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In this review, ‘simple group’ always means a non-abelian finite simple group. For
K a field, Gk is the absolute Galois group of K. We denote the field generated by
all roots of 1 over the rationals Q by Q..

In the late 1700s and early 1800s, unsolved problems about equations motivated
the device of attaching a (Galois) group to equations. These applications produced
keywords such as: Abelian, solvable and simple groups; composition factors of a
finite group; and transitive and primitive permutation representations. This group
classification domain had a parallel equation classification domain, with its own key-
words: elliptic functions, moduli of equations and uniformization. Galois applied
solvability in algebraic equations to measure how, by varying equation coefficients,
one changes their solutions. Today, a great divide still separates abelian equations
from those with simple groups. While equations with nilpotent groups are a natural
(though difficult) extension of abelian equations, general solvable equations are an-
other matter. Solvable equations still contribute to graduate algebra, through Galois’
famous equation: solvable group = solvable algebraic relation.

Galois considered modular curve covers of the j-line. The curves are upper
half-plane quotients by the subgroups I'o(p¥*!) of SL,(Z). Modular functions give
coordinates for such curves. It is their relation to the variable j = j(t) from complex
variables that he was testing for solvability. He found that the groups of these covers
were rarely solvable, and noted the exceptions. These groups have PSL,(p), where p
is a prime, as a quotient. This is usually simple. Yet, as k increases, the PSL,(p**!)
quotients accrue more p-group behavior.

Extensions of simple groups by nonsplit p-group tails were a big theme in Galois’
short life. Galois and modular curves: could that be? Yes! Documented on the
last pages of [10] is a story corroborating Galois’ problems with Cauchy and what
was essentially his ‘suicide’ on the morning of May 30, 1832. This is a story far
sadder, yet more significant for mathematics, than any legend preceding it. There
are examples where modern mathematics honours this tradition. Galois recognized
the significance of the two special embeddings of PSL»(5) = 45 in PSL,(11). In their
relation to the buckyball, [8] suggests the way Nature picks one embedding over
the other. That is the simple group representation theory part of Galois’ work. The
book [11] was a long investigation into that p-Frattini tail that Galois discovered.
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Its topic is the dynamics of Gg action on projective systems of points on modular
curve towers: Serre’s renowned open image theorem.

You will not, however, find the relation between the inverse Galois problem and
the works of Abel, Galois and Riemann in the book under review. Finding which
groups are Galois groups of regular extensions of arithmetic fields dominates any
secondary themes. Regular extensions over () are synonymous with geometric curve
covers whose automorphisms have definition field Q. This book assumes without
question that the inverse Galois problem is significant. Few of the special problems
presented inform us beyond their direct computational consequences.

The book under review has the feel of group theory emphasizing computation
over inspiration. Yet, with all that it tackles, it cannot avoid resonant problems that
resist manifold techniques. For example, on page 245 the authors apply their version
of [3]. This is a (braid group) criterion for checking, in a family of genus 0 curves,
whether some member has a @ rational point. Their example starts with a regular
realization of the Mathieu group Ma4. It comes from the Galois closure of members
of a family of genus O covers. The goal is a regular realization of M>3, such as would
arise if one of those genus O curves in the family had a rational point. The style is
reminiscent of examples of Hilbert. Mestre ([9] or [12, Section 9.3]) recently applied
it to go from realizations of spin cover representations of 4, with n odd to n even.
It brings an echo of a Thompson phrase: ‘In a lecture of an hour, I'd have more
success explaining the Monster than the Mathieu groups.’

Chapter I explains and applies the rigidity method, a special case of the so-called
braid-rigidity method from [4] (see below). While this applies only to groups with
very special conjugacy classes, it opened up a territory of Galois group realizations
in the late 1980s.

In Chapter II, on applications of rigidity, the authors apply to Chevalley simple
groups the rigidity technique alone. Satisfaction of simple linear algebra conditions
allows the realization of such groups over @Q,,. It starts with generators g;,g> of
the classical groups that satisfy Belyi’s criterion [1]: g; — 1 has rank 1. This chapter
is the book’s attempt to prove Shafarevich’s conjecture: that Gg,, is pro-free. Since
Gq,, is projective (in the category of profinite groups), a technical result reduces
this conjecture to proving that every single finite simple group has a special regular
realization over Q.. You cannot leave out even one simple group. Thus, the chapter
runs parallel to aspects of the classification of finite simple groups. The authors
manage to obtain all the sporadic simple groups, although (as expected) exceptional
Lie-type groups are a big problem. The simple groups that they have obtained, and
those they did not, appear in a list in Section 10.

Dedicated experts might already know much of the material given in Chapter L.
That also holds for Chapter II, except that the relevant experts change. Exceptional
groups of Lie type do not have appropriate matrix representations; rather, one
uses pure character theory to apply basic rigidity. The prestige of the Deligne—
Lusztig results will recommend Section 5 especially; even near-experts may not have
encountered this compendium of facts.

A Matzat idea, GAR realizations [13, Chapter 8], appears here, and should attract
many; it recurs in the continuation to Section 7 for the sporadic groups.

Serre’s book [12] constructs a story around the ‘Monster’, a simple group that is
still fascinating to mathematicians. Serre and others worked it into questions such
as: ‘Where does the classification stand? and ‘Can the general mathematician use it
efficiently? By contrast, the end of Chapter II feels like the end of the trail; applying
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rigidity to the sporadic simple groups is a finite task if one believes that there are
no unknown sporadic simple groups.

Chapter III concerns the action of braids. These are necessary to understand
moduli of algebraic equations. The inverse Galois technique started with monodromy
action through braids (what [13] calls ‘braid-rigidity’), in [4]. Though technically
more difficult than its special rigidity technique, it also allows the inclusion of
connections to classical spaces like modular curves. The group for such moduli
questions is the Hurwitz (monodromy or braid) group H,, corresponding to the
monodromy from a deformation of Riemann surface covers of the sphere branched
at r points. The Artin braid group on r strings has H, as a quotient. The chapter
starts with pleasant presentations of group results: Theorem 1.13 shows that H, is
residually finite. (It misses an opportunity, though, when it alludes, without precise
quotation, to a result of Lyndon and Schupp.) The consequence is that H, has
a solvable word problem. Compatible with practice, H, is a group that you can
understand, even though it has many relations, so you can often compute nicely
with the moduli spaces produced from it.

The authors use early results (including [2] and [5]) that turned the inverse Galois
problem into an existential diophantine problem about rational points on Hurwitz
spaces. This led in two directions. One assumed conditions that ensure that the
Hurwitz space cover of the projective r-space is somewhat trivial. Volklein has been
single-minded and successful in this direction. The book under review documents
this work from six years ago, with [14] giving an extensive update. In their quest for
a solution to the inverse Galois problem, the authors add to the potential of their
method in Section 4.2, on the braid orbit genera. So far, this has worked only for
covers with four branch points. Still, it is now included in their book, for the next
generation. The other direction has been to prove versions of the inverse Galois
problem over large fields. Here, too, one can go for either classical connections
or entertaining results. For the former, [7] showed that the field of totally real
numbers, from the theory of complex multiplication, has absolute Galois group
profreely generated by involutions. For the latter, [6] showed that there is an exact
sequence 1 — F,— Gg — H‘f:z S. — 1. The group on the left is the profree group
on a countable number of generators. The group on the right is the direct product of
the symmetric groups, one copy for each integer; Gg is caught between two known
groups.

In Chapter IV, the book finally lightens. An interesting example comes from
the definition of semi-abelian groups. These are groups generated by a finite set of
abelian subgroups, A, ..., A,, with 4; in the normalizer in G of 4; for j > i. Theorem
2.7 states that G semi-abelian is equivalent to G being a homomorphic image of
A x*U, with A abelian and U a proper semi-abelian subgroup of G. Using wreath
products, the book concludes that every semi-abelian group is a Galois group over
a Hilbertian field.

Here, attentiveness to useful details leads to wreath products, barely mentioned
in [12]. This is one of the few general constructive tools in the area. Further topics
include GAR realizations (close in spirit to the way that Hilbert realized A,). This
gives rise to a fine observation: if a group has composition factors with GAR
realizations, then the group has a realization over the field. Shafarevich’s conjecture
would follow from showing that each simple group has a GAR realization over
@.p. The presentation of a favorite topic of the authors, central Frattini extensions,
deserves high marks and a favorable comparison with [12].
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This book is much about examples illustrating technique. Most readers would
require more applications from the literature, calling for these techniques. These
might inspire new researchers to say: ‘“This work parallels that of Klein for producing
Reimann surfaces of significance.” Other writers might mine the book’s examples to
produce results on the significance of the moduli of algebraic equations.
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The central idea of complex differential geometry (at least in the sense of the
book under review) is to introduce a Riemannian metric on the differentiable man-
ifold underlying a complex manifold. Then one can study the interaction between
the Riemannian differential geometry—curvature, geodesics, and so forth—and the
complex analytic properties of the manifold: for example, the existence of holo-
morphic functions and maps. The subjects abuts on the one hand onto manifold
topology, and on the other hand onto algebraic geometry. In the case of complex
dimension one (Riemann surfaces), these ideas can be traced back at least as far as,
for example, the introduction of the ‘Poincaré metric’ on the unit disc. The higher-





