What Gauss told Riemann
about Abel’'s Theorem

Riemann sphere: Pl = C, U {co}. For a finite
set z = z1,...,2r 0N IP{%, denote complement by
U,. We use the fundamental group w1 (Uz, 20)
and related groups.

Abel’'s work on elliptic integrals motivated ap-
proaches to algebraic equations not easily con-
nected to him through just the published pa-
pers. A student runs quickly into many diffi-
culties that have their seeds from the 1850s.

e How to divide the vast finite group area
between those that are nilpotent and those
that are simple?

e How to meld existence results from com-
plex variables with manipulative needs of
algebraic equations?



Algebra manipulations

Problem 1. Relate general substitutions in in-
tegrals of a Riemann surface and algebraic ma-
nipulations from functions on that surface.

Abel's example allowed the following opera-
tions as acceptable.

Iterating compositions of rational functions in
z. Selecting from known elementary functions.
The conceptual addition of functional inverse.

Only two elementary analytic functions: z and
log(z). Consider an integral locally as an an-
tiderivatives in z.

Example 2. cos(z) = (e'* + e %) /2

Zl/k — 6Iog(z)/k



Abel's Case

A branch of primitive (c,d € C):
dz

)y (1)
(23 +cz+d)2

f(z) = fealz) = Int(

For g(z) a branch of log(z) near zg, e9*) = 2,
and eI ()/E is a branch of f(2)Y/%k on any
disk (or on any simply connnected set) avoid-
ing the zeros and poles of f. There is a branch
of f(2)/% along any path in U, (z containing
zeros and poles of f).

Apply chain rule to f(g(u)) = w:

. dil—(uu) = (g(u):)’—l—cg(u)—l—d)%, a parametriza-

tion of the algebraic curve from the equa-
tion w? = 23 4+ cz 4+ d.



Analytic continuation

Let 2 = 2.4 = {zl,ZQ,Z3,oo} the three (dis-
tinct) zeros of 234 cz+d and oco: VO the set
of such (¢,d) € CZ; XO the points (z,w) on
() over Uy. It has a umque complex mani-
fold compactification X.,. Analytically con-
tinue f., dz along any path in X, (holomor-
phic integral).

Collection of analytic functions around zp:

AUz, z0) = {Int(h¢ q(2) dz)y}yen; (Uy.20)-

The related subset is Af(Xcd,:z;o)' Analytic
continuations along the image of cl%sed paths
from XO . Then, u € Cy — (g g(u), —2%(u)) is

du
one- one up to translation by elements of

Log={sy= L hea(2) dz,v € m1(X04,20)}-

Two paths v1,v2 € w1 (Uyg, zp) lift to generators
of Hi(X.4,2): fy; = s;, @ = 1,2, independent
over R, generate L. 4.



Substitutions versus field operations
A substitution w(z) in z is a composition:

z+— fap(w(z)). Rewrite fog(u) =u as

fowow tog(u)=u.

Substitution fow(z) equivalent to composition
wlo g(u).

Important case: w~1l is a rational function.
Get a field M., = C(gc,d(u),dg%’l;‘z(u)): Up to
translation, 9ed has a unique pole of order 2 at
u = 0 (no residue, so is even).

Problem 3. For what pairs (¢,d) and (c,d’) is
g An element of M, ;7

For each (c,d): g.q(u) is to e" as f. 4(z) is to
a branch of log(z).



Functions on a surface

Describing elements of M, ;4 is the same as de-
scribing analytic maps

o:C/L.q— IP%U ;

¢ has as many zeros Dg(p) = {a1,...,an} (with
multiplicity) as it has poles Dso(¢) = {b1,...,bn}.

Describing when My y C Mc,d equivalent to
describing analytic maps

w(c,d),(c’,d’) . C/Lc,d — (C/Lcl,d/.
Abel’s equivalence on ¥, 4 (» 4y fOr prime de-
gree p: Relates the j-invariant j(z.4) of z. 4 to
that of 2z, y; the modular curve Xo(p).

Let v : X — Pl be a meromorphic function on
a compact Riemann surface. Up to constant
Dg(¢) and D () determine .



Functions from zeros and poles

Suppose ¢ : P — Pl Modulo C*,

H?:l(’“—ai)
H?:l(U—bi)
Ingredients: w« is an odd function (one zero,

multiplicity one) whose translations craft ¢p(u)
having the right zeros and poles.

p(u) =

For ¢ : C/Log = X.q — PL: D® = 71(0) and
D>® = ¢~ 1(0); branch points w = {w1,...,w,.}.
Tricky notation: Denote subset of X, over
Uw by X7, Take v € m1(Uw,0,00): ~; be the
unique left to X;‘“C’io of ~ starting at a; (it will

end in D*®). Works even if DY has multiplicity.
Proposition 4 (Abel’s necessary condition).
>tq J, headz = 0: p requires paths {~}22 on
X, 4 With initial points D°, end points D> and

n
S [ylhc’ddz —0.
=177



Imitating the genus O case

Find odd function, zero of multiplicity one,
whose translates can craft all functions. No
such function on C/L, ;. Notation:

u€ Cyr [u] € C/Leg.

Proposition 5. The odd homolomorphic func-
tion o. 4(u) with a unique (multiplicity one zero,
modulo L. 4) at u =0, with

ocq(uts) = e*"o, g(u) = o(u),as € C*,s € L. 4.
Derivative of d('ogd(g(un is gqp(u):

H?L'Zzl o(u — a;)
H?:l o(u — b;)
is invariant by translations in L. 4 if and only if
Z?:l[ai] — Z?:l[bz‘] is 0 in C/Lc,d-

Denote L,; \ {0} by L} ,:

p(u) =

oea(u) =u |] (1 N E) e/ (2)

S
*
SeLa,b



Puzzles from Abel’'s Theorem

e General ¢ : C/L.4 — P}, has no branch of
log description (Galois). How to picture?

e How to relate beginning/end points of al-
lowable paths lifts from DY to D™ in Prop. 47

All functions on 1-dim. complex torii from one:

o ((e,d),u) € VO x Cy s apg(u),  (3)

Description depends on function’s zeros and
poles. Perfect for forming abelian covers of a
complex torus similar to using branches of log.
Knowing only the generators of a function field
like Mc’d ineffective for properties of elements
in the field [# 6].



Compact surfaces from cuts

Product-one condition: r elements g = (g1,...,9r)
in S, with g1 ---g- = 1. Paths: r paths~q,...,9r:
[0,1] — PL:

Nonintersecting: Each has beginning point at
zo; the only common point to the paths. Clock-
wise order: Order in leaving zg is the order of

their numbering. End respectively at zq, ..., zr.
Let P!, i = 1,...,r, be copies of Pl: remove
points labeled zg, z1,...,2r to get PP;. Form a

pre-manifold IP?E (not Hausdorff) from P; by
replacing each point z along any one of the
vis by two points: 2T and z~. Let D;, be a
disk around z. Write this as DZ.'"Z (resp. D, ) ,
all points on and to the left (reép. right) of ;.
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T he construction

Proposition 6. Form a manifold from an equiv-
alence on U?zllP’;.t based on using the r-tuple
g. Running over all n and product-one r-tuples
g (even with the cuts fixed), forming the com-
pactification gives all possible compact Rie-

mann surfaces mapping to IP% ramified over z.

Proof. If g; maps k to [, then identify z— & I[D]fct
in the g; cut with z+ € P¥. In the resulting set,
put on a topology where the neighborhood of
such a z7 is D;’ZUD,;Z identified along the part

of ~; running through z. []
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Where did the cuts come from?: [# 6]

Group G(g) generated by product-one g is the
(monodromy) group: Galois closure of the cut
map ¢ : X — PL. Trivial to form covers with
just about any group. New issues: No clue
present about any other meromorphic function
on X other than ¢. Clues universal covering
space is analytically a disk.

Holomorphic differential w on X from a cut
construction ¢ : X — Pl has description around
zo € Uy as h(z)dz. Integrate along any ~ €
71 (Ug, zg) Or in w1 (X,z0). Generalize Abel by
taking a basis B = (w1, ...,wg) Of holomorphic
differentials and integrals along paths on X.
Define Lx to be {[, B |~ € H1(X,Z)}.
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Riemann’'s generalization: [# 6]
Proposition 7.If D° = ¢~1(0) and D> =
o 1(c0), for an n-tuple of lifts ~1,...,4n Of
v € m1(Uz, 20),

n

(z-é:l/%wl7.'.7zz/'wg):/WB:O' (4)

= )y,
First part: ~1,...,~vn Starting at D°/ending at
D®° s sufficient for existence of .

We want an odd function 8 on C9 whose trans-
lates allow us to craft any ¢ : X — PL:

@ =110 B T[o¢[ B). ()
o =110(], 8/ 11 o],

In 6 you see g coordinates; the ith entry is
fé’;wi. Each holds an integral over one basis
element from B. It is totally well-defined if the
integrations are on a space that is to X as C
was to C/L. 4 in Abel's problem.
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