315–321]
Starts with a discussion of homogeneous linear ordinary differential equations with
meromorphic function coefficients of degree n:

(6.9)
n∑

k=0

ai(z)w(k) = 0.

A meromorphic solution w(z) in a neighborhood of z0 is ordinary if a0(z0) �= 0,
and around such a point there are n linearly independent solutions. At an ordinary
point if you also specify the values of w(k)(z0), k = 0, . . . , n − 1, then there will
be a unique solution w(z). The standard proof of this is given by writing a power
series solution, solving for the coefficients inductively while establishing the series
converges [Ahl79, p.310]. The conditions on the values of the first n terms in the
powers series are linear, establishing that the space of solutions around z0 is n-
dimenional. While general (not necessarily linear) differential equations generalize
our basic study of algebraic functions, linear such do not. For example, in studying
algebraic equations attached to genus 1 curves, we treat the differential equation
(w′)2 = aw3 + bw + c with a, b, c ∈ C. Linear equations arise here in a different
context.

6.7.1. Monodromy from a differential equation. Let zzz be the finite set of points
at which at least one of the ai s is not analytic or at which a0(z) has a zero. Then, as
with any other analytic continuation situation we may analytically continue a basis
f1, . . . , fn of solutions at z0 around any element of Π(Uzzz, z0, z1). At least for such
linear differential equations, Riemann suggested establishing similar properties as
for analytic continuation of meromorphic algebraic functions. Under certain condi-
tions we can expect the monodromy action to determine the differential equation.
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This, however, requires inspecting the nature of the differential equation near
the support of zzz in a new way. By multiplying through by any denominators,
we may with no loss assume the coefficients are analytic in Cz, and that they
have no common zero. In a neighborhood of z0 we can analytically continue the
solution, and since the space has dimension n, we are getting a representation of
Z through a matrix Mz0 . Suppose n = 2 and the monodromy matrix has distinct
eigenvalues e2πiα1 and e2πiα2 . Then, the solutions would have local expressions
as zα1h1(z) and zα2h2(z), with h1 and h2 analytic and nonzero at z0. As usual,
write ln(z − z0) = m(z), a a branch of log in a disc about a point z′ near z0 to
see the effect of a clockwise analytic continuation about z′ about z0: em(z)α �→
e(m(z)+2πi)α. Looking at the term of highest order, gives the indicial equation for
such α, which is the characteristic polynomial for the monodromy action matrix. A
regular singular point is one for which the characteristic polynomial is computable
from α satisfying the highest order solution from undetermined coefficients. State
this condition in terms of the orders at z0 of the coefficients of the differential
equation. There are complications, however, if the solutions of that indicial equation
have e2πi)α1 = e2πi)α2 . One possibility is that there are two values of α and they do
give independent solutions. Another is that if you take the larger value (difference
is positive integer) you get the solution w1(z) above, and you get another one by
taking a solution of form w2(z) = Cw1(z) ln(z − z0) + (z − z0)α2h2(z), and finally
if α1 = α2, this last situation does occur for certain. The general case is given by
a similar Jordan canonical form.

We can also change variables and consider the possibility of having a regular
singular point at ∞. If there are regular singular points everywhere (and only
finitely many of them), then all coefficients are rational functions in z. When n = 2
this says w′′ − pw′ − qw with p and q rational functions with q having at most a
double pole, and p having at most a single pole anywhere in the finite plane. Then,
at ∞ with z = 1/u, write W (u) = w(1/u) and dw

dz after as −u2 dW (u)(
du and d2w

dz2 =

after substitution z �→ 1/u as 2u3 dW (u)(
du + u4 d2W (u)

d2u . So, now we check if u = 0
is a regular singular point for this equation. A regular singular point is equivalent
to 2/u + u−2p(1/u) has a pole of order at most 1 at 0, and u−4q(1/u) has a pole
of order at most 2 at 0. Bessel’s equation: zw′′ + w′ + zw therefore has regular
singular points everywhere except at ∞.

6.7.2. Regular singular points everywhere. If there are but two regular singular
points, put them at 0 and ∞. Then, p(z) = A/z and q = B/z2. Of course, in this
case the global monodromy group is given by the action on (zα1 , zα2 if the solutions
of the indicial equation are distinct, and by (zα, ln(z)zα) if they are not.

Now suppose there are exactly three regular singular points, and place them at
0, 1, ∞.

6.7.3. Application to integrals. Let a1, . . . , ar be any complex numbers and as-
sume we have chosen gi(z) to be a branch of (z − zi)−ai in a neighborhood of z0.
Then,

∏r
i=1 gi dz

def= ωzzz is a differential 1-form in a neighborhood of z0 that ana-
lytically continues along any γ ∈ Π1(Uzzz, z0, z

′) to give a differential 1-form in the
neighborhood of z′. Then,

∫
γ

def= Iaaa(γ) makes sense. The monodromy theorem says
this depends only on the homotopy class of the path. Further, if γi,j is a piecewise
differentiable path on P1

z from zi to zj , then even Iaaa(γi,j) makes sense by taking
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the integral to be lim ε �→ 0Iaaa(Iaaa(δe,ε)− δb,ε) with with δb,ε going from z0 to γ(ε) in
Uzzz and δe,ε being the composite of δb,ε and γ[epsilon,1−ε].

Notice, unless all the ai s are the same, this is placing an ordering on them
to form ωaaa. Suppose ϕ : Uzzz → Uzzz is a diffeomorphism that fixes each of the
points in zzz. To see the effect of the diffeomorphisms it suffices to take the case
(z1, z2, z2) = (0, 1,∞), and let z4 = λ.

7. Abel’s contributions and modular curves

This culminated in Abel’s beautiful characterization of analytic functions, the
precise form that the Riemann-Roch theorem takes, on a complex torus. Fine
though it is in its classical form, we now take a nontraditional view that soon will
reveal modular curves and some of their far-reaching generalizations. Our approach
motivates the whole theory of moduli spaces of Riemann surfaces. We start with
finding the essential parameters that characterize these integrals up to algebraic
transformations. Functions that naturally live on a (1-dimensional) complex torus
are algebraically related to inverses of special cases of functions given by integrals
in (6.7). Compatible with other lessons about coordinates, the functions that live
on one complex torus cannot be elementarily related to those on an analytically
nonisomorphic torus.

RETURN If you have a function that separates points at one fiber, why does
it separate at all but finitely many fibers? Answer: Suppose g : X → P1

w, and for
infinitely many z′ ∈ P1

z, there are w1(z′), w2(z′) ∈ ϕ−1(z′) such that g(w1(z′)) =
g(w2(z′)).

7.1. Integrals of primitives. In §6.7 we have the special case appearing in
Chap. 2 (6.6):

∫
γ

dz

(z3+cz+d)
1
2
. with c, d ∈ C. Use the notation Ah(Uzzz) for the

analytic continuations of h based at z0 (Chap. 2 §4.5).
Lemma 7.1. Suppose h(z) ∈ E(Uzzz, z0) is an algebraic function of degree n.

Form H(z)λ = Int(h(z))γ to mean the analytic continuation of a primitive H(z)
for h(z) along γ ∈ π1(Uzzz, z0) (Chap. 2 §4.3). Define GH to be the monodromy
group of this action: The collection of permutations on AH(Uzzz). Then, there is a
natural map GH → Gh given by taking the derivative: dHγ

dz �→ hγ . Denote by Gh(1)
the stabilizer of h in Gh and let Lh be the pullback of Gh(1) in GH . Then, Lh is an
abelian group and, Lh = Lhγ for γ ∈ π1(Uzzz, z0). This identifies GH as a subgroup
of the wreath product Lh 5 Gf = (Lh)n ×sGf (§8.4).

Proof. The effect of operating by γ∗ ∈ π1(Uzzz, z0) on {Int(h(z))γ}γ∈π1(Uzzz,z0)

maps to the action on {h(z)γ}γ∈π1(Uzzz,z0) by taking the derivative: hγ = dHγ

dz .
Further, suppose hγ = h: γ is in the pullback of Gh(1). Then, Hγ is a primitive
of hγ = h, and so Hγ(z) = H(z) + cγ with cγ ∈ C. Since cγ is

∫
γ

h(z)dz, for
γ1, γ2 ∈ ker(Γ), cγ1 + cγ2 = cgamma1+γ2 . Use the notation Lh for this abelian group
of integration constants.

Consider a conjugate hγ of h given by γ ∈ π1(Uzzz, z0). Then,
∫

γ∗ hγ dz is the
same as

∫
γ·γ∗ h dz. As [γ]π1(Uzzz, z0) = π1(Uzzz, z0), the final set of integrals around

closed paths is the same. Finally, let us embed GH in Lh 5 Gf = (Lh)n ×sGf . Let
{hi}n

i=1 be represent the distinct elements of Ah(Uzzz). It has a map to Gh and the
kernel of that map fixes each of Lhγ , each of which we can identify. The argument
is now the same as in Chap. 3 8.14 that this gives a wreath product. �
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Example 7.2 (Branch cycles in Sn \An). Assume each class in C is in Sn \An.
Let ppp ∈ H(G,C)in,rd lie over zzz. Take the regular representation of G as giving
a map G → S|G|. The cover ϕppp : Xppp → P1

z naturally factors through Ezzz → P1
z:

Quotient Xppp by G ∩ A|G|. (This works for any even r; Ezzz is then hyperelliptic.)
Suppose r = 4 and ggg ∈ Ni(G,C) with G ≤ An. Choose h1, h2 ∈ Sn \ An.

Then, (h1g1, g2h2, h
−1
2 g3, g4h

−1
1 ) satisfies the product-one condition. It produces a

Nielsen class (for some new group) with moduli problem directly recognizing the
j-line as parameterizing elliptic curves.

Write out the covering property for w �→ h(w) and y �→ y2. Then, take the fiber
product over P1

z. Use the path lifting property for each separately, then join them
and ask how you can understand this to be like an exponential map. Problem: The
set is more complicated, and not looking like an open subset of the plane. Then,
consider the integral F (w) =

∫
γ

dw√
h(w)

in analogy with the discussion right after

Prop. 3.5.
Let H(w) be the inverse function of F (w): G(F (w)) = w. Conclude this

uniformization of

(7.1) Eg = {(w, y) | y2 − h(w)} : z �→ (G(z), G′(z)).

Lemma 7.3. Periods of H(w) and why they have rank two. FINISH THIS

7.2. Starting Abel’s Theorem. We start with an interpretation of Abel’s
the basic problem which was about the nature of antiderivatives. Analyze elemen-
tary antiderivatives, like the watershed example

∫
dx√

x3+ax+b
. Specifically, what is

the dependence of these antiderivatives on the parameters a and b?
Here m(z, w) = w2−(z3+az+b). Let zzz be ∞ together with the zeros of z3+az+

b. Write G(z) = 1√
z3+az+b

, a branch of this square root defined in a neighborhood
of z0 �∈ zzz (Chap. 2 §8.2). Consider F (z) = Fa,b(z), an antiderivative of G(z), locally.
As in Chap. 2 §4.3, it has analytic continuations along elements of Π(Uzzz, z0) and
it depends only on the homotopy class of the path. These continuations produce
an abelian group of periods (Chap. 2). Chap. 4 shows the group is Z×Z. Further,
its fit with the analytic continuations of G(z) appears in the semidirect product
Z × Z ×s{±1} (§8). Let Dn be the dihedral group of order 2n.

7.2.1. The antiderivatives: when are they equivalent by substitutions? This was
Abel’s version of the problem. He already had experience with showing functions
might be new: The new functions that produced solutions to the general quintic.
His formulation of old included taking compositions of rational functions, multipli-
cation by constants, various other functions regarded as known, and the conceptual
addition of

(7.2) functional inverse.
We have learned in Chap. 2 that there really are but two elementary functions

if you use (7.2): as functions of a complex variable they are z and log(z). Also,
you may profitably consider the integral locally as a function of z by regarding it
as as an antiderivative in z. By allowing this you agree that you will stay within
elementary functions. Still, we sceptically scrutinize the antiderivative operation,
for we are also asking when that applied to elementary functions takes us out of
them.

Example 1: . Example: z1/n = ez/n.



208 4. RIEMANN’S EXISTENCE THEOREM

7.3. Substitutions by elementary functions. We may take a branch of
inverse of a locally one-one analytic function Chap. 2 §6.1. We did that in §6.6 and
found that Substitutions in the antiderivative variable w = Fa,b(z) become compo-
sitions of the inverse function F−1

a,b (w) = z. So Abel took a more restricted version
of the problem by equivalencing by rational function substitutions and derivatives
in w.

Problem 7.4. When is La,b,c
def= C(F−1

a,b,c(w),
d F−1

a,b,c

dw , . . . ) isomorphic to La′,b′,c′?
Only one derivative needed by Abel’s use of the chain rule. The fields La,b,c are
called function fields. We can describe every element of La,b,c.

7.4. Explicit functions for dihedral covers. We have applied the Exis-
tence Theorem in §4.3 to see how many different involution dihedral covers of Uzzz

we get when r = 4. Now we consider another approach to dihedral covers. The
two approaches are complementary. In §4.3 we have a degree pk+1 function to P1

u

(to retain the classical z variable for Abel’s approach, we switch the variable in
Riemann’s Existence Theorem to u). In Abel’s approach, the connection to the u
variable is nonobvious.

Let L(ω1, ω2)
def= Lωωω = {m1ω1 + m2ω2 | m1, m2 ∈ Z} be a lattice in C. First

observation: With no loss we may assume τ = ω2/ω1 has positive imaginary part.
We say τ lies in the upper half plane. Elliptic functions f(z) on Lωωω = L have all
elements of L as periods. In the next lemma we consider f(z) in a fundamental
domain for L.

Theorem 7.5. Residues of an elliptic function sum to 0. Conclude: A non-
constant elliptic function has as many zeros as it has poles. Finally, if a1, . . . , an

are the zeros of f , and b1, . . . , bn are its poles, then
∑n

j=1 aj −
∑n

j=1 bj ∈ L.

Proof. Take B as the clockwise boundary of the fundamental domain. Let
f(z) be an elliptic function for L. The sum of the residues is therefore 1

2πi

∫
B

f(z) dz.
Integrals in opposite directions on opposite sides of the parallelogram cancel. There-
fore, this is 0. Apply this to f ′(z)/f(z), also an elliptic function. For the last
sentence, compute 1

2πi

∫
B

zf ′(z)/f(z) dz carefully. �

Here is the Weierstrass ℘-function:

(7.3) ℘(z;ω1, ω2) =
1
z2

+
∑
ω �=0

(
1

(z − ω)2
− 1

(ω)2

)
.

This actually converges, except at z = 0. The observation is there exists u > 0
with |m1ω1 + m2ω2| ≥ u(|m1| + |m2|). Clearly, ℘(z;ω1, ω2) is an even function.
It’s derivative d℘

dz (z;ω1, ω2) = ℘′(z) = −2
∑

ω
1

(z−ω)3 is an odd doubly periodic
function. Conclude that ℘ is also doubly periodic.

7.5. The function ζ(z). Since ℘ has residues equal to 0, there exists ζ(z)
whose derivative is ℘. We see easily:

ζ(z) =
1
z

+
∑
ω �=0

(
1

z − ω
+

1
ω

+
z

ω2

)
.

Thus, ζ(z + ω1) = ζ(z) + η1 and ζ(z + ω2) = ζ(z) + η2 for some constants η1 and
η2. Integration of ζ around B shows

(7.4) η1ω2 − η2ω1 = 2πi.
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Further, take σ(z) to be a function whose logarithmic derivative is ζ(z):

(7.5) στ (z) = σ(z) = z
∏
ω �=0

(
1 − z

ω

)
ez/ω+ 1

2 (z/ω)2 .

Clearly, σ(z) is an odd function. Also, σ(z + ω1) = −σ(z)eη1(z+ω1/2), etc. The
values z = ωi/2 already play a special role.

7.6. Abel’s construction of functions when g = 1.

Theorem 7.6 (Abel, 1837). An elliptic function with periods ω1 and ω2, zeros
a1, . . . , an and poles b1, . . . , bn is a constant times

∏n
k=1

σ(z−ak)
σ(z−bk) [Ahl79, p. 267].

The functions ℘(z) and ℘′(z) satisfy this simple equation:

(7.6) ℘′(z)2 = 4℘(z)3 − 60G2℘(z) − 140G3

with Gk =
∑

ω �=0
1

ωk . The formula is important, but the principle easy: create a
doubly periodic function with no poles.

The point: (℘(z), ℘′(z)) maps complex analytically from the complex torus to
the points of the cubic equation (7.6). Thus, the complex torus and the points on
the cubic equation represent the same Riemann surface. A most important step is
to interpret ideas on the complex torus through (7.6).

7.7. The unique θ function with odd characteristic. On the complex
torus C/Lωωω, we may characterize ℘(z) among elliptic functions with a pole of
order 2 at the origin, and no other pole up to a linear change of variable. Let
W (z) be another, and normalize by linear change so ℘(z) − W (z) has no poles at
all and expansion of W (z) around ∞ looks like 1

z2 + a1z + higher terms. Then,
℘(z)−W (z) is identically zero. The same argument shows ℘(z) is an even function:
℘(z) − ℘(−z) ≡ 0.

Then, ζ(z) is the unique antiderivative that is odd: ζ(z) = −ζ(−z) for z ∈ C.
Finally, στ (z) has the property its logarithmic derivative equals ζ(z). Thus, it is
defined up to multiplicative constant, and it must be an odd function. Conclusion:

Theorem 7.7. Up to a multiplicative constant, there is a unique odd function
στ (z) that plays the role of a θ function on Xτ = C/Lτ . Suppose Daaa,bbb =

∑n
j=1 aj −∑n

j=1 bj represents any degree 0 divisor on Xτ . Then,

ωaaa,bbb =
n∑

j=1

ζ(z − ai) −
n∑

j=1

ζ(z − bj)dz

is a differential form on Xτ with these properties.

(7.7a) It is a logarithmic differential with polar divisor Daaa,bbb.
(7.7b) Its periods are pure imaginary.

Proof. We’ve shown everything except the properties of ωaaa,bbb. We have ζ(z +
ωi) = ζ(z) + ηi for some complex number ηi, i = 1, 2. Therefore,

∑n
j=1 ζ(z − ai) −∑n

j=1 ζ(z − bj) is already a well-defined elliptic function on Xτ .
DO WE KNOW ITS PERIODS ARE PURE IMAGINARY? �

7.8. Uniformization and the j-line. Addition on C/L is obvious.
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7.8.1. The cubic equation for the torus. How do we express this in coordinates
from the cubic equation? There is this formula [Ahl79, Ex. 2–7, p. 269]:

(7.8) det

∣∣∣∣∣∣
℘(z) ℘′(z) 1
℘(u) ℘′(u) 1

℘(u + z) −℘′(u + z) 1

∣∣∣∣∣∣ = 0.

Consider the zeros of the cubic on the right side of (7.6). Call these e1, e2, e3.
Since ℘′(z) is an odd function, we find these ei’s are ℘(ω1

2 ), ℘(ω2
2 ) and ℘(ω1+ω2

2 ).
Since ℘(z) assumes each value with multiplicity 2 (on a fundamental domain), the
ei’s are distinct. Thus, λ(τ) = e3−e2

e1−e2
is a well-defined function of τ .

We want a well-defined function of L: equivalently, a function preserved under
unimodular transformations of τ . Notice these properties of λ(τ).

(7.9a) Unimodular transformations of (ω1, ω2), represented by

(7.10)
(

a b
c d

)
≡

(
1 0
0 1

)
mod 2

leave λ(τ) invariant.
(7.10b) Unimodular transformations don’t satisfying (7.9a) don’t leave λ(τ) in-

variant.
(7.10c) λ(τ) takes all values except 0 or 1 for τ in the upper half plane.
(7.10d) Each value λ(τ) takes on, it assume locally with multiplicity 1.

Define j(τ) to be 4
27

(
e1e2+e2e3+e3e1

(e1−e2)2(e2−e3)2(e3−e1)2

)
. Consider the subfield of C(λ(τ))

invariant under the full unimodular group (as in (7.9b)). Then, j(τ) generates this
field [Ahl79, Ex. on p. 274].

7.8.2. The function λ(τ). Finally, from (7.9c) and (7.9d) we have Picard’s big
theorem.

Theorem 7.8. Suppose f(z) is entire and it omits at least two values. Then,
f(z) is constant.

Proof. Suppose f(z) omits at least two values. With no loss, take these to
be 0, 1. For any other value of f , say, f(z0), (3) shows there is τ0 in the upper
half plane with λ(τ0) = f(z0). Apply (4). The complex version of the implicit
function theorem gives an analytic function h(z) defined in a neighborhood of z0.
It has these properties: λ(h(z)) = f(z) for z close to z0; and h(z0) = τ0. Since
the complex plane is simply connected, the monodromy theorem says h, defined
locally for each z0, is the restriction of one entire function H(z). Note, however,
H(z) takes its values in the upper half plane. This violates the maximum modulus
principle: eiH(z) has absolute value at most 1. �

7.8.3. Uniformization from the Existence Theorem.
Corollary 7.9. Uniformization of Uzzz, r ≥ 3, by a disk following the defor-

mation talk at MSRI.
7.8.4. Involution dihedral covers again. Let f(z) = (z − 1) · · · (z − r), let D

be an open connected set in C − {1, . . . , r} and let A1, . . . , Ak be the connected
components of P1

z \ D. Suppose Ak is the component that contains ∞. Now take
r = 3. Assume that γ is a path defined on [0, 1]. We can define gγ(t), a branch of
log((z − 1)(z − 2)(z − 3)) along γ, by the following formula:

1
2πi

(∫
γ

dz

z − 1
+

∫
γ

dz

z − 2
+

∫
γ

dz

z − 3

)
.
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Let ai(γ) be the index of γ with respect to i = 1, 2, 3. Thus egγ(t)/n is independent
of γ if and only if a1 + a2 + a3 ≡ 0 mod n for every closed path in D. For example,
if n = 3, then g(z) exists if D = C\ [1, 3], but it doesn’t exist if D = C\{1}∪ [2, 3].

Consider closed paths γ based at 0 in the case that n = 2 and D = C\{1, 2, 3}.
If a closed path has index 1 with respect to 1 and index 0 with respect to 2 and 3,
we must have

∫
γ

f(z)
1
2 dz �= 0. Otherwise there would be an analytic function F (z)

defined on D = C \ [1, 3] such that dF
dz would be a branch of (f(z))

1
2 , contrary to

the above argument.

8. Algebraic coordinates

8.1. Points about algebraic varieties. 2. Segre embedding of two projec-
tive varieties. P. 66

For prevariety, I need to talk about the patching maps.
3. Variety: p. 68: A variety is a prevariety X (finite cover of affine varieties –

irreducible and have a coordinate ring that is an integral domain) together with the
property that if f : Y → X and g : Y → X, Y ×X Y ∩∆ is closed in Y ×Y . The case
when f and g are the projections is just the case ∆X is closed in X×X. The general
case follows from this case because it is also factors through Y × : (f, g) → X × X
and the set in question is just the pullback of ∆X , which being closed has its inverse
closed.

Prop. 5 (p. 71): If X is a prevariety and any two points are in an affine open
piece, then X is a variety. Reason: Get Hausdorff in the affine pieces, and so this
applies to projective varieties.

Prop. 6: X a variety, U = Spec(R) and V = Spec(S), then U∩V has coordinate
ring R · S with the composite in the function field. K(X),

p. 86: Local set-theoretic complete intersection: If Z has codimension r there
is an open set U of any given z ∈ Z so that there are r functions in the coordinate
ring that set-theoretically describes the set Z around z.

p. 89: Suppose a morphism Pn f−→Pm with closed image (§9 says this is always
true), then the image is a point or has dimension n. Reason: If the image has
dimension less than n, then we can find n hypersurfaces H1, . . . , Hn in Pm defined
by homogeneous polynomials so that the intersection of these with the image is
trivial. Pull these back to the Pn to conclude you have n hyperplanes in Pn that
intersect trivially.

Equations may not give us what we expect, so it is necessary to have sim-
ple criteria to assure that what is essential from some particular type of equation
compactification does not depend on the particular choice of compactification.

8.2. Completion of the fundamental group.

8.3. Functions on the universal covering space. We follow the treatment
of [BL92, Appendix].

Let X be a complex manifold, X̃ its universal covering space. Then, π1(X)
acts on X̃ on the left and on C(X̃) on the right. Identify H1(π1(X), C(X̃)∗) with
factors of automorphy. For f ∈ H1(π1(X), C(X̃)∗), f(g1g2) = (f(g1))g2f(g2).

Lemma 8.1. Each element of H1(π1(X), C(X̃)) defines a line bundle on X.

Proof. Note: f ∈ H1(π1(X)), C(X̃)∗) determines a function h from π1(X) ×
X̃ → C∗ by h(g, x) = f(g)(x), and h(g1g2, x) = h(g1, g2(x))h(g2, x). Define an
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action of π1(X) on X̃ × Cbyg(x, t) = (g(x), f(g(x))t). The action is free because
f(g(x)) is nonvanishing. Also, the quotient of this action is a bundle Lf .

To obtain a trivialization of Lf , choose an open covering Uα∈I such that on
each open U of the set, the universal cover has the form U × π1(X). Choose a
connected Wα in π−1(Uα) respecting the naturalprojection π : X̃ → X. For W1

covering U1 and W2 covering U2, there exists g1,2 ∈ π1(X) such that g1,2 takes the
point w(x) of W1 over x to a point of W2 over x ∈ U1 ∩ U2. We take the transition
functions as s1,2(x) = f(g1,2)w2. Check the cocycle condition holds. �

8.4. Some comparisons with [Har77] and [Mu66]. [Spr57] has no stan-
dard notation for transition functions on a complex manifold. Apparantly such a
standard notation, such as that for transition functions ψβ,α = ϕβ ◦ ϕ−1

α (as in
Lem. 2.2) seems to have awaited the sheaf formulation of manifolds. Early places
where US students could see this notation include [Gun66, p. 15]. As in Def. 3.6
we tend to record our analytic or meromorphic functions on Uα as those on ϕα(Uα).
What, however, is the precise ring of analytic functions on the overlap Uα ∩ Uβ , of
two coordinate charts (Uα, ϕα). Using the ring HU (Uα) = {f◦ϕα | f ∈ H(ϕα(Uα))}
exactly solves this problem of having a ring directly defined on the open set Uα.
For each open set U ⊂ X we define the analytic functions on U by sying they
are functions on U whose restriction to each U ∩ Uα is the pullback by ϕα of a
function analytic on ϕα(U ∩Uα). This gives us the essential properties of the sheaf
of holomorphic functions, HX .

For example, in [Mu66, p. 33] the maps defining a presheaf for a chain of open
sets U1 ⊂ U2 ⊂ U3 are called restriction and the cocycle condition ψγ,β◦ψβ,α = ψγ,α

for transition functions takes the form restU2, U1 ◦ restU3, U2 = restU3, U1. That is,
restriction is from the bigger set to the smaller, and the direction is said this way
in the subsecriptions. This is at the ring level. At the point level it goes the other
way.

8.5. The lemmas of Noether and Chow. In response to your questions
about Ur = Pr\Dr, here are the relevant answers. Include the definition of normal
variety.

PART A. Dr is an algebraic variety: There are two ways to see that. First
way: There is an equation that describes it. The start of that equation comes from
its basic description.

Write Pr as the collection of nonzero polynomials (up to multiplication by a
nonzero constant) of degree at most r. If a polynomial has degree less than r,
regard ∞ as being a zero of it. Then, Dr is the locus of polynomials with two
or more zeros that are equal. If you write the condition for a polynomial f(z) to
have repeated roots, it is that the gcd of f and f ′ have a common factor. The
Euclidean algorithm allows you to write the gcd of f and f ′ as hf + gf ′ for some
relatively prime polynomials h and g. Finally, the condition that there are such
relatively prime h and g giving a nontrivial linear combination can be written as a
condition on a matrix (formed from the coefficients of f and f ′) having a nonzero
determinant. So, Dr is a polynomial equation in the coefficients of f formed from
setting a determinant expression to 0.

Here is how that relates to Chap. 3 and Chap. 4. In Chap. 3 I talk about
the concept of P 1-algebraic (Def. 3.10). I’ve always wanted to put that discussion
in a book, for P1-algebraic is a naive definition of algebraic that is close to being
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algebraic but not quite. The definition – which you would never have seen before
– is equivalent to a compact manifold having an embedding in (P1)N for some N .
The definition of algebraic is that there is an embedding in PN and §4.1.2 discusses
the difference between P1-algebraic and being algebraic. I’ve left the full motivation
– as I say in §4.1.2 – for the definition of algebraic for Chap. 4. See in Part C why
I wait until Chap. 4 to do this. Also, I mention a second more abstract reason why
Dr is algebraic there.

PART B. The complex structure on Ur is from the complex structure on Pr

(§4.2.2). An open subset of a complex manifold is a complex manifold. PART
C. Your question ”A big question we have is how Hurwitz spaces are algebraic
varieties.”

ANSWER: How about an easier question? Suppose you have a cover X of
P1\zzz = Uzzz (Riemann sphere minus a finite set of points). Why is X algebraic?
Here is one answer: Because you can compactify X in a unique way to a compact
Riemann surface (this is at the beginning of Chap. 4), and all compact Riemann
surfaces are algebraic. Better yet, you can see its algebraic structure by relating it
to the algebraic structure of P1. All of this is Riemann’s Existence Theorem, the
topic of Chap. 4. This is not an easy theorem. Understanding the significance and
how to use this are the main topics of the book. The question you are asking is a
generalization of this: Any cover of Pr minus an algebraic subset is an open subset
of an algebraic variety. The result is due to Grauert and Remmert and it plays a
big role in my first big paper on relating the Inverse Galois Problem to Hurwitz
spaces in 1977. So, you must wait to Chap. 4 for a full discussion.

The simple relation between (P1)r and Pr is that the latter is the quotient by
an Sr action of the former. At first I intended that to be in Chap. 3. Late in the
game I saw it made a more coherent discussion to be in Chap. 4. Once, however,
you know that, then you have that Dr is the quotient by of the fat diagonal on
(P1)r. A valuable lemma is this. Let X be an algebraic variety and let G be a finite
group acting algebraically on X. Then X/G is also an algebraic variety. Indeed,
showing the value of having this fact is what is my motivation to someone reading
these chapters for expanding beyond P1-algebraic to the definition involving PN .

Additional Point: Chow’s Lemma – which I’m sure Mirroslav will do in his class
– says that any complex analytic subset of an algebraic variety is also algebraic.
This is NOT deep, though conceptually very valuable.

8.6. The Branch Cycle Lemma. If a cover ϕ : X → P1
z in this family

has definition field K, then the Galois closure of the cover has Galois (arithmetic
monodromy) group a subgroup of NSn(G,C).

8.6.1. BRANCH CYCLE SETUP.
Question 8.2 ((G,C)-cover?). Quest. A: Does zzz and ϕggg : Xggg → P1

z exist with
branch points zzz, 〈ggg〉 = G and ggg ∈ C (ggg ∈ Ni(G,C)) over Q?

Quest. B: A (G,C)-Galois cover over Q?
Q. A or B requires zzz is a Q set. For z0 ∈ P1

z(Q): σ ∈ GQ acts on γ ∈ π1(Uzzz, z0)
through what the result does to f ∈ E(Uzzz, z0)alg:

f �→ fσ−1◦γ◦σ = fγσ .

Extend π1(Uzzz′ , z0) → G to ψzzz′,z0 : π1(Uzzz′ , z0)alg → G. As a profinite group,
π1(Uzzz′ , z0)alg is also free on r (topological) generators modulo a product-one rela-
tion.
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Notation: σ ∈ GK maps to nσ ∈ Ẑ∗ = G(Qcyc/Q). For any K ≤ C (like R or
Qp) consider

π1(Uzzz, z0)ar
def= π1(Uzzz, z0) ×sGK .

BRANCH CYCLE ARGUMENT: [Fri73] or [Fri77]
Lemma 8.3 (Branch Cycle Argument). For Q. B: ψ must extend to a homo-

morphism ψ : π1(Uzzz,z0)
ar → G.

Find π ∈ Sr to satisfy zσ
i = z(i)π. Then, affirmative to Q. B requires

(8.1) Cnσ

(i)π = Ci, i = 1, . . . , r.

Affirmative for Q. A requires a choice of Galois closure group Ĝ between G and
NSn

(G,C). For each such Ĝ, replace (8.1) by

gσCnσ

(i)πg−1
σ = Ci, i = 1, . . . , r, for some gσ ∈ Ĝ.

Let G = A5, C+
5 the class of (1 2 3 4 5), C−5 the class of (1 3 5 2 4), C3 the class

of 3-cycles. Example four branch point covers:
(8.1a) C52

+32 : No for Q. B, yes for Q. A.
(8.1b) C5+5−32 : Yes for Q. A and B.
(8.1c) C52

+52
−
: Yes for Q. A and B.

8.6.2. Field of moduli. Ingredients for a field of moduli (over Q):
• A collection of algebraic objects P over Q̄ invariant under GQ.
• A GQ equivalence relation E on P.

For ppp ∈ P let Eppp be its equivalence class: HE
ppp is the subgroup of GQ stabilizing Eppp;

KE
ppp is the fixed field of HE

ppp .

Fact 8.4. For each ppp′ ∈ Eppp, any field of definition of ppp′ contains KE
ppp .

From a Nielsen class Ni(G,C, T )abs: C a rational union of classes and zzz ∈
Pr \ Dr(Q).

(8.1a) Eabs
zzz (G,C, T ): s-classes in Ni(G,C, T ) with branch points zzz.

(8.1b) Same as (a) except Eabs,rd
zzz (G,C, T ) is w-equivalence classes.

(8.1c) As in (b) except drop T ; replace abs by in.
(8.1d) As in the previous, except drop zzz.

COURSE MODULI:
Question 8.5. For an equivalence class E , and ppp ∈ P how to compute KE

ppp ?
Does Eppp contain something over KE

ppp ? What is the lattice Lppp/KE
ppp of definition fields

for elements of Eppp?
Most algebraically defined equivalence classes, including those defined by Nielsen

classes have a reasonable (course) moduli space HE .
Fact 8.6. In the covering space equivalences, HE is an affine algebraic variety

with a well-defined field of definition—as a moduli space. If C is a rational union
it is Q.

Proposition 8.7. The Branch Cycle Lemma gives the correct field of definition
for moduli spaces defined by Nielsen classes.

Meaning: For any family of covers in this equivalence class, you can define a
natural map to the moduli space so the space is locally — for the étale topology —
the pullback of a family over the given space.
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8.6.3. How Hurwitz spaces arise. Given ϕ : X → P1, branch points zzz0, from
RET: What if you wanted equations for it?

• Would you regard zzz as variable?
• Express equations in zzz ∈ Ur = Pr \ Dr?

Why concentrate on zzz0? Want ϕzzz for all zzz. If possible, then analytically
continuing ϕzzz around P ∈ π1(Ur, zzz0) returns to ϕzzz0 .

Homotopy class of P is QP ∈ Hr: Hurwitz monodromy group. At end of
P the cover has branch cycle description (ggg)QP . Compute with starting classical
generators of π1(Uzzz0). So, ϕzzz valid for all zzz requires (ggg)QP be ggg (modulo conjugation
by G or closely related). Check: Is (ggg)Q essentially ggg for all Q ∈ Hr.

Example 8.8. Consider ggg =

((1 2 3), (3 2 1), (1 4 5), (1 5 4)) ∈ Ni(A5,C34).

My next talk computes (ggg)QP .

Find: ϕzzz coefficients have coordinates for nontrivial Ur cover. What cover?
Explain why nonsingular conics in Pn are isomorphic to Pn over C (use Lem. 4.13),

but not over Q.

9. Using algebraic coordinates and higher monodromy

The complements are topics where we are incomplete with corroborating proofs,
giving, however, enough to use them in Chap. 5.

9.1. Complements on algebraic coordinates.

9.2. Fundamental groups from branch cycles and higher monodromy.
9.2.1. Computing the fundamental group from branch cycles. Suppose ϕ : X →

P1
z has X of genus 0 and zzz as branch points. Then §?? has a procedure for computing

classical generators for X \ {ϕ−1(zzz)} from those for Uzzz. In particular, given Y →
X → P1

z, this gives a uniform procedure for computing branch cycles for the cover
Y → X, and thus expresses these branch cycles from those for ϕ. A fairly simple
procedure allows computing

9.2.2. Action on the fundamental group and homology of a fiber.
9.2.3. Action on periods of integrals.

9.3. Flat bundles and complete reducibility. Check out of [Gr70, §3 and
§4] on complete reducibility in the action on flat bundles.

9.3.1. The genus 0 problem. Suppose f(w) is rational function in w. It maps
points on the w-sphere to the z-sphere. The Galois closure group of the splitting
field of f(w) − z over C(z) (monodromy group of f) is special. That is the gist of
the genus 0 problem over C. (The same qualitative statement holds for any fixed
genus.) Guralnick and Thompson’s original version is this. With finitely many
exceptions, the simple composition factors of the monodromy group of such a map
must be alternating or cyclic groups. The solution of this left three big problems.

(9.1a) What are the precise monodromy groups, with finitely many exceptions,
of indecomposable rational functions? Guralnick’s 0-Conjecture: We only
get alternating groups, symmetric groups, cyclic and dihedral groups.
These should come only with special degree representations.
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(9.1b) What groups must one add for rational functions over fields of positive
characteristic? Guralnick’s p-Conjecture: In characteristic p add Cheval-
ley groups over extensions of Fp to alternating and cyclic groups.

(9.1c) Mumford’s Question: What function fields in one variable over C have
uniformizations by the Galois closure field of a rational map?

[Fri99] discusses all of these and the history from the Davenport Problem mo-
tivations to the complete resolution of the genus 0 problem. Further, Davenport’s
problem in positive characteristic corroborates Guralnick’s inspired p-conjecture.
So does the voluminous work of Abhyankar toward his exponent mantra for pro-
ducing Chevalley groups over Fp from genus 0 covers. A gem from 1995 is Müller’s
listing of the monodromy groups of polynomials [Mül95].

Like the genus 0 problem, Mumford’s question has several forms. For example:
Any curve defined by a separated variables equation f(w) − g(u) would have its
function field in the composite of splitting fields over C(z) of functions f(w)−z and
g(u)−z. That includes all hyperelliptic curves. Directly, the description of modular
curves as moduli of genus 0 curves [Fri78] produces elliptic curves from systems of
rational function Galois closures, no composite required. Mumford’s question has
no representation in this volume. It remains untouched in that no function field
has been excluded from the genus 0 closure field.

9.4. Unramified Frattini covers.
9.4.1. Projectives in the category of profinite group covers. Projectives in the

category of profinite group covers of a given group, and here projectives that
are Frattini exist. Considered covers with kernel pro-p and kernel elementary p.
Cp∞(G), Cp(G). Other category K[G] modules Ck[G](M) covering M . Porjective
profinite objects exist and are unique up to isomorphism. The name for the last is
P(M). Frattini subgroup corresponds to radical of M .

F̂2(2)×sZ/3 has an embedding of F2×sZ/3 in it, though this will not always be
the case. Actually the character of the abelian quotient of 2Ã5 is not Q− rational,
so this doesn’t have a corresponding lattice. Holt and PLeskin:

Gruenberg 1970s: C(G) ≡ CFp[G](ω) with ω Aug. ideal. Ext1(ω, M) = Ext2(111, M) =
H2(G, M). M → N → ω is equivalent to 0 → M → H → G → 1. It works with
longer sequences too.

Corollary 9.1 (Gaschutz). M0 = Ω2(Fp).
Draw the conclusion that if dim(Mn) > 1, then the exact trivial action part of

Gn (in G0) is the Op′(G). To see the nonobvious direction, restriction to a p-element
g in this action, and conclude that g would be acting trivially on a projective.

If dim(Mn) > 1, Z(Gn) ∩ Op′(G) = 1, Gn is p-perfect =⇒ Z(Gn+1) = 1, and
Gn+1 is p-perfect and dim(Mn+1) > 1.

Proposition 9.2 (Griess-Schmid). dim(Mn) = 1 if and only if G is p-super
solvablle with cyclic p-Sylow.

9.5. Equations, coordinates and cryptography. Sometimes the intense
studies that engage mathematicians hide the forest behind the trees.

Much of physical science started with the study of relations between theoreti-
cally measurable quantities. The applications came because some of these quantities
were practically measurable or had in-hand control (like the force and angle of a
rocket launch) while the other was more theoretical (like the final destination of
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the rocket). Further, there are so many physical systems and so many possible
trajectories of different characteristic, that once the idea of analytic coordinates
was available, it was inescapable to ask when one system could be transformed
to another and how one would test for that. Any one of the following topics has
characteristics that resonate into an area of investigation.

(9.2a) Deciding if there are substitutions of variables that change one integral
into another.

(9.2b) Finding normal forms for collections of trajectories of a dynamical system.
(9.2c) Creating large isolated systems of interacting particles that emulate logical

computer functions.
(9.2d) Finding uniformization situations that allow effectively encoding data in

special ways in the set of solutions of equations.

10. A piece of the historical record

We start with some historical comments, first personal then some gleaned from
[Ne81] and other sources.

10.1. The career view. When I was a student 1964–1967, I roamed the
library at University of Michigan, gleaning from a great store of mathematics, the
topics that interested me greatly. These, of course, would have inundated me in
my quest to get done, and get done quickly, despite my background as an electrical
engineer (who worked for three years in aerospace companies). While my primary
interest at the time was in algebraic number theory, there was a quickening surge
when I saw the papers of Abel and Galois in the beginning volumes of Crelle’s
journal. What I immediately saw was that Galois’ historical legend was of a different
nature than that supported by those of his works Crelle published.

Books on the algebraic theory of curves didn’t appeal to me much, for they
tended to handle one curve at a time, in intricate detail. There wasn’t much at the
time on Riemann surfaces in English, except [Spr57]. Further, I saw that the only
way to escape the excessive reliance on special forms was through moduli. Moduli
formulations of problems were instituted in the early 1960’s by Grothendieck and
his school. In few 21st century libraries can a student roam through the beginning
volumes of Crelle’s journal. The difference between being able to order them upon
demand and having them there for the curious roaming student (includes curious
faculty) is akin to the difference between having snow in California’s mountains
when you want it, and having God bring it to your home.

In looking back I have the memory that few other topics interested me. Partly
that was to prevent the domination of the library volumes calling “Read me, read
me!” Those books were real to me, and the urgency of all that mathematics was
an insistent plea, that called for my resistence. I let my intuition guide me. So,
on certain topics very important to the last fifteen years of my work, I learned
little at all, sometimes thinking – as with profinite groups – the subjects weren’t
that tough. Other topics, related to Lie algebras, differential geometry and partial
differential equations seemed to have hordes already committed to them. Even if I
avoided their study, others assured they weren’t neglected.

These personal comments clarify — though I was commonly praised for my
openness to all kinds of mathematics — that my education went through a many
year process before my desire to see, and add to, the connectedness between topics
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grew. As, however, that happened, the resources for feeing that desire were being
removed from the libraries in the late seventies on. Further, the tremendous growth
of mathematics was leading mathematicians — and all other academicians — into
a personal contest whose criterion for success was dominated by a count of numbers
of papers.

Suppose for example, one mathematician in her/his career writes 70 papers,
each of roughly 40 pages. Contrast that with another who writes 560 papers, each
on average five pages. Without even looking at the papers, my vision of the first
writer is that s/he built upon projects that defined underappreciated portions of
extant areas, or even created new additions to these. I would expect the ratio
of theorems to definitions and supporting examples to be slightly smaller in the
former, though I would also expect much less starting and stopping from paper
to paper to present a common setting. Two other points I would expect, without
seeing the papers. The journals, departments and peer reviews of the former career
would have many more hesitancies about the evaluation of that career; while the
mathematical community would have more focused comments on the nature of that
career. It seems significant, however, as to whether these two alternative careers are
conscious decisions or merely manifest of the talent and organizational contingencies
faced by the mathematician. Are they what you can do, or what you would do?

10.2. Influences on Riemann. We list some significant events in the theory
of complex variables.

• A.-L. Cauchy 1789–1857: By 1825 had command of the definite integral
between complex limits and presented the Cauchy Integral Theorem.

• P.A. Laurent (1813–1854): In 1843 discovered the Laurent expansion of
an analytic function in the deleted neighborhood of an isolated singularity.

• J. Liouville (1809–1882): Formulated many theorems in the theory of
elliptic functions.

• V. Puiseux (1820–1883): Investigated analytic continuation in studies of
the behaviour of algebraic functions in the neighborhood of one of their
branch points.

• C.A. Briot (1817–1882) and J.C. Bouquet (1819–1885): Assembled the
previous topics in a series of articles in 1856, bringing them together in
the influential [BB1856].

[Ne81] says it took from 1814 to 1846 to expand a special case of Cauchy’s
Theorem to integration over a general closed path. Cauchy didn’t recognize the sig-
nificance of the Cauchy-Riemann equation until 1851. Like Weiertrass, Ch. Méray
(1835–1911, a Briot and Bouquet disciple), emphasized that continuity is insuffi-
cient. As expected, he emphasized the need for a theory based on Taylor series.

B. Riemann (1826–1866) from his thesis 1851 and his 1857 articles on abelian
functions, used the Cauchy-Riemann equations exclusively. He basing many of his
proofs on potential theory. [Ne81, p. 89]: It was Gauss’ (1777–1855) writings
that the young Riemann studied wth special zeal. From these he drew signficiant
inspirations for his [doctoral] thesis. He wrote his father how he found these papers.
What he especially appreciated was Gauss’ contributions to conformal mapping
using essentially a Dirichlet principle.

According to Betti, Riemann said he got the idea of cuts from conversations
with Gauss (1777–1855; see §2.4) [Ne81, p. 90]. Letters of Klein and Schering attest
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to Gauss’ influence on Riemann’s theory of hypergeometric series. This influence
came partly from Gauss’ papers. Still, it is striking to consider the over 70 year old
Gauss sketching plans for such an etherial construction to the very young Riemann.

During his time in Berlin (1847–1849) P.G. Dirichlet (1805–1859), G. Eisenstein
(1823–1852) and C.G.J. Jacobi (1804–1851) especially influenced Riemann. He
attended Dirichlet’s lectures on partial differential equations, and Eisenstein and
Jacobi lectures on elliptic integrals. Riemann read Cauchy and Legendre on elliptic
functions. [Ne81, p. 91]:

Riemann was suitable, as no other German mathematician then
was, to effect the first synthesis of the “French” and “German”
approaches in general complex function theory.

His introductory lectures started with these topics: the Cauchy integral formulae;
operations on infinite series; the Laurent series; and analytic continuation by power
series. [Ne81, p. 92] includes a photocopy of a famous picture on analytic continu-
ation from Riemann’s own hand. Picard and Lefschetz both used this picture (from
Riemann’s collected works) in autobiographies of what influenced critical theorems
of theirs. Riemann also lectured on the argument principle, the product repre-
sention of an entire fuction with arbitrarily prescribed zeros and the evaluation of
definite integrals by residues. His most advanced lectures were from his published
papers solving the Jacobi inversion problem (§??).

10.2.1. Competition between Riemann and Weierstrass. [Ne81, p. 93]: K. Weier-
strass (1815–1897) himself stressed above all the great influence of N.H. Abel (1802–
1829) on him. At first Weierstrass was an unknown. Only after his 1856 paper on
abelian functions did he get his position in Berlin. It was in 1856 that the com-
petition between Riemann and Weierstrass became intense, around the solution of
the Jacobi Inversion problem.

[Ne81, p. 93]: May 18 and July 2, 1857, Riemann submitted his two part
solution to Jacobi’s general inversion problem with these carefully measured words:

Jacobi’s inversion problem, which is settled here, has already
been solved for the hyperelliptic integrals in several ways through
the persistent and regally successful work of Weierstrass, of which
a survey has been communicated in Vol. 47 of the Journ für
Math. (p. 289). Until now, however, only a part of these in-
vestigations has been fully worked out and published (vol. 52,
p. 285), namely the part that was outlined in §1 and §2 of the
earlier paper and in the first half of §3, pertaining to elliptic
functions. Only after the full publication of the promised paper
shall we be able to tell to what extent the later parts of the pre-
sentation agree with my article not only in results but also in
the methods leading to them.

Weierstrass consequently withdrew the 3rd installment of his investigations,
which he had in the meantime finished and submitted to the Berlin Academy. He
explained this (much later) in his collected works as follows.

I withdrew [the 1857 manuscript] for, a few weeks later, Riemann
published an article on the same topic, [. . . ] on entirely differ-
ent foundations from mine and did not make immediately clear
that it agreed completely with mine in its results. The proof
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for it entailed some investigations of chiefly an algebraic nature,
whose execution was not altotether easy for me ... But after this
difficulty was overcome it seemed to me that a thorough going
overhaul of my paper was necessary. ... I could only toward the
end of 1869 give to the solution of the general inversion problem
that form in which I have treated it from then on in my lectures.

10.2.2. Soon after Riemann died. Publicly they seemed to have gotten along
[Ne81, p. 95]. Professionally the mutual influence was unquestionably great.
It would be entirely conceivable that the general systematic construction of the
Weierstrassian function theory, achieved around 1860, could have been inspired by
the works of Riemann perstaining to the same set of ideas.

[Ne81, p. 96]: After Riemann’s death, Weierstrass attacked his methods quite
often and even openly. July 14, 1870 was when he read his now famous critique
on the Dirichlet Principle before the Royal Academy in Berlin. Weierstrass showed
there did not always exist a function among those admitted [in variation problems]
whose expression in question attained the lower bound, as Riemann had assumed.
A letter to H. A. Schwarz on Oct. 3, 1875 says:

The more I think about the principles of function theory, the
firmer becomes my conviction this must be based on the founda-
tion of algebraic truths, and that, consequently, it is not the right
way if instead of building on simple and fundamental algebraic
theorems, one appeals to the “transcendental” [by which Rie-
mann has discovered so many of the most important properties
of aglebraic functions].

During its heydey (1870–1890), the Weierstrassian school took over nearly every
position in Germany. For instance, Schwarz was at Göttingen.

[Ne81, p. 98] asserts it was the Goursat part of Cauchy’s theorem that reno-
vated Riemann’s approach, starting around 1900. [Ahl79, p. 111] with no precise
citation, refers to Goursat’s contribution as,

This beautiful proof, which could hardly be simpler is due to
É. Goursat, who discovered that the classical hypothesis of a
continuous f ′(z) is redundant.

Curiously, there is precisely one reference [Ahl79, p. 121] in all of [Ahl79]. This
is a footnote:

Without use of integration R. L. Plunkett proved the continuity
of the derivative (BAMS 65, 1959). E. H. Connell and P. Porcelli
proved the existence of all derivatives (BAMS 67, 1961). Both
proofs lean on a topological theorem due to G. T. Whyburn.

That unique quote suggests Ahlfors supports the significance of Goursat to
Riemann’s renovation. Yet, there is a complication in analyzing Neuenschwanden’s
thesis. Wow would one document that this event turned mathematicians to the
geometric/analytic view of Riemann? Historically it seems sensible to investigate
the span from [AG1895] to [Wey55] as a shift from genus 1 to higher genus. Yet,
that period is clearly insufficient to deal with an aspect of the true shift, from
moduli of genus 1 curves (including modular curves) to general moduli. Theories
toward the latter include Teichmüller theory (analytic) and geometric invariant
theory (algebraic) or expedient precursors of the Hurwitz space approach like the
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Schiffer-Spencer deformation theories of varying the complex structure around a
single point of a Riemann surface.

I suspect Goursat’s theorem is a simple explanation that first year graduate
students can follow. Likely, however, serious applications and resonant questions
required understanding the variation of structures on a Riemann surfaces with the
variation of the surface itself. My experiences are that not only do these issues
confound graduate students, often specialists in complex variables struggle with
these. Both technically and conceptually handling the hidden monodromy consid-
erations (see Chap. 1 §5.4.3) is a tough topic. One practical approach to this topic,
hidden in combinatorial actions of the braid group (et. al.) in this chapter, appears
undiluted in Chap. 5. The only tool flexible enough to handle the complexity of
the structure was that of Riemann. If that is right, then it is the documentation
of these applications and questions that would illuminate on the story of the res-
urrection of Riemann’s work. This makes it all look like slow continual progress.
When, however, we come to Galois, the story has a different nature. We see it
through modular curves which still to this day herald those works that accrue the
most prestige.

10.3. The place of Galois. One thing is certain: Mathematicians often use
Galois’ name. By contrast, the most often told stories of the circumstances of his
death appear unlike the essence of Galois.

I give the gist of what [Rig96] says about Galois’ suicide. Galois, despondent
from the suicide of his father, and the rejection of his papers by the Academy
of Sciences, primarily from the negligence of Cauchy, committed a heroic suicide.
She says: “offering his body against the politics of the Bourbon restoration.” His
rejection by Stéphanie Poterin-Dumotel exacerbated his despondency. She was the
daughter of a doctor, Jean-Louis Poterin-Dumotel, who lived on the same street
where Galois was transferred during a parole from prison for his major political
escapade. She wasn’t, in anyone’s eyes, a “tart.”

10.3.1. Removing the ethereal from what happened. [Rig96, p. 112] has the
description of Galois’ sacrifice, the morning of May 30, 1832. For shear detail, it
takes your breath away. It’s so solid about the climate of his sacrifice by comparison
with the legend. I’ve never quite seen how most mathematician’s credit the dual
story as a romance. It lacks much of the drama of Rigatelli’s analysis. Next, my
own words try to capture the essense of about 50 pages from [Rig96].

While still on parole, Galois could have joined Auguste and Michel Chevalier
in the Saint-Simonian community at Ménilmontant. Still, the rules imposed by
Bezard and Enfantin, the leaders of the movement, would have taken away his
independence. The larger picture requires some familiarity with court politics of
the time. Marie-Corline, duchesse de Berry, had recently returned to France. (She
didn’t know Galois personally, yet we see she plays a real role in what Galois was
about.) As the widow of Charles X’s son, at the time of his assassination, she
was expecting an heir. The boy, now 12, was living in exile in Prague, under the
guidance of Cauchy. Yes, that is our Cauchy from §10.2. He was was demonstrating
his devotion to the Bourbon dynasty. Galois offered himself as a hero sacrifice for
the necessity of taking up dramatic arms for the republic (not the monarchy).
Rigatelli poses that he arranged a dual with his friend L. D. (is that all we know
of him?). A complicated piece in the tragedy, was that only his opponant’s pistol
would be loaded. He left several letters plausibly corroborating the dual [Rig96,
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p. 109]. To accomplish certain aims his group, Friends of the People, needed only
to spread the news the duel was actually a police ambush.

He did not tell Chevalier of his plot. Rather, he said only that the rejection of
Stéphanie was devastating. Rigatelli emphasizes the skillful writing in these letters
disguising the true situation. These letters gave rise to all the legends. They spoke
with certainty of his death. Rigatteli suggests this was a sure sign of contrivance.
The newspaper Le Précurseur actually told the story as it happened:

At point blank range, each [of these friends] was given a pistol
and fired. Only one of the pistols was loaded [Rig96, p. 113].

The following day, at midday, 3,000 people were present at the cemetary of Mont-
parnasse. The plan was to attack the police, when the coffin lowered into the grave.
While Plaignol and Pinel, leaders of the Friends of the People, were delivering the
eulogy in honour of Galois, word passed that General Lamarque had died. They
decided this second funeral would attract a much larger, more emotionally involved,
crowd. A swift decision brought Galois’ funeral to a hasty, silent end.

The National Academy rejected Galois’ famous memoire, on his solvability
criterion for construction by radicals had been rejected. It was only published 14
years later. A few mathematicians conceive it, beyond doubt, as the foundation
of modern algebra. Many, however, do not. Reason: It is common to view it as
sketching some general abstract idea of group and permutation representations.
Reality, again, is emphatically more mathematically precise and problem oriented.
Reality takes account of someone having to understand its contents.

10.3.2. Group theory highlights in Galois’ works. [Rig96, p. 133] One of Galois’
results was that primitive representations of solvable groups must have prime power
degree. He saw that degree p (prime) equations have group of type Z/p ×s(Z/p)∗

(the elementary semi-direct product). He thought to also do this for general primi-
tive representations. He did this by considering the (Galois) field of order pv and he
looked at the roots as listed by the congruences modp in this field two subscripts
equal if they are given by kpv ≡ k mod p. So, he hoped to show the roots were
permuted to take xk to x(ak+b)pr with apv−1 ≡ 1, bpv ≡ b mod p and r an integer.
He was trying to say that if you take the roots to be xi1,i2,...,iv

(vector space desig-
nation over the field Z/p of dimension v), then the group is in affine transformations
augmented by the Frobenius. Rigatelli says if and only if, though certainly these
are not usually solvable. She says Galois realized this later.

10.3.3. Solvability criterion and Modular curves. [Rig96][p. 137]: The third
memoire is in the letter to Chevalier. In this he starts by considering integrals of
the three kind. He understood (from having read Legendre and Abel — as he says
in his papers) that if g is the number of integrals of 1st kind then the number of
periods is 2g [the number of global holomorphic differentials is half the rank of the
first homology: §6.5]. He was considering the monodromy on the periods, though
Rigatelli does not note this. The equation giving the division of periods into p equal
parts has degree p2n − 1, and its group is GLp2n . [BAD62, p. 162–165] starts with
this quote from Galois’ letter to Chevalier:

La condition que j’ai indiquée dans le bulletin de Ferussac pour
que l’equation soit soluble par radicaux ist trop restreinte. Il y
a peu d’exceptions, mais il y en a.
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My English translation: The condition that I have indicated in the bulletin of
Ferussac for the equation to be solvable by radicals is too restrictive. There are few
exceptions, but there are some.

After explaining the idea of primitive equations he says the following (to Cheva-
lier). We may, however, thank historians for struggling for us with the meaning of
difficult language translation combined with archaic mathematical formulations.
(10.1a) For an equation of prime degree to be solvable, it is necessary and sufficient

that from any two known roots, the others are rational functions of them.
(10.1b) If an equation of degree m is solvable by radicals, then m is a prime power.
(10.1c) Further, in the case of prime-power degree, the equation is solvable if any

two roots rationally give the others.
Rule (10.1c) overlooks the particular cases m = 9 and 25, m = 4 and generally

that where ut is a divisor of pv−1
p−1 with u prime and (pv−1)v

ut(p−1) ≡ p mod ut. Galois
asserts in his letter that this case, nevertheless, deviates very little from the general
rule. It must always be that with two of the roots known, the others are deduced
from them, by means of a number of radicals of degree p, equal to the number of
divisors of the type ut satisfying the equations above. Galois says all these results
come from his theory of permutations.

Finally, he says, let k by the modulus of an elliptic function, p > 3 a prime. In
order that the equation of degree p + 1 that gives the diverse modules of functions
transformed relatively to the prime number p, be solvable by radicals, it is necessary
from two choices, either one of the roots is rationally known, or each is a rational
functions from any other. It does not matter here, of course, what are the particular
values of the modulus k. It is evident that this does not hold in general. He also
says it is remarkable that the general modular equation of degree 6, corresponding
to the prime 5, may be reduced to a fifth degree equation. This does not hold for
any higher degree modular equations.

11. Exercises

11.1. Topology of covers. Let ϕ : X → Y be an unramified cover.
(11.1a) Suppose Y has a countable basis for its topology. Show the same holds

for X: X is second countable.
(11.1b) Now assume Y is a second countable Riemann surface and X is also a

Riemann surface where ϕ a ramified cover. Show X is second countable.
Show X is compact if and only it has the limit point property: An infinite
sequence has a convergent subsequence.

The following shows a strong equivalence ψ : Y 1 → Y 2 between two finite
ramified covers (Y i, ψi) of X (as in §3.2.2), i = 1, 2, is automatically an analytic
isomorphism.
(11.2a) Restrict both covers to X \D(ψ′): show that ψ : Y 1

X\D(ψ1) → Y 2
X\D(ψ2) is

analytic.
(11.2b) Use Riemann’s removable singularities theorem [Ahl79, p. 129] to extend

the map of a) to an analytic map including the discrete set Y 1
D(ψ1).

We now investigate the Jordan curve theorem.
(11.3a) Let γ′ be a simple closed polygonal path on P1 = P1

z and let U be a
connected component of P1 \ γ′. Show the points of γ′ in the boundary of
U are both open and closed. Let z0 be in the range of γ′. Thus show that
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P1 \ γ′ has at most two connected components, told apart as the points
that connect in a neighborhood on the left of z0 versus those that connect
to a neighborhood on the right of z0. The component connected to ∞
consists of points that relative to γ have winding number 0. So, it suffices
to show there is a point of P1

z \ γ′ with nonzero winding number relative
to γ′. See [Ahl79, p. 118].

(11.3b) Let γ′ be a simple simplicial closed path in P1 and let W be the interior
of γ′. Let γ′′ be a simple simplicial path that meets γ′ only at the end
points, x0 and x1, of γ′. Note that γ′ \ {x0, x1} consists of two connected
components. Conclude from the Jordan curve theorem that each compo-
nent together with γ′′ defines a simple closed curve whose interior consists
of one of the two components of W \ γ′′. Each component consists of the
points path connected to any given point of the component.

Relate back to Chap. 2 [9.17] to complete a discussion of orientability of com-
plex manifolds. Also Def. 2.21.

(11.4a) Use the complex structure to get the orientation from the sign of the
expression dx∧ dy. That works by substituting variables along the paths.
Show that if Y → X is a finite ramified cover, an orientation of X gives
an orientation of Y , and if X is a complex manifold, so is Y .

(11.4b) Show d(f(z)dz) = 0.

The Brouwer separation theorem [?, p. 11-21] states that a compact differen-
tiable 2-dimensional manifold M in R3 separates. That is, R3 \ M consists of two
components, an inside that is bounded, and an outside that is unbounded.

(11.5a) Use the separation theorem to show that there is a continuously varying
vector wwwm of length 1 for each m ∈ M such that the dot product wwwm ·vvvm =
0 for every vector vvvm tangent to some path on M through m (i.e., wwwm is
normal to M at m; §1.c).

(11.5b) Use the notation of Chap. 3 §2.21. Show that a compact differentiable
manifold in R3 is orientable. Hint: Restrict to coordinate charts that at
each point have the RETURN

(11.5c) Orientation for higher dimensional manifolds.
(11.5d) Show that there is an unramified cover P1 → X of degree 2 for which X

is not orientable. Conclude that such an X cannot be embedded in R3.
Hint: P1 is homeomorphic to the 2-sphere, S2, in R3. Make the set whose
points consist of pairs of endpoints of diameters of S2 into a manifold.

The next exercise series shows how a little combinatorics of triangles reveals
that the Euler characteristic of a Riemann surface being genus 0 or 1 shows it
is topologically a sphere or a torus. This continues the discussion of Rem. 2.19.
Suppose two Riemann surfaces Xi, i = 1, 2, have triangulations have respective
triangulations Ti, i = 1, 2. Suppose there is a numbering of the simplices, edges
and vertices in both so that the numbering for one is exactly the same as the
numbering for the other. Call the triangulations equivalent.

(11.6a) Suppose for the triangulation of Xc in Prop. 2.18 the Euler characteristic
is 2 (gggg = 0). Lay out a triangulation on the sphere equivalent to this
triangulation. Conclude an Euler characteristic 2 implies the surface is
homeomorphic to the sphere.
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(11.6b) Do the same for concluding about Xc when its genus is 1 that it is home-
omorphic to a torus.

11.2. Artin braids and Hurwitz monodromy. Notation is from Def. 1.1.

(11.7a) Show any group requiring at most |S| generators is a quotient of F (S).
(11.7b) Let [G, G] denote the commutator subgroup of a group G: Elements

g1g2g
−1
1 g−1

2 for all g1, g2 ∈ G generate [G, G]. Let A(S) = F (S)/[F (S), F (S)]
(or An if |S| = n) be the free abelian group on S. Show any abelian group
requiring at most |S| generators is a quotient of A(S).

(11.7c) Show A(S) = An
∼= Zn if S = {s1, . . . , sn}.

(11.7d) Let F (S) = F2r and let R̄(S) be the normal subgroup generated by

s1sr+1s
−1
1 s−1

r+1s2sr+2s
−1
2 s−1

r+2 · · · srs2rs
−1
r s−1

2r .

Show that G = F2r/R̄(S) is not a free group. Hint: G/[G, G] = A2r.

Refer to the properties in Prop. 3.3.

(11.8a) other automorphisms of Fr not included in the braid group.
(11.8b)
(11.8c) Define the straight (or pure) braids to be the elements of Br in the kernel

of Ψr,∗.
(11.8d) Let Inn(Fr) be the normal subgroup of Aut(Fr) generated by conjugations

of elements of Fr on itself. The mapping class group (of degree r) is
the image in Aut(Fr)/Inn(Fr) of automorphisms of Fr/R̄ induced by the
action of Hr (or Br) on Fr. Denote this group by Mr. Show

τ1 = (Q2Q3 · · ·Qr−1)1−r, . . . , τA+1 =
(Q1 · · ·QA)A+1(QA+2 · · ·Qr−1)A+1−r, . . . , τr−1 = (Q1 · · ·Qr−2)r−1

and τ = (Q1 · · ·Qr−1)r are in the kernel of the natural map Hr → Mr.
(11.8e) Show there is a unique group (the dihedral group of degree n) of order 2n

and generated by two elements σ1, σ2 of order 2 for which σ1σ2 is of order
n. Similarly, show there is a unique group (the dicyclic group of degree
2n) of order 4n and generated by σ1, σ2 of respective orders 2n and 4, and
for which σ−1

2 σ1σ2 = σ−1
1 and σ2

2 is in the group generated by σ1.
(11.8f) Show H3 is isomorphic to the dicyclic group of degree 6, and that M3 is

isomorphic to S3. Hint: Q1Q2 and Q1Q2Q1 are also generators of H3.

11.3. Seifert-van Kampen theorem and fiber products.

(11.9a) Give an example to show why U ∩V must be connected for Thm. refthm7
to hold. Hint: Look at Fig 2.1; but it’s not the easiest example.

(11.9b) Show that if π1(U ∩V, x0) is trivial in Thm. 1.5, then π1(X, x0) is the free
product of π1(U, x0) and π1(V, x0). Conclude in this case that if π1(U, x0)
and π1(V, x0) are, respectively, isomorphic to Fr and Fs (Ex. 2.5) then
π1(X, x0) is isomorphic to Fr+s.

(11.9c) If π1(V, x0) is trivial, show that i(U, X)∗ : π1(U, x0) → π1(X, x0) is surjec-
tive with kernel the smallest normal subgroup N of π1(U, x0) containing
the image of π1(U ∩ V, x0) by the map i(U ∩ V, V )∗. Hint: Take H to be
π1(U, x0)/N . Let β(U) : π1(U, x0) → H be the natural map (β(V ) is the
trivial homomorphism). Conclude that the kernel of β(X) is N .
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(11.9d) Show π1(Pn) is trivial for n ≥ 0. Hint: It is a union of pieces with
trivial fundamental group. There is another approach. If V is a projective
manifold, and V1 is a codimension 1 subvariety, then the natural map
π1(V \ V1) → π1(V ) is surjective. Now use that Cn is contractible.

Consider fiber products and pushouts in the category of finite groups covering
a given group. This is entirely different than the similar categorical notions that
appear in Chap. 3 [9.3].

(11.10a) Show the free product of groups G1, . . . , Gt in Lem. 1.4 is a pushout in
the category of groups and homomorphisms by taking the map of {1}
into each of these groups. Note: (1.2) is therefore a sum, rather than a
product. Product would be a group G with maps to all the Gi s so that
any H that maps to all the Gi s would map to G.

(11.10b) Show uniqueness of pushouts is general in categories of groups. Apply
this to Thm. 1.5 to see why this defines π1(X, x0) uniquely from the maps
π1(U ∩ V, x0) → π1(U, x0) and π1(U ∩ V, x0) → π1(V, x0).

11.4. Residues and uniformization for covers of curves of genus 1.
Thm. 6.15 gives the fundamental group of an r punctured Riemann surface X of
genus g. Thm. 2.6 started with a statement about the fundamental group of Uzzz.

(11.11a) Genus 1 Curve.
(11.11b) This also applies to any Riemann surface uniformized by a disc or by the

complex plane.
(11.11c) State and prove a generalization of Thm. 2.6 and Cor. 2.6 characterizing

the ramified covers of X ramified over a finite subset xxx = (x1, . . . , xr) of
X, where X is any compact Riemann surface. Use X0

xxx for X \ xxx.
(11.11d) Consider the case X has genus 1. Suppose ϕ : Y → X is a ramified

cover, with xxx its branch points and 〈a, b, ḡ1, . . . , ḡr〉 classical generators of
π1(X0

xxx, x0).
(11.11e) HELP Assume N is odd, and label a conjugacy class in SN as of type 2k

if it is the conjugacy class of k disjoint 2-cycles. Let C3·n,n−1,1 be the
conjugacy classes of type (2n, 2n, 2n, 2n−1, 2) in SN with n = (N − 1)/2.
Recall also the Nielsen class notation ggg ∈ C3·n,n−1,1 to mean in some order
the entries of ggg = (g1, . . . , g5) are in the respective conjugacy classes.

11.5. Reducible fiber products. Assume ϕ : Yi → X are ramified covers
of compact Riemann surfaces, and let W = Y1 ×X Y2 be the fiber product with its
topology coming from it being a subspace of Y1 × Y2. Chap. 3 [9.11c] gives simple
situations where fiber products W are reducible. We develop more substantial
examples by applying RET to the groups of Chap. 3 [9.20].

(11.12a) Finish the proof of Prop. 3.4 by considering gk, an ek cycle in Sek
, k = 1, 2.

Show (g1, g2) ∈ Se1 × Se2 , acting on {(i, j)}1≤i≤e1,1≤j≤e2 is a product of
(e1, e2) disjoint [e1, e2] cycles.

(11.12b) How does a) describe the irreducible components of the (normal) fiber
product of P1

wi
→ P1

z be wi �→ wei
i , i = 1, 2?

(11.12c)

Galois correspondence and primitivity II: Consider the components of Y ×X

Y \∆ of form Y ′×X Y ′ \∆. Each of these attests to a decomposition of f : Y → X
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according to Chap. 3 [9.22c]. We point out how the use of coordinates gives a more
practical test.

(11.13a) Reference p. 37, R. Rosario, Thesis: Unirational Fields, Univ. of Cantabria:
(x − α)

∏k
j=1 Pij

with these being the factors of P (x) over K(α). If the
coefficients generate a proper subfield then imprimitive. Looking for zeros
forming a set of imprimitivity.

This exercise considers the branch point and reduced branch point maps Ψr :
(P1

z)
r → Pr and Ψrd

r : (P1
z)

r → Jr.

(11.14a)
(11.14b) Do the discriminant locus Dr.
(11.14c)

Look back at Ex. 4.1, and do Schur conjecture.

(11.15a) The Q absolute r-equivalence classes are represented by their branch
points {0,∞} and the collection {z1, z2 | z1 =

√
m, z2 = −√

m, m a
square-free integer.

(11.15b) Do the setup for the Schur conjecture.
(11.15c) Finish the Schur conjecture.

11.6. Cuts, tangential base points and symbolic pictures. Consider the
use of the fundamental group π1(Uzzz, Dvvv) in the proof of Thm. 2.26.

(11.16a) Show that if Dvvv′ is another tangential disk to 0, giving an isomorphism
between π1(Uzzz, Dvvv) and π1(Uzzz, Dvvv′) depends on how you regard Dvvv con-
nected to Dvvv′ .

(11.16b) Use as a base point for cuts one of the branch points.

This exercise builds from Chap. 3 [7.2.3]. The point is that we often need
notation to differentiate between more subtle appearance of conjugacy classes in
Sn. Use notation of §2.4 for discussing cuts.

(11.17a) For the situation of one cut, complete the proof of Lem. 2.15.
(11.17b)

11.7. Alternating group conjugacy classes. We first finish considering the
rationality of conjugacy classes in alternating groups.

(11.18a) Assume ggg ∈ Sr
n, n ≥ 3 and 〈ggg〉 is transitive. Show 〈ggg〉 ≥ An if ggg contains

a 3-cycle. Hint: Show 〈ggg〉 must be primitive and imitate Chap. 3 [9.15e].
(11.18b) Let C be an An conjugacy class with CSn = (m1) · · · (mt) and all mi s

distinct and odd. Write m = [m1, . . . , mt] as
∏s

i=1 qvi
i ; qi s distinct

primes and the vi s positive. Suppose q
vi,j

i exactly divides mj by vi,j .
Denote (vi,1, . . . , vi,t) by vvvi. Define µ : Zt → Z/2 by (a1, . . . , at) �→∑t

j=1 aj mod 2. Follow Prop. 3.19 using k, generating (Z/qvi
i )∗, act-

ing on ⊕t
j=1Z/q

vi,j

i . Identify k with a permutation τk ∈ SVi , with Vi =
⊕t

j=1q
vi,j

i . Show τk ∈ An if and only if µ(vvvi) = 0. Hint: τk comes from
the product of the actions of k on Z/q

vi,j

i .
(11.18c) With C as in b), show MC is nontrivial if and only if µ(vvvi) is nonzero

for some i between 1 and s. Let J be those i with µ(vvvi) �= 0. Denote√∏
i∈J(−1)qi−1)/2qi by αC. Show MC is Q(αC).
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(11.18d) Consider the 12 pairs C of conjugacy classes C of A25 for which CS25 �= C.
Imitate Ex. 3.21 to show that of these the only pair consisting of rational
conjugacy classes is that with CS25 = (25). Show that for C with CS25 =
(1)(9)(15) (resp. (1)(3)(21)), MC = Q(

√
−3 · 5) (resp. MC = Q(

√
−7)).

Subtler issues about conjugacy classes in An.
(11.19a) Consider ggg ∈ Sr

n, n ≥ 4, that consist of products of two disjoint 2-cycles.
If n is even show that there are examples with 〈ggg〉 transitive, but not
primitive. If n = 7, show 〈ggg〉 could be PSL3(Z/2) instead of A7.

(11.19b) Let g1 = (1n), g2 = (2 · · · n), g3 = (1 2 · · · n)−1, r = 3 and H = An in
Corollary 2.17. Show that ψH : YH → P1 has a description of its branch
cycles given by ((1 2), (1 2)). Find f(y) ∈ Q[y] such that ψ : P1

y → P1
z by

y �→ f(y) = z has (σ1, σ2, σ3) as a description of its branch cycles.
Take r = 4 and G = S5. Let C1 and C3 be the conjugacy classes of 2-cycles

in S5, C2 the conjugacy class of a 3-cycle and C4 the conjugacy class of a 5-cycle.
Consider the Nielsen class Ni(S5,C)/S5 = Ni+:

{ggg = (g1, . . . , g4) | g1g2g3g4 = 1, 〈ggg〉 = S5 and ggg ∈ C}/S5.

(11.20a) How many elements are in Ni+?
(11.20b) Let ψ : π1(Uzzz) → S5 map a fixed set ḡ1, . . . , ḡ4 into some element of

Ni+. Why is the cover corresponding to such a homomorphism a genus 0
compact Riemamn surface minus a finite set of points?

(11.20c) Represent S5 on the 10 unordered distinct pairs of integers from {1, . . . , 5}:
T : S5 → S10. Example: (1 2 3 4 5) has two orbits on these 10 pairs. What
are the lengths of the disjoint cycles of T applied to an element of the
conjugacy class of a 3-cycle in S5?

(11.20d) Compose ψ with T to get T ◦ ψ = ψ′ : π1(Uzzz). What is the genus of the
curve at the top of the corresponding cover X = Xψ → P1

z?
(11.20e) Does the isomorphism class of Xψ depend on ψ (assuming ψ is in the

Nielsen class Ni+)?
Now we discuss the genus of the corresponding degree 10 covers. Let ggg be a

branch cycle description of the cover from Ni+ in [11.20]. Compute the genus g of

+T (2)
ppp from Riemann-Hurwitz:

(11.21) 2(10 + g − 1) =
4∑

i=1

ind(R(gi)).

Suppose g1 and g3 are 2-cycles from S5. Then, R(gi) has shape (2)(2)(2) in the
representation R, i = 1, 3. Similarly, if g2 is a 3-cycle, R(g3) has shape (3)(3)(3).
Finally, R(g4) has shape (5)(5). Thus, the total contribution to the right side of
(11.21) is 2 · 3 + 6 + 2 · 4 = 20 and g = 1.

Next: Compute Ni+ modulo conjugation by S5. Choose S5 representatives
with g4 equal g∞ = (1 2 3 4 5)−1. Divide Ni+ into two sets T1 and T2: ggg ∈ T1 has
g1 and g2 with no integers of common support, and ggg ∈ T2 has g1 and g2 with
one integer of common support. Conjugate by a power of ggg∞ to assure elements
of T1 have g1 = (1 j) with j = 2 or 3. Similarly, elements in T2 have 1 as common
support of g1 and g2. From this, list Ni+,abs.

Now we consider some genus covers with group A5 and branch cycles having
the following type. (3)(3)(3)(5): Suppose g3 = (1 2 3).



11. EXERCISES 229

(11.22a) Ramification: g1g2 is (2)(2), assume missing integer is 1, so to get product
a 5-cycle: may assume g1g2 is (2 5)(3 4). Now everthing is fixed and need
only count number of ways to write g1g2 is a product of two three cycles.
Hint: Products of two 3-cycles giving (2 5)(3 4): You get one element from
(4 2 5)(2 3 4). Now conjugate the pair ((4 2 5), (2 3 4)) by the centralizer of
(2 5)(3 4), the group 〈(2 5)(3 4), (2 4)(3 5)〉.

(11.22b) If g1g2 is (3), then conjugate by 〈g3〉 to assume common integer is 1, and
g1g2 = (1 4 5). Hint: Take (g1, g2) = ((1 4 3), (1 3 5), and then conjugate
by 〈(2 3), (1 4 5)〉.

(11.22c) If g1g2 is (5). Then, product can’t be of type (2)(3) (Riemann-Hurwitz),
and have only to assure the (5) times g3 doesn’t fix anything. That
means can’t have 2 �→ 1, 3 �→ 2 or 1 �→ 3. Also, since by conju-
gation by 〈(4 5), (1 2 3)〉 can assume (1 5 ? ? ?) resulting in (1 5 2 4 3) or
(1 5 3 2 4). Hint: For each of (1 5 2 4 3) or (1 5 3 2 4), we need to count
all the ways to write this 5-cycle as a product of two 3-cycles. For
(1 2 3 4 5), assume the integer 1 is the common integer to the 3-cycles.
So, (g1, g2) = ((1 2 3), (1 4 5)). Then, by conjugating by 〈(1 2 3 4 5)〉, gives
the five cases where g1 and g2 have any desired integer in common.

(11.22d) Up to equivalence, there are exactly 4 covers from a), 6 covers from b)
and 10 covers from c), or 20 total covers. Also, by applying powers of q1

to case c) you get 10 total in two orbits of length five. Same for b), two
orbits of length 3, and for a), two orbits of length two.

11.8. Differentials and differential equations. The space of holomorphic
differentials has dimension bounded by g.
(11.23a) Finish the pairing with homology classes.
(11.23b) Show df in (2.13) is a 2-form.

Let H(D) be functions analytic on a domain D. A differential equation on D
comes from m ∈ H(D)[w0, w1, . . . , wk]: a polynomial with coefficients in H(D).
Solutions of the equation are functions f(z), analytic in some disk in D with
m(f(z), df

dz , . . . , dkf
dzk ) ≡ 0 on this disk. Especially interesting are equations defined

by m linear in the variables w0, w1, . . . , wk, with coefficients in C[z]: linear, algebraic
differential equations. Examples: m1(w0, w1) = w0 − w1, m2(w0, w1) = w0 − zw1

and m3(w0, w1) = zw0 − w1.
(11.24a) Suppose m ∈ C[z][w0, . . . , wk] defines a linear algebraic differential equa-

tion. Let f(z), analytic on D, solve the equation. Show there exists a
finite set zzz ⊂ P1

z satisfying (1.1a). Hint: Let d
dz act on functions analytic

on D. Produce a matrix operator D on H(D)k+1:

(f0, f1, . . . , fk) �→ (m(f0, f1, . . . , fk), f1 − df0

dz
, . . . , fk − dfk−1

dz
).

Find zzz from the determinant of D.
(11.24b) Show the vector space of solutions (analytic in a disk centered at z0 ∈

P1
z \ zzz) of the differential equation m has dimension k.

(11.24c) Consider the case m = P1(z)w0 −P2(z)w2. where g = P1/P2 is a rational
function satisfying some well know conditions that permit its solutions
to be continued over every path on the z-sphere. When the denominator
of g has degree 2p + 2 then there are 2p − 1 unknown conditions that
prevent the unique specification of the numerator - the goal being that
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the ratio of a pair of independent solutions of the equation should yield a
conformal equivalence of the branched universal covering surface for the
2p + 2 punctured sphere with the unit disk (at least for p > 1). Thus it is
really the moduli problem for hyperelliptic curves.

11.9. Schwartzian and Beltrami equations. Riemann and Schwarz used
functional equations to characterize the nature of many functions. The most famous
after Riemann’s application to θ functions is the Schwarzian derivative. Call D a
Schwarzian for a subgroup G ≤ PGL2(C) if D(g(h(z))) = D(h(z)) for g ∈ G and
any meromorphic function h, and conversely, the set of g ∈ PGL2(C) for which this
holds exactly for relevant meromorphic h defines G. Use notation from Chap. 2
[9.14].
(11.25a) Show the translation group T has Schwarzian DT given by h �→ dh

dz .
(11.25b) Show the group of multiplications M has Schwarzian DM given by h �→

h′

h , the logarithmic derivative.
(11.25c) Show the affine group C ×sC∗ = A has Schwarzian DA = DM ◦ DT .
(11.25d) Any element of PGL2(C) has either the form z �→ az+b or z �→ a+b/(z−c).

Conclude (by changing h(z) to h(z) − c): PGL2(C) has a Schwarzian if
there is a differential operator Dτ (τ : z �→ 1/z) with

Dτ (
h′′

h′
) = Dτ (

(1/(h)′′

(1/(h)′
)

for any meromorphic h. Compute that Dτ (g) = g′− 1
2g2 works: PGL2(C)

has a Schwarzian Dτ ◦ DA.
The Beltrami Equation: Irwin, P. 35 of your book. This is a loaded page, in

which you take a Riemannian structure and turn it into a quasiconformal structure.
I am doing exercises (Chap. 3 of a book) in which I took my own path to the
Beltrami equation to suit a theory of uniformization I’m using. I wanted to do
something along the lines you are doing. You have, however, the statement: ”the
most nontrivial ... is the verification that µfz = fz̄ has homeomorphic solutions.”

I looked in the rest of your book, and couldn’t find a proof that µfz = fz̄ has
homeomorphic solutions if µ is bounded by 1 in the neighborhood of a given point.
Is it somewhere there, and if so, what is the easiest solution of this?

11.10. Frattini covers and half-canonical classes.
(11.26a)

For the particular situation defining a half-canonical class from a differential
satisfying Chap. 3 (5.11), the choices are defined up to chains with values in ±1.
Now consider the number of boundary equivalent half-canonical classes. Every set
of transition functions has a global meromorphic section (how hard would that be
to prove in this case). So, each boundary equivalence class has a differential giving
it by situation (5.11). So, it is enough to use the setup of Chap. 3 (5.11) to define
all boundary equivalent half-canonical classes.
(11.27a) Suppose {hβ,α} and {h′β,α} are two sets of transition functions defining

half-canonical classes by the rule (5.11). Let hα/h′α be the corresponding
ratios of the functions from (5.11). Their squares form a function on X
and they give a homomorphism π1(X) → Z/2 by the following rule. For
any closed path, form the analytic continuation of hα/h′α around the path.
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This works if the formula for analytic continuation applies on a man-
ifold which it does by §6.2. So, given any two their ratio defines a cover
of X, and conversely.

(11.27b) Now, suppose the cover Ŷ → X̂ is unramified. We already have a homo-
morphism π1(Uzzz, z0) → Ân defining this. Further, the kernel of this to
An factors through a map π1(X̂) → Z/2. Note: If you take the divisor of
dϕ̂, it is An invariant.

(11.27c)

11.11. Differential forms, orientation, area and the Laplacian. Why is
an orientation forced in order to integrate a form? How would we generalize length
to get area? Define ∧ multiplication.
(11.28a) Pythagorian formula for area.

Show with any Riemannian manifold X replacing R2, with ds2 : TX×TX → C∞X
the nondegenerate symmetric 2-tensor.
(11.29a) Consider an open set U in Rn. Call a differential 1-form ω integrable if it

has the form df for some f ∈ C∞U . The integrability condition is that dω =
0. f �→ df �→ Tdf maps to the (1,1) tensor ∆(Tdf )(T, ω) = DT (Tdf ) ⊗ ω.
Now contract back to a function.

Take a basis of differentials and recall the inner product 〈ϕ1, ϕ2〉 =∫
X

dϕ1
¯∗dϕ2.
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Math. Ann. 109, 1934, 617–646.
[Mar45] A. Markoff, Foundations of the algebraic theory of tresses, Trav. Inst. Math. Steklov,

vol. 16, Steklov, Moscow, 1945.
[MM95] G. Malle and B.H. Matzat, Inverse Galois Theory, Completed as of Fall 1995.
[MP93] R.J. Milgra and R.C. Penner, Riemanns Moduli Space and Symmetric Groups,

Cont. Math. 150 (1993), 247–290.
[Moc96] S. Mochizuki, A theory of ordinary p-adic curves, Publ. RIMS, 32 #6 (1996), 957-

1151.
[Ma67] W.S. Massey, Algebraic Topology; an introduction, Harcourt, Brace and World, New

York, 1967.
[Mül95] P. Müller, Primitive monodromy groups of polynomials, Proceedings of the Recent

developments in the Inverse Galois Problem conference, vol. 186, 1995, AMS Cont.
Math series, pp. 385–401.

[Moc96] S. Mochizuki, A theory of ordinary p-adic curves, Publ. RIMS, 32 #6 (1996), 957-
1151.

[Mu80-02] G. L. Mullen, http://www.math.psu.edu/ Most items are related to the mapping prop-
erties of one variable polynomials on finite field, with 29, 37, 45, 49, 71, 78, 86, 90,
100, and 103 intensely concentrating on Dickson polynomials.

[Mu66] D. Mumford, Introduction to Algebraic Geometry; The Red Book, Harvard Lecture
Notes, 1966.

[Mu72] D. Mumford, An analytic construction of degenerating curves over complete local
rings, Comp. Math. 24 (1972), 129–174.

[Mum76] D. Mumford, Curves and their Jacobians, Ann Arbor Lectures, Ann Arbor Press,
1976.

[Na98] H. Nakamura, Tangential base points and Eisenstein series, Preprint, Fall 1998, (1998).
[Ne81] E. Neuenschwanden, Studies in the history of complex function theory II: Interactions

among the French school, Riemann and Weierstrass, BAMS 5 (1981), 87–105.
[Ra00] U. Ray, Generalized Kac-Moody algebras and some related topics, BAMS 38 #1

(2000), 1–42.
[Ri1851] B. Riemann, Grundlgen für eine allgemeine Theorie der Functionen einer

veränderlichen complexen Grösse, inaugural dissertation, Göttingen, 1851.
[Ri1876] B. Riemann, Mathematische Werke, Teubner, Leipzig, 1876.
[Rig96] L.T. Rigatelli, Evariste Galois: 1811-1832, Vita Mathematica, Vol. 11, Birkhäuser,
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