What Gauss told Riemann about Abel's Theorem

Riemann sphere: $\mathbb{P}_{z}^{1}=\mathbb{C}_{z} \cup\{\infty\}$. For a finite set $\boldsymbol{z}=z_{1}, \ldots, z_{r}$ on \mathbb{P}_{z}^{1}, denote complement by U_{z}. We use the fundamental group $\pi_{1}\left(U_{z}, z_{0}\right)$ and related groups.

Abel's work on elliptic integrals motivated approaches to algebraic equations not easily connected to him through just the published papers. A student runs quickly into many difficulties that have their seeds from the 1850s.

- How to divide the vast finite group area between those that are nilpotent and those that are simple?
- How to meld existence results from complex variables with manipulative needs of algebraic equations?

Algebra manipulations

Problem 1. Relate general substitutions in integrals of a Riemann surface and algebraic manipulations from functions on that surface.

Abel's example allowed the following operations as acceptable.

Iterating compositions of rational functions in z. Selecting from known elementary functions. The conceptual addition of functional inverse.

Only two elementary analytic functions: z and $\log (z)$. Consider an integral locally as an antiderivatives in z.
Example 2. $\cos (z)=\left(e^{i z}+e^{-i z}\right) / 2$

$$
z^{1 / k}=e^{\log (z) / k}
$$

Abel's Case

A branch of primitive $(c, d \in \mathbb{C})$:

$$
\begin{equation*}
f(z)=f_{c, d}(z)=\operatorname{Int}\left(\frac{d z}{\left(z^{3}+c z+d\right)^{\frac{1}{2}}}\right)_{\gamma} \tag{1}
\end{equation*}
$$

For $g(z)$ a branch of $\log (z)$ near $z_{0}, e^{g(z)}=z$, and $e^{g(f(z)) / k}$ is a branch of $f(z)^{1 / k}$ on any disk (or on any simply connnected set) avoiding the zeros and poles of f. There is a branch of $f(z)^{1 / k}$ along any path in $U_{z}(z$ containing zeros and poles of f).

Apply chain rule to $f(g(u))=u$:

- $\frac{d g(u)}{d u}=\left(g(u)^{3}+c g(u)+d\right)^{\frac{1}{2}}$, a parametrization of the algebraic curve from the equation $w^{2}=z^{3}+c z+d$.

Analytic continuation

Let $z=z_{c, d}=\left\{z_{1}, z_{2}, z_{3}, \infty\right\}$, the three (distinct) zeros of $z^{3}+c z+d$ and ∞ : V^{0} the set of such $(c, d) \in \mathbb{C}^{2} ; X_{c, d}^{0}$ the points (z, w) on () over U_{z}. It has a unique complex manifold compactification $X_{c, d}$. Analytically continue $f_{c, d} d z$ along any path in $X_{c, d}$ (holomorphic integral).

Collection of analytic functions around z_{0} :

$$
\mathcal{A}_{f}\left(U_{\boldsymbol{z}}, z_{0}\right)=\left\{\operatorname{Int}\left(h_{c, d}(z) d z\right)_{\gamma}\right\}_{\gamma \in \pi_{1}\left(U_{\boldsymbol{z}}, z_{0}\right)} .
$$

The related subset is $\mathcal{A}_{f}\left(X_{c, d}^{0}, x_{0}\right)$: Analytic continuations along the image of closed paths from $X_{c, d}^{0}$. Then, $u \in \mathbb{C}_{u} \mapsto\left(g_{c, d}(u), \frac{d g_{c, d}}{d u}(u)\right)$ is one-one up to translation by elements of

$$
L_{c, d}=\left\{s_{\gamma}=\int_{\gamma} h_{c, d}(z) d z, \gamma \in \pi_{1}\left(X_{c, d}^{0}, x_{0}\right)\right\} .
$$

Two paths $\gamma_{1}, \gamma_{2} \in \pi_{1}\left(U_{z}, z_{0}\right)$ lift to generators of $H_{1}\left(X_{c, d}, \mathbb{Z}\right): f_{\gamma_{i}}=s_{i}, i=1,2$, independent over \mathbb{R}, generate $L_{c, d}$.

Substitutions versus field operations

A substitution $w(z)$ in z is a composition:
$z \mapsto f_{a, b}(w(z))$. Rewrite $f \circ g(u)=u$ as

$$
f \circ w \circ w^{-1} \circ g(u)=u
$$

Substitution $f \circ w(z)$ equivalent to composition $w^{-1} \circ g(u)$.

Important case: w^{-1} is a rational function. Get a field $M_{c, d}=\mathbb{C}\left(g_{c, d}(u), \frac{d g_{c, d}(u)}{d u}\right)$: Up to translation, $g_{c, d}$ has a unique pole of order 2 at $u=0$ (no residue, so is even).
Problem 3. For what pairs (c, d) and (c^{\prime}, d^{\prime}) is $g_{c^{\prime}, d^{\prime}}$ an element of $M_{c, d}$?

For each $(c, d): g_{c, d}(u)$ is to e^{u} as $f_{c, d}(z)$ is to a branch of $\log (z)$.

Functions on a surface

Describing elements of $M_{c, d}$ is the same as describing analytic maps

$$
\varphi: \mathbb{C} / L_{c, d} \rightarrow \mathbb{P}_{w}^{1}:
$$

φ has as many zeros $D_{0}(\varphi)=\left\{a_{1}, \ldots, a_{n}\right\}$ (with multiplicity) as it has poles $D_{\infty}(\varphi)=\left\{b_{1}, \ldots, b_{n}\right\}$.

Describing when $M_{c^{\prime}, d^{\prime}} \subset M c, d$ equivalent to describing analytic maps

$$
\psi_{(c, d),\left(c^{\prime}, d^{\prime}\right)}: \mathbb{C} / L_{c, d} \rightarrow \mathbb{C} / L_{c^{\prime}, d^{\prime}}
$$

Abel's equivalence on $\psi_{(c, d),\left(c^{\prime}, d^{\prime}\right)}$ for prime degree p : Relates the j-invariant $j\left(\boldsymbol{z}_{c, d}\right)$ of $\boldsymbol{z}_{c, d}$ to that of $z_{c^{\prime}, d^{\prime}}$; the modular curve $X_{0}(p)$.

Let $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ be a meromorphic function on a compact Riemann surface. Up to constant $D_{0}(\varphi)$ and $D_{\infty}(\varphi)$ determine φ.

Functions from zeros and poles
Suppose $\varphi: \mathbb{P}_{u}^{1} \rightarrow \mathbb{P}_{z}^{1}$. Modulo \mathbb{C}^{*},

$$
\varphi(u)=\frac{\prod_{i=1}^{n}\left(u-a_{i}\right)}{\prod_{i=1}^{n}\left(u-b_{i}\right)} .
$$

Ingredients: u is an odd function (one zero, multiplicity one) whose translations craft $\varphi(u)$ having the right zeros and poles.

For $\varphi: \mathbb{C} / L_{c, d}=X_{c, d} \rightarrow \mathbb{P}_{w}^{1}: D^{0}=\varphi^{-1}(0)$ and $D^{\infty}=\varphi^{-1}(\infty)$; branch points $\boldsymbol{w}=\left\{w_{1}, \ldots, w_{r^{\prime}}\right\}$. Tricky notation: Denote subset of $X_{c, d}$ over $U_{\boldsymbol{w}}$ by $X_{c, d}^{w, 0}$. Take $\gamma \in \pi_{1}\left(U_{\boldsymbol{w}}, 0, \infty\right)$: γ_{i} be the unique left to $X_{c, d}^{w, 0}$ of γ starting at a_{i} (it will end in D^{∞}). Works even if D^{0} has multiplicity. Proposition 4 (Abel's necessary condition). $\sum_{i=1}^{n} \int_{\gamma_{i}} h_{c, d} d z=0: \varphi$ requires paths $\left\{\gamma_{i}^{\prime}\right\}_{i=1}^{\infty}$ on $X_{c, d}$ with initial points D^{0}, end points D^{∞} and

$$
\sum_{i=1}^{n} \int_{\gamma_{i}^{\prime}} h_{c, d} d z=0 .
$$

Imitating the genus 0 case

Find odd function, zero of multiplicity one, whose translates can craft all functions. No such function on $\mathbb{C} / L_{c, d}$. Notation:

$$
u \in \mathbb{C}_{u} \mapsto[u] \in \mathbb{C} / L_{c, d} .
$$

Proposition 5. The odd homolomorphic function $\sigma_{c, d}(u)$ with a unique (multiplicity one zero; modulo $L_{c, d}$) at $u=0$, with
$\sigma_{c, d}(u+s)=e^{a_{s} u} \sigma_{c, d}(u)=\sigma(u), a_{s} \in \mathbb{C}^{*}, s \in L_{c, d}$.
Derivative of $\frac{d(\log (\sigma(u))}{d u}$ is $g_{a, b}(u)$:

$$
\varphi(u)=\frac{\prod_{i=1}^{n} \sigma\left(u-a_{i}\right)}{\prod_{i=1}^{n} \sigma\left(u-b_{i}\right)}
$$

is invariant by translations in $L_{c, d}$ if and only if $\sum_{i=1}^{n}\left[a_{i}\right]-\sum_{i=1}^{n}\left[b_{i}\right]$ is 0 in $\mathbb{C} / L_{c, d}$.

Denote $L_{a, b} \backslash\{0\}$ by $L_{a, b}^{*}$:

$$
\begin{equation*}
\sigma_{c, d}(u)=u \prod_{s \in L_{a, b}^{*}}\left(1-\frac{u}{s}\right) e^{u / s+\frac{1}{2}(u / s)^{2}} \tag{2}
\end{equation*}
$$

Puzzles from Abel's Theorem

- General $\varphi: \mathbb{C} / L_{c, d} \rightarrow \mathbb{P}_{w}^{1}$ has no branch of log description (Galois). How to picture?
- How to relate beginning/end points of alIowable paths lifts from D^{0} to D^{∞} in Prop. 4?

All functions on 1-dim. complex torii from one:

$$
\begin{equation*}
\sigma:((c, d), u) \in V^{0} \times \mathbb{C}_{u} \mapsto \sigma_{c, d}(u), \tag{3}
\end{equation*}
$$

Description depends on function's zeros and poles. Perfect for forming abelian covers of a complex torus similar to using branches of log. Knowing only the generators of a function field like $M_{c, d}$ ineffective for properties of elements in the field [\#6].

Compact surfaces from cuts

Product-one condition: r elements $g=\left(g_{1}, \ldots, g_{r}\right)$ in S_{n} with $g_{1} \cdots g_{r}=1$. Paths: r paths $\gamma_{1}, \ldots, \gamma_{r}$: $[0,1] \rightarrow \mathbb{P}_{z}^{1}:$

Nonintersecting: Each has beginning point at z_{0}; the only common point to the paths. Clockwise order: Order in leaving z_{0} is the order of their numbering. End respectively at z_{1}, \ldots, z_{r}.

Let $\mathbb{P}_{i}^{1}, i=1, \ldots, r$, be copies of \mathbb{P}_{z}^{1} : remove points labeled $z_{0}, z_{1}, \ldots, z_{r}$ to get \mathbb{P}_{j}. Form a pre-manifold $\mathbb{P}_{j}^{ \pm}$(not Hausdorff) from \mathbb{P}_{j} by replacing each point z along any one of the $\gamma_{i} \mathrm{~s}$ by two points: z^{+}and z^{-}. Let $D_{i, z}$ be a disk around z. Write this as $D_{i, z}^{+}$(resp. $D_{i, z}^{-}$), all points on and to the left (resp. right) of γ_{i}.

The construction

Proposition 6. Form a manifold from an equivalence on $\cup_{i=1}^{n} \mathbb{P}_{j}^{ \pm}$based on using the r-tuple g. Running over all n and product-one r-tuples g (even with the cuts fixed), forming the compactification gives all possible compact Riemann surfaces mapping to \mathbb{P}_{z}^{1} ramified over \boldsymbol{z}.

Proof. If g_{i} maps k to l, then identify $z^{-} \in \mathbb{P}_{k}^{ \pm}$ in the g_{i} cut with $z^{+} \in \mathbb{P}_{l}^{ \pm}$. In the resulting set, put on a topology where the neighborhood of such a z^{-}is $D_{l, z}^{+} \cup D_{k, z}^{-}$identified along the part of γ_{i} running through z.

Where did the cuts come from?: [\# 6]

Group $G(\boldsymbol{g})$ generated by product-one \boldsymbol{g} is the (monodromy) group: Galois closure of the cut map $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$. Trivial to form covers with just about any group. New issues: No clue present about any other meromorphic function on X other than φ. Clues universal covering space is analytically a disk.

Holomorphic differential ω on X from a cut construction $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ has description around $z_{0} \in U_{z}$ as $h(z) d z$. Integrate along any $\gamma \in$ $\pi_{1}\left(U_{z}, z_{0}\right)$ or in $\pi_{1}\left(X, x_{0}\right)$. Generalize Abel by taking a basis $\mathcal{B}=\left(\omega_{1}, \ldots, \omega_{g}\right)$ of holomorphic differentials and integrals along paths on X. Define L_{X} to be $\left\{\int_{\gamma} \mathcal{B} \mid \gamma \in H_{1}(X, \mathbb{Z})\right\}$.

Riemann's generalization: [\# 6]
Proposition 7. If $D^{0}=\varphi^{-1}(0)$ and $D^{\infty}=$ $\varphi^{-1}(\infty)$, for an n-tuple of lifts $\gamma_{1}, \ldots, \gamma_{n}$ of $\gamma \in \pi_{1}\left(U_{z}, z_{0}\right)$,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \int_{\gamma_{i}} \omega_{1}, \ldots, \sum_{i=1}^{n} \int_{\gamma_{i}} \omega_{g}\right)=\int_{\gamma} \mathcal{B}=\mathbf{0} . \tag{4}
\end{equation*}
$$

First part: $\gamma_{1}, \ldots, \gamma_{n}$ starting at $D^{0} /$ ending at D^{∞} is sufficient for existence of φ.

We want an odd function θ on \mathbb{C}^{g} whose translates allow us to craft any $\varphi: X \rightarrow \mathbb{P}_{w}^{1}$:

$$
\begin{equation*}
\varphi(x)=\prod_{i=1}^{n} \theta\left(\int_{a_{i}}^{x} \mathcal{B}\right) / \prod_{i=1}^{n} \theta\left(\int_{b_{i}}^{x} \mathcal{B}\right) . \tag{5}
\end{equation*}
$$

In θ you see g coordinates; the ith entry is $\int_{a_{i}}^{x} \omega_{i}$. Each holds an integral over one basis element from \mathcal{B}. It is totally well-defined if the integrations are on a space that is to X as \mathbb{C} was to $\mathbb{C} / L_{c, d}$ in Abel's problem.

Bibliography

[AG1895] P. Appell and É. Goursat, Théorie des Fonctions Algébriques et de leurs Intégrales, 1895, revised by P. Fatou, 1929.
[Ah79] L. Ahlfors, Introduction to the Theory of Analytic Functions of One, 3rd edition, Inter. Series in Pure and Applied Math., McGraw-Hill Complex Variable, 1979.
[AP03] M. Artebani and G.P. Pirola, Algebraic functions with even monodromy, preprint Feb. 2003.
[FMV03] G. Frey, K. Maagard and H. Völklein, The monodromy group of a function on a general curve, preprint as of 10/24/02.
[FKK01] M. Fried, E. Klassen, Y. Kopeliovic, Realizing alternating groups as monodromy groups of genus one covers, PAMS 129 (2000), 111-119.
[Fr96] M. Fried, Alternating groups and lifting invariants, Preprint 07/01/96 (1996), 134.
[Fr95a] M. Fried, Introduction to Modular Towers: Generalizing the relation between dihedral groups and modular curves, Cont. Math series, Recent Developments in the Inverse Galois Problem, pp. 111-171.
[Fr03] M. Fried, Riemann's Existence Theorem: Elementary approach to moduli, Chaps. 2 and 4: www.math.uci.edu/~mfried/\#ret
[Ne81] E. Neuenschwanden, Studies in the history of complex functions II: Interactions among the French school, Riemann and Weierstrass, BAMS 5 (1981), 87-105.
[SS02] S. Schröer, Curves With Only Triple Ramification, arXiv:math.AG/0206091 10 June 2002.

Ser90a J.-P. Serre, Relêvements dans $\widetilde{A}_{n}, ~ C . R . A c a d$. Sci. Paris 311 (1990), 477-482.
[Ser90b] J.-P. Serre, Revêtements a ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris 311 (1990), 547-552.
[Sie29] C.L. Siegel, Über einige Anwendungen diophantischer Approx., Abh. Pr. Akad. Wiss. 1 (1929), 41-69.
[Vö96] H. Völklein, Groups as Galois Groups 53, Cambridge Studies in Advanced Mathematics, Camb. U. Press, Camb. England, 1996.
[Wey55] H. Weyl, Die Idee der Riemannschen Fläche, 3rd Edition, B. G. Teubner, Stuttgart, 1955.

