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Abstract� The area starts with Galois and Gauss� Group theory and expo�
nential sums were the two application areas then� That tradition continues�

� Without Chevalley groups over �nite �elds there would have been no
structure theory of �nite simple groups�

� Weil�s Riemann Hypothesis for curves over �nite �elds is a singular event�
Many error estimates in combinatorics derive from it�

Research in �nite �elds requires combinatorial understanding of many ex�
amples� This is true in myriad applications� coding theory� exceptional poly�
nomials �and covers	� algorithmic applications of elimination of quanti�ers�
diophantine relations between curves over number �elds and their reductions
modulo p
 probabilistic algorithms over �nite �elds� Yet� there are powerful
general abstract tools� Consider two premiere mathematical events from the
last twenty��ve years�

� Deligne�s proof of the general Weil conjectures�
� The classi�cation of �nite simple groups�
This conference�s papers o�er examples of applying such tools to practi�

cal researcher specialties� The sections of this preface divide along the basic
themes of the conference� The preface makes several connections not appearing
directly in the papers� Some papers in the conference refer directly to Bernie
Dwork� not only to his papers� This preface �see x�	 includes comments giving
an overview of his work� It compliments the article of Katz and Tate ����

�� Beyond Weil bounds� curves with many rational points

Let p be a prime� The word curve in this preface always means a one dimensional
projective nonsingular algebraic variety� The phrase variety over a �nite �eld means
the equations have coe�cients in a �nite �eld Fq � The usual notation applies� q
is pt with p a prime and t � � an integer� Then� Fq is the unique � eld �up to
isomorphism� with q elements� For any �eld K� 	K is its algebraic closure� If X
is a curve� let its genus be g�X� 
 g� The curve P� is the projective line� If we
use a subscript t as in P�t � this means t you are given an inhomogenous parameter
running over the points on P��

The Weil bound estimates the number of points on curves� It o�ers� however�
little for q �xed if the curves have large genus� Applications with g large include
explicit constructions of curves arising in coding theory� to compute weight enu�
merators from Frobenius eigenvalues� It also includes applications to graph theory
and various problems involving the decomposition types of polynomials� Persistent
preoccupations include exceptional polynomials� Davenport and Schur problems�
estimates for Kloosterman sums� Ramanujan graphs� These stipulate a su�ciently
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large prime p for the appearance of phenomena that treat the error term in the
Weil bound as explicit and small� The error term is roughly g

p
q �there are im�

provements when q is not a square�� Assume q �xed and g large� Then� the error
overwhelms the main term� q��� in the Weil estimate� This is the naive source for
papers on curves over Fq with genus g large and many rational points�

The paper of Niederreiter and Xing reviews previous results� Two quantities
often appear�

� Nq�g�� the maximum for Fq points running over all ��nitely many up to
isomorphism over Fq � curves of genus g� and

� A�q� 
 lim supg ���
Nq�g�
g�� �

This volume has papers from the people who produced the four now standard
approachs� Adding to this� several connect their approach to another�

���� The moduli space approach� Typically the area refers to modular curves as
classical curves rather than as moduli spaces� The moduli space treatment eschews
detailed equation information� Rather� each point on such a curve attaches to an
object with its own internal structure�

Vl�adut and Drinfeld around ���� showed A�q� � q����� for all q� A brief version
of a satisfying result for q a square goes like this� Ihara� and Tsfasman�Vl�adut�Zink
established a lower bound A�q� � q��� � �� so A�q� 
 q��� � � for any square q�
The brief version� however� doesn�t do justice to compelling aspects of the story�

Ihara�s contribution went through stages starting in the late ��s� The following
de�nition states a basic principle� Let Ci� i � I be a natural sequence of curves over
Fq � The meaning of natural� of course� is up to the investigator� Detecting how
this sequence contributes to the problem requires knowing the asymptotic behavior
of the genus and number o f rational points�

Suppose q 
 p� and �N� p� 
 �� Then� the reduction of the modular curve
X�N� �elliptic curves with level N structure� has a model over Fp� � The curve
X�N� covers the classical j�line� We know its genus� reduction mod p works well�
and there is a set of points of known cardinality on X�N� over Fp� � The ultimate
source of being over F�p is a subtlety from th e points lying over j values where the
elliptic curves have no p�division points� supersingular curves� So� Ihara�s example�
when q 
 p� exhibits these properties�

� The contributing curves forms a natural projective system of moduli spaces�
� Rational points contributing to A�p�� correspond to nonordinary reduction
of the object �elliptic curve� they represent�

� A di�erential �holomorphic except at the cusps� on X�N� has its zeros
located at these particular rational points�

� The Frobenius lifts as an explicit correspondence to characteristic ��

Even if a curve over Fq contributes signi�cantly to Ng�q�� it won�t do so for
Ng�q

�� where qjq�� So� to extend this result to other square powers of p� Ihara
developed similar results for Shimura curves� These are moduli spaces of abelian
varieties associated with quaternion algebras� Ihara�s paper Shimura curves over

�nite �elds and their rational points simpli�es the literature on this example� It
also reconsiders questions open from the ����s�

��� The Drinfeld module approach when q is not a square� No one has
produced a natural sequence of canonical models when q is not a square� No exact
values of A�q� are known� Still� Serre introduced the idea of pro viding lower bounds
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using the abelian theory of covers� This is class �eld theory� using data from wild
rami�cation� Serre showed A�q� � c � log�q� with an absolute constant c � �� Zink

showed A�p�� � ��p����
p�� for any prime p�

This approach used Drinfeld modules� Niedderiter and Xing emphasize that
Drinfeld modules are explicit� contrasting them with modular curves� This Editor
encourages further research separating the Drinfeld module approach from that of
Ihara� Especially valuable would would be examples coming from natural projective
systems of upper half�plane quotients that are moduli spaces� though they are not
modular curves� �The Editor�s conference talk discussed Modular Towers � see
http���www�math�uci�edu� �mfried��mt� Papers on Modular Towers �� �which
produce such sequences� Producing� however� an Ihara�type di�erential with zeros
containing the nonordinary points on particular Modular Towers was incomplete
at this volume�s production time��

���� More on explicit use of Drinfeld modules� Hayes in Distribution of min�

imal ideals in imaginary quadratic function �elds illustrates how to study class
numbers and j�invariants of Drinfeld modules� His examples are abelian covers of
hyperelliptic looking curves split over � �formed from M � Fq �x� of odd degree��
Here� M may not be square�free� The result is an average of class numbers over dis�
criminants� Chen in Division points of Drinfeld Modules and special values of Weil

L�functions computes values of Weil L �functions of hyperelliptic curves� Thus� he
gives degrees of the norm and trace of Drinfeld module j �invariants� These papers
show a community growing comfortable with using Drinfeld modules�

���� One curve with many points and �ber products� Coding theory ap�
plications don�t explicitly ask for curves with many rational points� Rather� they
seek structured sets of curves with many rational points� van der Geer and van
der Vlugt have used coding theory as a source of problems for �nding sets of such
curves� Constructing Curves over Finite Fields with Many Points by Solving Linear

Equations expands their �ber product technique� For some problems their method
is more e�cient than class �eld theory�

The process starts with a linear system L of functions on C� For f � L� form the
�ber product of these covers of the w�line� x � C �	 f�x� 
 w and z �	 zp� z 
 w�
Call this curve Cf � The divisor giving L has support in rational points on C� �Avoid
those for giving reducibility� by assuming f 

 mp �m for any m in the function
�eld of C�� To assure the resulting �ber product has rational points restrict to the
following linear condition� Use only those f with f�P � having � trace from Fq to
Fp for all P in the support of D� Let f�� � � � � fn be a basis of the linear subspace
satisfying these conditions� Take CL the �ber product over all the f�� � � � � fn� The
result is independent of the basis� The unique nonsingular model of CL is a covering
of C with all rational points in the support of D split completely� The method easily
computes the Jacobian and the number of rational points�

This explicitly reproduces many examples from papers of Niederreiter and Xing�
There the curves were from narrow ray class �elds determined by Drinfeld modules
of rank � over a curve�

���� Approach from classical curves� Garcia and Torres On maximal curves

having classical Weierstrass gaps consider maximal curves over Fq� having classical
Weierstrass gaps� Maximal means �because the �eld has square order� it attains
the Weil upper bound q� � �� gq� For a maximal curve� let P be an Fq� rational
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point� Then� the support of the Frobenius divisor of the linear system j�q � ��P j
consists of the Weierstrass points �for the canonical divisor� and the Fq� points of
the curve�

This story resembles achieving maximal groups of automorphisms� Maximal
curves often have large automorphism groups� and Jacobians isogenous to prod�
ucts of supersingular elliptic curves �there being but one supersingular curve up to
isogeny�� There is yet no classi�cation of maximal curves over Fq� of a given genus�

The genus of a maximal curve over Fq� satis�es either g � �q � ����� or g 

�q � ��q�� There is one maximal curve �up to Fq� �isomorphism� over Fq� with
g 
 �q � ��q�� This is the Hermitian curve with a�ne equation yq � y 
 xq���
Similarly� if the genus is �q � ������ q� it must be yq � y 
 x�q������

� Monodromy groups of characteristic p covers

Related to the topic of maximal curves� valid over all �nite �elds �not just over
Fq� �� is that of median value curves� These curves over Fq have exactly qt�� points
over Fqt for in�nitely many t� Many of these curves do have large automorphism
groups and supersingular Jacobians� but most do not� For the relation of these to
exceptional covers see ��� x���

Progress in classifying exceptional polynomials �another cryptography connec�
tion� came through using monodromy �Galois closure� see x��� groups of covers�
In characteristic � there are especially precise formulations of Riemann�s existence
theorem �describing covers of curves�� In positive characteristic� wild rami�cation
poses di�cult elementary problems that have blocked progress�

Example� M uller ��� listed all monodromy groups of polynomial covers over C
�and over Q�� Yet� the classi�cation of a�ne groups arising as monodromy groups

of exceptional polynomials over a �nite �eld is incomplete� ��� x��x�� discusses this
and details on the genus � problem� Exceptional polynomials over Fq give one�one
maps on Fqt for in�nitely many t� The main result of ��� is that excluding a known
list� indecomposable exceptional polynomials over Fq have these properties�

� They have degree pu for some u�
� Their monodromy group is an a�ne group acting on Fpu �

��� What to expect of monodromy groups from genus � covers� Let
f � C �x� be a rational function� Denote the Galois �monodromy� group of the
splitting �eld !f�z of f�y� � z over C �z� by Gf � The now complete genus zero
problem of Guralnick�Thompson showed the following� Excluding alternating and
cyclic groups� only �nitely many simple groups occur as composition factors �sub�
quotients� of monodromy groups of rational functions� Contributors to the genus
� problem include Aschbacher� Frohardt� Guralnick� Magaard� M uller� Neubauer�
Thompson and many others� In characteristic p� however� Guralnick found a simple
conjecture that has support in papers from this volume�

Conjecture ��� �Guralnick�� Let Gp be those simple groups that are composition
factors of genus � monodromy groups over 	Fp � Then� excluding a �nite set� Gp
consists of alternating groups� cyclic groups and Chevalley groups of Lie type over
�nite �elds in 	Fp �

Abhyankar�s renown NICE papers were the source of Conjecture ��� In charac�
teristic �� Riemann�s Existence Theorem o�ers e�cient production of covers from
which a check of the genus is transparent� This works in positive characteristic�
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for tame covers �rami�cation indices prime to the characteristic�� Wildly rami�ed
covers don�t have such a tool� Either producing such covers or showing they don�t
exist is much harder� For fuller documentation and discussion see ��� x�"x���

�� Abhyankar�s approach� Abhyankar starts with polynomials having built in
Frobenius linearity� A separable projective q�polynomial of q�prodegree m over a
�eld Fq �z� has the form

M�x� 
 M�x� z� 

Pm

i
� aix
hm�ii� ai � Fq �z�� a� 

 ��

am 

 � and hji 
 hjiq 
 � � q � q� � ���� qj �
����

There is a related polynomial F �x� from the formula

M�xq���x 
 F �x� 


m��X

i
�

aix
qi ����

The splitting �eld over 	Fq �z� ofM�x� in ���� has group a subgroup of PGLm�Fq ��
Further� the permutation representation on zeros of M�x� is �permutation� equiv�
alent to PGLm�Fq � acting on points of m�dimensional projective space over Fq �
Specializing the ai s and adjusting the exponents produces other Chevalley groups�

Abhyankar and Loomis in Twice more nice equations for nice groups produce
this list of monodromy groups with m � �

� projective symplectic isometry groups and �vectorial� symplectic isometry
groups Sp�m� q�

� projective symplectic similitude groups PGSp�m� q� and the �vectorial�
symplectic similitude groups GSp�m� q��

One sees here Abhyankar�s mantra �his name#�� It illustrates how combinatori�
ally changing exponents in polynomial expressions relates distinct Chevalley group
series� It doesn�t� however� explain it�

��� Re�ection on classical invariant theory� Under the title Linearized Alge�
bra and Finite Groups of Lie Type� I� Linear and Symplectic Groups Elkies includes
re$ections on why Abhyankar�s mantra works� He starts with %linearized algebra�&
the systematic study of q�linearized polynomials� The idea is to devolve classical
invariant theory from their study� This paper concentrates on linear and sym�
plectic groups� showing that in each case the monodromy groups have associated
Deligne�Lusztig varieties�

Elkies emphasizes that Deligne�Lusztig varieties come with a �nite group of Lie
type and an element w of the associated Weyl group� This extra structure� comes
with the production of di�erential analogues of these varieties� This structure� he
suggests� may be what lies behind Abhyankar�s intuitions� Later papers will give
analogous constructions for unitary� orthogonal� and more exotic groups G� Elkies�
paper also contains a compendium of group notation useful for those not �nite
groups theorists�

��� Reduction mod p and �eld of moduli of covers� Debes �with his student
Deschamps� has general conjectures relating these topics�

� Hilbert�s irreducibility theorem�
� �elds of de�nition of covers� and
� various re�ned embedding problems�
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These put di�erent formulations of the regular version of the Inverse Galois Problem
over any �eld under one conjecture of Black� Any Galois extension of a �eld K is
a specialization from a regular Galois extension L�K�t�� These clean formulations
require K to be arbitrary� This motivates the papers of Debes and Emsalem in this
volume� Here� non�Galois covers initiate the process of going to the Galois closure�
This produces a constant �eld extension that is part of the formulation�

��� Re�ned abelian covers� Debes in Regular Realization of Abelian Groups

with Controlled rami�cation considers an arbitrary �eld K� a �nite subset D �
P�� 	K� and a �nite abelian groupA� He shows there is an extension F�K�T �� regular
overK� with groupA and F unrami�ed over each element ofD� Harbater�s patching
method requires such covers for its inductive use of cyclic groups generating a given
group� Getting a totally split place is necessary for completing the construction�
Starting with a �nite �eld� �nding such an extension with at least one unrami�ed
point t� � P��K� adds an extra di�culty not in the literature�

��� Good reduction of covers� Emsalem in On Reduction of Covers of Arith�

metic Surfaces re�nes a renown Grothendieck theorem� It considers curve covers
over Spec of a discrete valuation henselian ring R with quotient �eld K� The pa�
per connects covers with good reduction to those having a model over the �eld of

moduli M of the cover� It generalizes a theorem of Debes�Harbater for G�covers of
the Riemann sphere�

Let Mur be the maximal unrami�ed algebraic extension of M � Emsalem shows
the prime of R being bad is the only obstruction to having a model overMur� Bad
primes are those where one of these events happen�

� Either the base curve of the cover has bad reduction� or
� two points of the branch locus meet� or
� the rami�ed prime divides the order of the geometric monodromy group�

This result requires care in stating the equivalence between covers� Several kinds
of covers appear in applications depending on what extra data the equivalence
preserves� Emsalem�s paper assumes �xed maps to the base curve X for mere

covers� He assumes �xed isomorphisms of the automorphism group with a �xed
group G for Galois �G��covers�

The �eld of moduli of such an equivalence class of covers is intrinsic to the
equivalence class� It is easy to describe� Let S be a complete listing of all objects
in the equivalence class over 	K� Then� the absolute Galois group GK maps S to
another equivalence class for the �same or related� moduli problem� The subgroup
HS stabilizing S has �xed �eld KS � the �eld of moduli of S�

If the moduli problem is �ne� the �eld of moduli will automatically be a �eld
of de�nition �of some element of S�� Still� in many problems the moduli problem
is not �ne� Thus� it is serious to decide if a model for the problem exists over the
�eld of moduli� It is a habit to write Y 	 X as if a particular cover were given
with its equations� In practice� it is Riemann�s existence theorem that tells of such
a cover existing� Emsalem uses a moduli space approach� So coordinates of a point
on a Hurwitz space generate the �eld of moduli for the equivalence class S� One
recurring problem is to characterize points whose corresponding equivalence classes
contain an element over the �possibly unknown� �eld of moduli�

A result of Beckmann gives one property� only bad primes ramify in the �eld of

moduli of a �G��cover� For more general equivalence classes of covers� use G and 'G
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for the respective geometric and arithmetic monodromy groups of the cover� Then�
inertia groups of good primes are in the centralizer Z �G of G in 'G�

��� Explicit computation of monodromy groups over �nite �elds� Adle�
man and Huang in On Function Field Sieve Method for Discrete Logarithms remind
us of changes wrought in this decade in our ability to compute quantities� They
apply to function �elds a sieve method for discrete logarithms over �nite �elds�
This is an analog of the sieve method for number �elds� That applied to factoring
integers� Theirs runs asymptotically faster than the previously known algorithms
for �nite �elds Fpu when log� p� u�

Abhyankar�s computations for monodromy groups are often a recognition prob�
lem along the following lines� His polynomial monodromy groups are identi�ably
subgroups of a particular Chevalley group� This comes through the algebraic form
of his mantra manipulations� He wants� then� to know if they are the full target
group� Available is much information from the classi�cation of �nite simple groups�
Thus� resolving his problem often comes to deciding orbit lengths of a subgroup
stabilizing integers of the representation� Ultimately that factorization problem ap�
plies to an explicit polynomial in several variables� Factorization problems appear
throughout Abhyankar�s papers� Some aspects of his mantra intuit how a change
of exponents in a polynomial �in two variables� a�ects the factorization problem
after eliminating one �or two� roots�

The problem� however� that Adleman and Ming treat is of �nding a descrete
log� I review that� Let x be a generator for the multiplicative group of Fpu �
The discrete logarithm problem is to compute� for non�zero h � Fpu � the fewest
non�negative integer e giving xe 
 h� e 
 logx h� The logarithm function maps
the multiplicative group of Fpu to the additive group of Z��pu � ��� Though the
additive group structure is extremely simple� computing the log�function is di�cult
because this isomorphism is not explicit� Recall� Con�dence in many cryptographic
security processes depends on the discrete logarithm being hard to compute�

Their paper gives a computer scientist�s view� For example� the number �eld
sieve applies �in polynomial run�time� to Fpu with u � �log p����� By contrast�
the function �eld sieve applies to �nite �elds Fpu when u �log p��� It is an open
�computer scientist� question to �nd an algorithm of comparable time complexity
for u between �log p���� and �log p���

Now consider an adherent of monodromy group calculations� It is likely a func�
tion of the adherent�s age if he or she would relish connecting directly to the
Adleman�Huang method� It should not bring to mind �even if intended with great
sympathy� the old folk song� %John Henry was a steel�driving man�& Our math�
ematical era features acute specialization of technique� Yet� researchers express
constant surprise at the smooth accomplishments possible by joining techniques
from one area to another� �The last sentence of x��� is a common mathematical
refrain�� There is much to be in a quandry over� Only a few readily take to new
techniques� yet so many expect others to understand their specializations�

�� Zeta functions and trace formulas

Directly interpreting properties of varieties over �nite �elds is still a growth area�
For example� did you know the zeta function neatly encodes the p�rank of a curve

over Fq ( Suppose
P�g

i
� ciT
i is the characteristic polynomial for the Frobenius

acting on the Tate module of a curve� Recall� The symmetry of the Weil pairing
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implies ciq
g�i 
 c�g�i� The rank of p�torsion is the maximal i with ci 

 � mod p

���� So� for families of curves �and varieties� there is a p�adic strati�cation of the
parameter space from mod p properties of the zeta function� On the largest piece
of the strati�cation� roots of the zeta function have p�adic analytic continuations�
Their p�adic absolute values here are constant� This inspired investigations of
Dwork around the name of unit roots�

���� Unit root L	functions� Wan in Dwork�s Conjecture discusses an example�
and then conjecture� of Dwork� In the last � years this example has informed most
investigations into p�adic deformation of cohomology� including Grothendieck�s
crystalline cohomology� It started with Dwork�s unit root conjecture for K�� sur�
faces represented by degree four hypersurfaces in P��

Dwork wrote a p�adic matrix lifting the Frobenius with its action on a collection
of convergent power series� The model for it was a similar p�adic Frobenius lifting
on the Legendre family of elliptic curves over the ��line �see x����� This started with
their p�adic analogs of periods� through classical functions when E� is isomorphic
to a p�adic analytic torus �Tate curve�� In this case� after slight base extension� E�

looks like K��hqZi� Then� periods appear as a projective system of pn�th roots of
q and as pn�th roots of �� The p�adic liftings of the Frobenius then act on p�adic
solutions of the hypergeometric di�erential equation�

For special families Dwork investigated p�adic meromorphic continuation of his
unit root L�function� Dwork�s conjecture considers a continuous p�adic Galois
representation � coming from algebraic geometry �see x���� over a �nite �eld of
characteristic p� It suggests the L�function L��� T � is p�adic meromorphic� For a
geometrically connected algebraic variety X de�ned over Fq � let �

ar
� �X� denote the

arithmetic fundamental group of X �
Let R be the ring of integers in a �nite extension of the p�adic rational numbers

Qp � To come from algebraic geometry means � is the homomorphism arising from
the local p�adic variation of some kind of cohomology �or system of di�erential
forms�� It produces a continuous p�adic representation

� � �ar� �X� �	 GLn�R��

This latter is the exact analog of an older notion over C called a �at connection�
Let X� be the closed points of X over Fq and Frx the Frobenius conjugacy class

at x in �ar� �X�� The L�function of � is an in�nite Euler product�

L��� T � 

Y

x�X�

�

det�I � T deg�x���Frx��
�

The L�function L��� T � is a formal power series with coe�cients in R� So it is
trivially p�adic analytic in the open unit disk jT jp 	 ��

Suppose � has �nite image� Then� the general Dwork�Grothendieck Theorem
says L��� T � is a rational function� Deligne�s Riemann hypothesis for varieties over
�nite �elds� says the zeroes and poles of L��� T � have complex absolute values that
are �known� integral powers of

p
q� The number of zeroes and poles of L��� T � has

an explicit bound from a theorem of Bombieri�Sperber� Yet� p�adic absolute values
of the zeroes and poles of L��� T � are still mysterious� The topic of p�adic absolute
values has its roots in an old Chevalley Theorem� A homogenous form of degree d
in d� � variables has a nontrivial zero over Fq for every q�
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Wan explains modern expections when the image of � is in�nite� Most acute is
this� Only under special circumstances for � can we expect a rational L�function�
The key de�nition is that of overconvergence� a concept arising from Dwork�Monsky
trace formula�

��� Zeta functions of complete intersections� Let Z�V�k� t� be the zeta func�
tion of an algebraic variety� Since it is a rational function there are several possible
degrees� including the maximum degrees of the numerator and denominator �see
x����� This calls for taking the gcd of the two polynomials� Adolphson and Sper�
ber in The degree of the Zeta function of a complete intersection investigate the
di�erence of the degrees �the degree at ��� or the negative of the Euler charac�
teristic of any Weil cohomology� This does not use the gcd� They compute this
when V is a su�ciently general toric� a�ne� or projective complete intersection�
In particular� this gives the number of solutions of a suitably general system of
n polynomial equations in n unknowns over a �nite �eld as a mixed Minkowski
volume� Exponential sums count points on V � This paper expresses Z�V�k� t� from
L�functions of exponential sums� The degrees of these L�functions appear in a
previous work of Adolphson and Sperber� This paper shows how to compute the
degree of degZ�V�k� t� as a Minkowski mixed volumes�

A similar formula holds for Euler characteristics of singular cohomology for gen�
eral toric complete intersections over C �results of Kouchnirenko� Bernshtein and
Khovanskii�� The Adolphson�Sperber result requires a stronger hypothesis� Com�
paring their hypothesis with that for singular cohomology is a signi�cant topic in
the paper� Especially important is the result that their hypothesis is satis�ed by
%generic& Laurent polynomials f�� � � � � fr excluding �nitely many characteristics�

���� Properties of a modular curve quotient� Lepr)evost in The Modular

Points of a Genus  Quotient of X����� studies the quotient X���� of X����� by
its Fricke involution� Each point on X����� corresponds to an isogeny E 	 E� of
elliptic curves of degree ��� The Fricke involution sends this point to the equiva�
lence class of the dual isogeny E� 	 E� The paper applies Selberg�s trace formula
to obtain an equation of X���� over Q� It then proves the Jacobian of X���� is an
absolutely simple abelian subvariety of J������ It gives a modular interpretation of
�� rational points of small height on X�����Q�� the modular points of X�����Q��

���� Appearance of rank � representations in L	functions for higher di	
mensional representations� Chai and Li in Function Fields� Arithmetic and

Applications construct automorphic L�functions for GLn over a function �eld by
taking suitable products of automorphic L�functions for GL�� The Kloosterman
conjecture over a function �eld is a consequence� Suppose an idele class character

 of a function �eld K over a �nite �eld F with q elements is not principal� Then
its associated L�function L�s� 
� �see x���� is a polynomial in q�s with character
sums as coe�cients� Also� L�s� 
� is a factor of the zeta function of a �nite abelian
extension H of K� So� it encodes arithmetic of curve underlying H �

On the other hand� an automorphic L�function L�s� of GLn overK has an Euler
product over the places of K� The factor at almost all places v is the reciprocal
of a polynomial in Nv�s with degree n� The paper characterizes when the local
factors of L�s� are L�functions of idele class characters �for homomorphisms of the
absolute Galois group of K into GL��� It systematically constructs automorphic
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L�functions L�s� by taking products of appropriate L�functions of GL�� The Hasse�
Weil zeta function of an elliptic curve over K is a special case of this construction�
By takingK 
 F �t� and f�x� 
 x�t�x they prove the Kloosterman conjecture over
a function �eld� The paper explains the connection of the Kloosterman conjecture
to Ramanujan graphs�

According to the Langlands philosophy� L�functions of complex automorphic
representations of GLn over a function �eld K should be a motive attached to an
��adic representations of Gal� 	K�K�� This is known only for GL� from Drinfeld�
By class �eld theory� L�functions of GL� over K are also L�functions of degree one
representations of Gal� 	K�K�� So� this paper contributes to Langlands� philosophy
by taking advantage of motivic thinking�

���� Eigenvalues of a Laplacian� Chung has many papers on graphs generated
by relations over �nite �elds� Spanning trees in subgraphs of lattices considers the
combinatorial Laplacian of a graph and an induced subgraph of a graph�

The classicalMatrix�tree Theorem says the number of spanning trees of a graph is
proportional to the product of nonzero eigenvalues of the combinatorial Laplacian�
This paper relates the zeta function of a graph to the heat kernel and the spanning
trees of the graph�

Applications arise from induced subgraphs of a lattice graph� Let S be a con�
nected induced subgraph of a �dimensional lattice graph� It shows the number of
spanning trees ��S� satis�es

cec� jSj�c�j�Sj � ��S� � c�ec� jSj�c� j�Sj��jSj�����

with constants c�� c� and c� depending only on the host graph �independent of S��

���� Average values of Zeta functions and elliptic surfaces� Rosen in Av�

erage Rank for Elliptic Curves and a Conjecture of Nagao discusses work with
Silverman on the average rank problem for elliptic curves� Consider a proper map
� � E 	 P�t over Q� Assume all but �nitely �bers Et 
 ����t� are elliptic curves�

Their E is a desingularization of an elliptic surface de�ned by the equation

y� � a��T �xy � a��T �y 
 x� � a��T �x
� � a��T �x� a��T �

with the ai�T � � Z�T � and discriminant *�T � 

 ��
For t � Z and *�t� 

 ��

Et � y� � a��t�xy � a��t�y 
 x� � a��t�x
� � a��t�x� a��t�

is an elliptic curve over Q� For each prime p� let E
�p�
t be the reduction of Et at p�

If p does not divide *�t�� set

ap�Et� 
 p� ���E
�p�
t �Fp ��

Otherwise de�ne ap�Et� to be ��
Note� ap�Et� only depends on the congruence class of t modulo p� Following

Nagao they de�ne the average value as Ap�E� 
 �
p

Pp
t
� ap�Et��

Nagao conjectured how Ap�E� relates to the rank of the group of Q sections
 � P� 	 E to �� The Rosen�Silverman analytic version considers F �E�Q� s� 
P

p�Ap�E� log�p�p�s� By a theorem of Deligne� the numbers Ap�E� are bounded�

So� the Dirichlet series F �E�Q� s� converges for ��s� � �� They conjecture

lim
s���

�s� ��F �E�Q� s� 
 rankE�Q�T ���
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In particular� Nagoa�s conjecture follows from a case of Tate�s conjecture relating
the rank of groups of algebraic cycles to the poles of certain L�series�

�� A short dedication to the work of Bernard Dwork

Bernie was a complicated man� No simple view of him can encapsulate all his
moods� One consistent aspect was a strong loyalty to his students and mentors�
Michael Rosen alludes to this from his association with Ken Ireland at Brown
�x����� Bernie�s students reciprocated that loyalty� by being ever aware of their
mathematical and personal debt to him� Alan Adolphson gives a clear illustration
in x���� Bernie worked often by accumulated evidence from a deep example� rather
than general theory� Returning to examples that motivated him still works for
young researchers� Daqing Wan�s paper �see x���� illustrates that� So does the
statement from Pierre Debes �x���� Debes did not know Bernie well� except for
being present when Bernie spent two weeks at UC Irvine just before he died�

���� Michael Rosen
 Dwork�s relation to his students� Bernie Dwork was
Ken Ireland�s thesis advisor� Ken�s thesis appeared in the Amer� J� Math� ����� On
the Zeta Function of an Algebraic Variety� Ken died suddenly in ���� Thereafter
Bernie inquired often after the well being of his widow� Noel Ireland� and his family�
Even at Seattle� when he was so very ill� he sought me out to ask about Ken�s family�

��� Pierre Debes
 Dwork�s role in G	Functions� B� Dwork has renown con�
tributions to the theory of G�functions and G�modules� �Editor� See the comment
at the end of x�����

The de�nition G�function starts with power series in x having coe�cients in a
number �eld and satisfying a linear di�erential equation with coe�cients in 	Q �x��
The key G function property is that for some N � Nm bound the the mth coe�cient
denominator� Algebraic functions are typical G�functions�

Siegel started investigations into the arithmetic of G�function values� For one� G�
functions have properties resembling the conclusions of Hilbert�s irreducibility theo�
rem applied to algebraic functions� Applying Siegel�s method requires re�ned p�adic
estimates for determinantal quantities in values of functions �and their derivatives��
The Dwork�Robba theorem is such a tool� It was a major ingredient in Bombieri�s
completion of Siegel�s program�

Generalizing G�functions is a notion of G�module �or G�operator�� First it is a
module with an underlying di�erential operator �having coe�cients in 	Q �x��� The
key de�ning property is that the module has a basis of G�function solutions y 

�y�� � � � � yd�� expanded in power series around a generic point� To be precise requires
a size of modules� Several proposed sizes have produced corresponding de�nitions
of G�operators� Some of these sizes give equivalent modules� There remain open
problems about other possible de�nitions� Dwork persistently contributed to the
analysis of these proposed de�nitions�

Let v run over places of a number �eld containing the coe�cients of the involved
power series� Consider the v�adic radius of convergence rv of y �at generic points��
for each place v� Bombieri proposed that the operators would be of arithmetic typeP

v max���� log�rv�� �nite� A strengthened condition is that all but �nitely many
radii rv equal �� There is also the notion of globally nilpotent operators studied
by Katz� the p�curvatures should be nilpotent for all but �nitely many primes p�
Galochkin introduced another de�nition using iterates of the di�erential operator�
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Finally there are the operators coming from the geometry �see x����� Although
appearing classically� it is di�cult to �nd a precise de�nition in the literature for
this� In his book on G�functions� Y� Andr)e de�nes them as iterate extensions of
sub�quotients of Gauss�Manin connexions attached to algebraic varieties� That is�
the de�nition is motivic�

The Bombieri�Andr)e Theorem says the Bombieri and Galochkin notions coincide�
The Dwork�Robba theorem revealed a basic tool� Dwork recently improved on this
equivalence by involving p�curvatures� Based on Katz� the Bombieri�Galochkin
operators are proved globally nilpotent in the weak form �for v of density ��� The
strong form �for almost all v� is still open�

Grothendieck�s conjecture from �� years ago is that globally nilpotent in the
weak sense implies the di�erential equations come from geometry �see x����� From
this� all preceding notions actually coincide� This phrasing appears in the literature
as the Bombieri�Dwork conjecture�

Bernie Dwork visited UC Irvine in January ����� One from his two talks was on
G�operators� He gave examples �involving the hypergeometric di�erential equation�
of explicitly computing the �Bombieri� size of the operator� He mentioned the
signi�cance of Chudnovsky�s theorem� This says it is su�cient for an operator to
be a G�operator �in the sense of Bombieri and�or Galochkin� if there is a solution
�y�� � � � � yd� whose entries have these properties�

� They are G�functions with coe�cients in 	Q �
� They are linearly independent over 	Q �x��

This result and all others from the theory of G�functions and G�operators appear
in the book Dwork wrote with G� Gerotto and F� Sullivan� �Editor� See Conjecture
��� for continuation of this topic��

���� Alan Adolphson
 Dwork�s �nal conjecture� Perhaps because of his early
training as an engineer� Bernie respected how di�erential equations capture mathe�
matical behavior� His most celebrated result was the rationality of the zeta function
of an algebraic variety� For this he received the Cole Prize in ���� Still� his greatest
in$uence may be in the application of di�erential equations to problems in num�
ber theory� His ideas are too too broad for this exposition� I only discuss those
in$uencing my work�

To my knowledge� di�erential equations �rst appear in Bernie�s work in ����
Proving the rationality of an algebraic varieties zeta function involved constructing
a Frobenius operator on certain spaces of p�adic power series satisfying growth
conditions� Bernie did not associate cohomology spaces to the variety as expected
by the Weil Conjectures� In ���� he constructed a complex whose terms were spaces
of p�adic power series and whose boundary maps came from di�erential operators on
those spaces� The Frobenius action on that complex� and hence on its cohomology�
gives the zeta function�

An immediate problem arose� Even for smooth varieties� no one knew if the
cohomology of this complex was �nite dimensional� This gave a basic question�
Given a di�erential operator on a space of p�adic analytic functions� is its cokernel
�nite�dimensional( Finiteness of the kernel is usually easy� So the question is to
determine if the di�erential operator has �nite index �
 dimkernel�dim cokernel��
This has motivated much research� including part of my thesis ���� Robba studied
this extensively �see his bibliography in ������ Recently� Christol and Mebkhout
��� �� �� have made progress� I understand de Jong�s use of resolution of singularities
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in characteristic p implies �nite�dimensionality of Dwork�s cohomology� I haven�t�
however� seen the details�

Bernie describes a more subtle application of p�adic di�erential equations in �����
Suppose a variable � with values in a �nite �eld of characteristic p parametrizes a
smooth family� Dwork�s p�adic cohomology spaces then depend on lifting the family
to characteristic �� So the cohomology classes depend analytically on the lifted
parameter� Di�erentiating Dwork�s cohomology classes with respect to the �lifting
of� the parameter produces a di�erential equation satis�ed by the cohomology
classes� Dwork recognized this as the p�adic analogue of the classical Fuchs�Picard
di�erential equation for the corresponding family over C � For example� consider
the family y� 
 x�x � ���x � ��� Dwork�s p�adic cohomology classes �nd kind
di�erentials� satisfy the classical Gaussian hypergeometric di�erential equation

���� ��z�� � ��� ��z� � �
�
z 
 ��

The � here� however� is a p�adic variable�
Bernie was able to identify his cohomology spaces with solution spaces of p�

adic di�erential equations ����� The action of Frobenius on the cohomology spaces
then induces an F �crystal structure on the solution space of a di�erential equation�
Thus� these solutions have radius of convergence one� �Determining p�adic radius of
convergence is di�cult� Usual results on analytic continuation in the complex case
fail p�adically�� This allowed him to analytically continue certain ratios of solutions
to a larger p�adic domain� The result gave explicit formulas for eigenvalues of
Frobenius as special values of these analytically continued ratios�

Much of my thesis �� depended on ���� and the related ���� Speci�cally� I used
the relation �of Ihara ���� worked out by Morita ��� for the principal congruence
subgroup of level two� between Hecke polynomials and the eigenvalues of Frobenius
on H� of elliptic curves over a �nite �eld� Applying Dwork�s explicit formulas
for these eigenvalues� I constructed a p�adic cohomology space with a Frobenius
action having a Hecke polynomial as its characteristic polynomial� This gave p�
adic information about eigenvalues of Hecke operators� Robba��� carried out a
similar analysis for eigenvalues of Frobenius on H� of Kloosterman sums� From
this I gave a p�adic proof of the equidistribution of angles of Kloosterman sums����

Recall� The phrase� arises in algebraic geometry applied to a di�erential equation
means the di�erential equation is the Picard�Fuchs equation using the Gauss�Manin
connection on a smooth family of algebraic varieties� �Editor� Check the motivic
comments in x�� and x����� That is� it comes from di�erentiating di�erential forms
representing cohomology classes with respect to the variables of the parameter
space� Over C it is classical these di�erential equations have regular singular points�

In characteristic p� however� exponential sums on a variety appear� In ����
Bernie found a new behavior in the di�erential equation describing variation of
p�adic cohomology in the family of Kloosterman sums� He showed it is the p�adic
analogue of the classical Bessel equation ����� In particular� it has an irregular
singularity� the �rst such example� Later� Sperber and I ��� �� extended many of
these results on Kloosterman sums to twisted �involving multiplicative and additive
characters� Kloosterman sums�

Bernie continued working on p�adic di�erential equations� producing three books
���� ��� ��� �the latter joint with Gerotto and Sullivan�� One question dominated
his later work� It was to give a p�adic characterization of those di�erential equations
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coming from geometry� ���� ��� were written after the onset of his illness� The so�
lutions of such di�erential equations are all G�functions� and all known G�functions
are solutions of such di�erential equations�

Conjecture ��� �Dwork�� There is a G�function characterization of the equations
arising from geometry�

���� gives an introduction to this question while covering many topics in the
theory of p�adic di�erential equations� It is fascinating that disparate mathematical
ideas produce such beautiful and fruitful interactions�
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