What Gauss told Riemann about Abel's Theorem

Riemann sphere: $\mathbb{P}_z^1 = \mathbb{C}_z \cup \{\infty\}$. For a finite set $z = z_1, \ldots, z_r$ on \mathbb{P}_z^1 , denote complement by U_z . We use the fundamental group $\pi_1(U_z, z_0)$ and related groups.

Abel's work on elliptic integrals motivated approaches to algebraic equations not easily connected to him through just the published papers. A student runs quickly into many difficulties that have their seeds from the 1850s.

- How to divide the vast finite group area between those that are nilpotent and those that are simple?
- How to meld existence results from complex variables with manipulative needs of algebraic equations?

Algebra manipulations

Problem 1. Relate general substitutions in integrals of a Riemann surface and algebraic manipulations from functions on that surface.

Abel's example allowed the following operations as acceptable.

Iterating compositions of rational functions in z. Selecting from known *elementary functions*. The conceptual addition of functional inverse.

Only two elementary analytic functions: z and log(z). Consider an integral locally as an antiderivatives in z.

Example 2. $\cos(z) = (e^{iz} + e^{-iz})/2$

 $z^{1/k} = e^{\log(z)/k}$

Abel's Case

A branch of primitive $(c, d \in \mathbb{C})$:

$$f(z) = f_{c,d}(z) = \operatorname{Int}(\frac{dz}{(z^3 + cz + d)^{\frac{1}{2}}})_{\gamma} \quad (1)$$

For g(z) a branch of $\log(z)$ near z_0 , $e^{g(z)} = z$, and $e^{g(f(z))/k}$ is a branch of $f(z)^{1/k}$ on any disk (or on any simply connected set) avoiding the zeros and poles of f. There is a branch of $f(z)^{1/k}$ along any path in U_z (z containing zeros and poles of f).

Apply chain rule to f(g(u)) = u:

• $\frac{dg(u)}{du} = (g(u)^3 + cg(u) + d)^{\frac{1}{2}}$, a parametrization of the algebraic curve from the equation $w^2 = z^3 + cz + d$.

Analytic continuation

Let $\mathbf{z} = \mathbf{z}_{c,d} = \{z_1, z_2, z_3, \infty\}$, the three (distinct) zeros of $z^3 + cz + d$ and ∞ : V^0 the set of such $(c,d) \in \mathbb{C}^2$; $X_{c,d}^0$ the points (z,w) on () over $U_{\mathbf{z}}$. It has a unique complex manifold compactification $X_{c,d}$. Analytically continue $f_{c,d} dz$ along any path in $X_{c,d}$ (holomorphic integral).

Collection of analytic functions around z_0 :

$$\mathcal{A}_f(U_{\boldsymbol{z}}, z_0) = \{ \operatorname{Int}(h_{c,d}(z) \, dz)_{\gamma} \}_{\gamma \in \pi_1(U_{\boldsymbol{z}}, z_0)}.$$

The related subset is $\mathcal{A}_f(X_{c,d}^0, x_0)$: Analytic continuations along the image of closed paths from $X_{c,d}^0$. Then, $u \in \mathbb{C}_u \mapsto (g_{c,d}(u), \frac{dg_{c,d}}{du}(u))$ is one-one up to translation by elements of

$$L_{c,d} = \{ s_{\gamma} = \int_{\gamma} h_{c,d}(z) \, dz, \gamma \in \pi_1(X_{c,d}^0, x_0) \}.$$

Two paths $\gamma_1, \gamma_2 \in \pi_1(U_z, z_0)$ lift to generators of $H_1(X_{c,d}, \mathbb{Z})$: $f_{\gamma_i} = s_i$, i = 1, 2, independent over \mathbb{R} , generate $L_{c,d}$.

Substitutions versus field operations

A substitution w(z) in z is a composition:

$$z \mapsto f_{a,b}(w(z))$$
. Rewrite $f \circ g(u) = u$ as $f \circ w \circ w^{-1} \circ g(u) = u$.

Substitution $f \circ w(z)$ equivalent to composition $w^{-1} \circ g(u)$.

Important case: w^{-1} is a rational function. Get a field $M_{c,d} = \mathbb{C}(g_{c,d}(u), \frac{dg_{c,d}(u)}{du})$: Up to translation, $g_{c,d}$ has a unique pole of order 2 at u = 0 (no residue, so is *even*). **Problem 3.** For what pairs (c,d) and (c',d') is

 $g_{c',d'}$ an element of $M_{c,d}$?

For each (c,d): $g_{c,d}(u)$ is to e^u as $f_{c,d}(z)$ is to a branch of $\log(z)$.

Functions on a surface

Describing elements of $M_{c,d}$ is the same as describing analytic maps

$$\varphi: \mathbb{C}/L_{c,d} \to \mathbb{P}^1_w:$$

 φ has as many zeros $D_0(\varphi) = \{a_1, \dots, a_n\}$ (with multiplicity) as it has poles $D_\infty(\varphi) = \{b_1, \dots, b_n\}$.

Describing when $M_{c^\prime,d^\prime} \subset Mc,d$ equivalent to describing analytic maps

$$\psi_{(c,d),(c',d')} : \mathbb{C}/L_{c,d} \to \mathbb{C}/L_{c',d'}.$$

Abel's equivalence on $\psi_{(c,d),(c',d')}$ for prime degree p: Relates the *j*-invariant $j(\mathbf{z}_{c,d})$ of $\mathbf{z}_{c,d}$ to that of $\mathbf{z}_{c',d'}$; the modular curve $X_0(p)$.

Let $\varphi : X \to \mathbb{P}^1_z$ be a meromorphic function on a compact Riemann surface. Up to constant $D_0(\varphi)$ and $D_{\infty}(\varphi)$ determine φ .

Functions from zeros and poles

Suppose $arphi: \mathbb{P}^1_u o \mathbb{P}^1_z.$ Modulo \mathbb{C}^* ,

$$\varphi(u) = \frac{\prod_{i=1}^{n} (u - a_i)}{\prod_{i=1}^{n} (u - b_i)}.$$

Ingredients: u is an odd function (one zero, multiplicity one) whose translations craft $\varphi(u)$ having the right zeros and poles.

For $\varphi : \mathbb{C}/L_{c,d} = X_{c,d} \to \mathbb{P}^1_w$: $D^0 = \varphi^{-1}(0)$ and $D^\infty = \varphi^{-1}(\infty)$; branch points $w = \{w_1, \ldots, w_{r'}\}$. Tricky notation: Denote subset of $X_{c,d}$ over U_w by $X_{c,d}^{w,0}$. Take $\gamma \in \pi_1(U_w, 0, \infty)$: γ_i be the unique left to $X_{c,d}^{w,0}$ of γ starting at a_i (it will end in D^∞). Works even if D^0 has multiplicity. **Proposition 4 (Abel's necessary condition).** $\sum_{i=1}^n \int_{\gamma_i} h_{c,d} dz = 0$: φ requires paths $\{\gamma'_i\}_{i=1}^\infty$ on $X_{c,d}$ with initial points D^0 , end points D^∞ and

$$\sum_{i=1}^n \int_{\gamma'_i} h_{c,d} \, dz = 0.$$

Imitating the genus 0 case

Find odd function, zero of multiplicity one, whose translates can craft all functions. No such function on $\mathbb{C}/L_{c,d}$. Notation:

$$u \in \mathbb{C}_u \mapsto [u] \in \mathbb{C}/L_{c,d}.$$

Proposition 5. The odd homolomorphic function $\sigma_{c,d}(u)$ with a unique (multiplicity one zero; modulo $L_{c,d}$) at u = 0, with

$$\sigma_{c,d}(u+s) = e^{a_s u} \sigma_{c,d}(u) = \sigma(u), a_s \in \mathbb{C}^*, s \in L_{c,d}.$$

Derivative of $\frac{d(\log(\sigma(u)))}{du}$ is $g_{a,b}(u)$:
$$\prod_{i=1}^n \sigma(u-a_i)$$

$$\varphi(u) = \frac{\prod_{i=1}^{n} \sigma(u - a_i)}{\prod_{i=1}^{n} \sigma(u - b_i)}$$

is invariant by translations in $L_{c,d}$ if and only if $\sum_{i=1}^{n} [a_i] - \sum_{i=1}^{n} [b_i]$ is 0 in $\mathbb{C}/L_{c,d}$.

Denote $L_{a,b} \setminus \{0\}$ by $L_{a,b}^*$:

$$\sigma_{c,d}(u) = u \prod_{s \in L_{a,b}^*} \left(1 - \frac{u}{s} \right) e^{u/s + \frac{1}{2}(u/s)^2}.$$
 (2)

Puzzles from Abel's Theorem

- General $\varphi : \mathbb{C}/L_{c,d} \to \mathbb{P}^1_w$ has no branch of log description (Galois). How to picture?
- How to relate beginning/end points of allowable paths lifts from D^0 to D^∞ in Prop. 4?

All functions on 1-dim. complex torii from one:

$$\sigma: ((c,d),u) \in V^0 \times \mathbb{C}_u \mapsto \sigma_{c,d}(u), \quad (3)$$

Description depends on function's zeros and poles. Perfect for forming abelian covers of a complex torus similar to using branches of log. Knowing only the generators of a function field like $M_{c,d}$ ineffective for properties of elements in the field [# 6].

Compact surfaces from cuts

Product-one condition: r elements $\mathbf{g} = (g_1, \ldots, g_r)$ in S_n with $g_1 \cdots g_r = 1$. Paths: r paths $\gamma_1, \ldots, \gamma_r$: $[0, 1] \rightarrow \mathbb{P}_z^1$:

Nonintersecting: Each has beginning point at z_0 ; the only common point to the paths. Clockwise order: Order in leaving z_0 is the order of their numbering. End respectively at z_1, \ldots, z_r .

Let \mathbb{P}_i^1 , $i = 1, \ldots, r$, be copies of \mathbb{P}_z^1 : remove points labeled z_0, z_1, \ldots, z_r to get \mathbb{P}_j . Form a pre-manifold \mathbb{P}_j^{\pm} (not Hausdorff) from \mathbb{P}_j by replacing each point z along any one of the γ_i s by two points: z^+ and z^- . Let $D_{i,z}$ be a disk around z. Write this as $D_{i,z}^+$ (resp. $D_{i,z}^-$), all points on and to the left (resp. right) of γ_i .

The construction

Proposition 6. Form a manifold from an equivalence on $\cup_{i=1}^{n} \mathbb{P}_{j}^{\pm}$ based on using the *r*-tuple *g*. Running over all *n* and product-one *r*-tuples *g* (even with the cuts fixed), forming the compactification gives all possible compact Riemann surfaces mapping to \mathbb{P}_{z}^{1} ramified over *z*.

Proof. If g_i maps k to l, then identify $z^- \in \mathbb{P}_k^{\pm}$ in the g_i cut with $z^+ \in \mathbb{P}_l^{\pm}$. In the resulting set, put on a topology where the neighborhood of such a z^- is $D_{l,z}^+ \cup D_{k,z}^-$ identified along the part of γ_i running through z.

Where did the cuts come from?: [# 6]

Group G(g) generated by product-one g is the (monodromy) group: Galois closure of the cut map $\varphi : X \to \mathbb{P}^1_z$. Trivial to form covers with just about any group. New issues: No clue present about any other meromorphic function on X other than φ . Clues universal covering space is analytically a disk.

Holomorphic differential ω on X from a cut construction $\varphi : X \to \mathbb{P}^1_z$ has description around $z_0 \in U_z$ as h(z) dz. Integrate along any $\gamma \in \pi_1(U_z, z_0)$ or in $\pi_1(X, x_0)$. Generalize Abel by taking a basis $\mathcal{B} = (\omega_1, \dots, \omega_g)$ of holomorphic differentials and integrals along paths on X. Define L_X to be $\{\int_{\gamma} \mathcal{B} \mid \gamma \in H_1(X, \mathbb{Z})\}$. **Riemann's generalization:** [# 6] **Proposition 7.** If $D^0 = \varphi^{-1}(0)$ and $D^\infty = \varphi^{-1}(\infty)$, for an *n*-tuple of lifts $\gamma_1, \ldots, \gamma_n$ of $\gamma \in \pi_1(U_z, z_0)$,

$$\left(\sum_{i=1}^{n}\int_{\gamma_{i}}\omega_{1},\ldots,\sum_{i=1}^{n}\int_{\gamma_{i}}\omega_{g}\right)=\int_{\boldsymbol{\gamma}}\mathcal{B}=\mathbf{0}.$$
 (4)

First part: $\gamma_1, \ldots, \gamma_n$ starting at D^0 /ending at D^∞ is sufficient for existence of φ .

We want an odd function θ on \mathbb{C}^g whose translates allow us to craft any $\varphi : X \to \mathbb{P}^1_w$:

$$\varphi(x) = \prod_{i=1}^{n} \theta(\int_{a_i}^{x} \mathcal{B}) / \prod_{i=1}^{n} \theta(\int_{b_i}^{x} \mathcal{B}).$$
 (5)

In θ you see g coordinates; the *ith* entry is $\int_{a_i}^x \omega_i$. Each holds an integral over one basis element from \mathcal{B} . It is totally well-defined if the integrations are on a space that is to X as \mathbb{C} was to $\mathbb{C}/L_{c,d}$ in Abel's problem.

Bibliography

[AG1895] P. Appell and É. Goursat, *Théorie des Fonctions Algébriques et de leurs Intégrales*, 1895, revised by P. Fatou, 1929.

[Ah79] L. Ahlfors, Introduction to the Theory of Analytic Functions of One, 3rd edition, Inter. Series in Pure and Applied Math., McGraw-Hill Complex Variable, 1979.

[AP03] M. Artebani and G.P. Pirola, *Algebraic functions with even monodromy*, preprint Feb. 2003.

[FMV03] G. Frey, K. Maagard and H. Völklein, *The* monodromy group of a function on a general curve, preprint as of 10/24/02.

- [FKK01] M. Fried, E. Klassen, Y. Kopeliovic, *Realizing alternating groups as monodromy groups of genus one covers*, PAMS **129** (2000), 111–119.
 - [Fr96] M. Fried, Alternating groups and lifting invariants, Preprint 07/01/96 (1996), 1– 34.
 - [Fr95a] M. Fried, Introduction to Modular Towers: Generalizing the relation between dihedral groups and modular curves, Cont. Math series, Recent Developments in the Inverse Galois Problem, pp. 111–171.
 - [Fr03] M. Fried, Riemann's Existence Theorem: Elementary approach to moduli, Chaps. 2 and 4: www.math.uci.edu/~mfried/#ret

- [Ne81] E. Neuenschwanden, Studies in the history of complex functions II: Interactions among the French school, Riemann and Weierstrass, BAMS **5** (1981), 87–105.
- [SS02] S. Schröer, *Curves With Only Triple Ramification*, arXiv:math.AG/0206091 10 June 2002.
- Ser90a J.-P. Serre, *Relêvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
- [Ser90b] J.-P. Serre, Revêtements a ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris **311** (1990), 547–552.
 - [Sie29] C.L. Siegel, Über einige Anwendungen diophantischer Approx., Abh. Pr. Akad. Wiss. 1 (1929), 41–69.

[Vö96] H. Völklein, *Groups as Galois Groups* **53**, Cambridge Studies in Advanced Mathematics, Camb. U. Press, Camb. England, 1996.

[Wey55] H. Weyl, Die Idee der Riemannschen Fläche, 3rd Edition, B. G. Teubner, Stuttgart, 1955.