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Elements of Euclidean geometry include distances, angles, areas and some basic
shapes that we understand through using these three measurements.

1. Relation between distance and angles

In the (x, y)-plane consider three points: (0, 0), (4,5) and (2, 7). With the origin
as a vertex these three points generate a parallelogram that includes the angle at
the origin as an interior angle. It’s fourth vertex is (4, 5) + (2, 7) = (6, 12). The
geometry of parallelograms justifies vector addition.

This works in 3-space. The three points (0, 0, 0), (4,5,1) and (2, 7, 3) generate a
parallelogram in three space. It’s fourth vertex is (4, 5, 1) + (2, 7, 3) = (6, 12, 4).

In the plane we have the law of cosines. Draw a triangle with sides of length
a, b, c and opposite angles are α, β, γ (measured counterclockwise) and correspond-
ing vertices A, B, C. Draw the perpendicular from A to side a. Let the meeting
point be D. Then

c2 = (AD)2 + (DB)2 = (b sin(γ))2 + (c − b cos(γ))2,

or c2 = a2 + b2 − 2ab cos(γ).
The area of ∆ABC, expressed as 1

2ab sin(γ) relates angles, distance and area.

2. Translating parallelograms

Suppose P is the parallogram with vertices (0, 0), (4,5), (2, 7) and (6, 12) above.
What is the parallelogram parallel to this one, with the side corresponding to the
origin at (−1,−2)? We call it P(−1,−2). The operation of translating its points by
(−1,−2) is T(−1,−2).

If T(x0,y0) is the operation of translating any point in the (x, y) plane by (x0, y0),
then there is an inverse to this operation: T(−x0,−y0). The collection of all such
operations T2 = {T(x0,y0)|(x0, y0) ∈ R2} form a group with the addition

T(x0,y0) ◦ T(x1,y1) = T(x0,y0) + T(x1,y1) = T(x0+x1,y0+y1).

It is part of Euclidean geometry that if you translate any line segment, the new
line segment has the same length: The group T2 preserves distances.

3. Rotations and the Galilean group

We can rotate any point, so any line segment, around the origin through an
angle. Hidden in Euclidean geometry is that if you rotate a line segment around
the origin, the new line segment has the same length. The operation of rotation
around the origin through the angle θ we denote by Rθ. The inverse to Rθ is R−θ

and Rθ1 ◦ Rθ2 = Rθ1+θ2 so the rotations form a group O+
2 .

When you write elements of a group abstractly, the inverse of an element g is
usually denoted g−1.
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The observation I need is that if we only had one line segment of length a we
could get all others by applying elements of T and O+

2 . We can even get a line
segment to map into itself, switching the end points. This shows it is a good idea
to combine the operations T2 and O+

2 into one group, which we call G+
2 the special

Galilean group in the plane.

4. Computing with G+ and G
We need a concrete way to combine operations (multiply; compose the functions).

Theorem 1. Given Rθ ∈ O2 and T(x0,y0) ∈ T2, Rθ ◦T(x0,y0) = TRθ(x0,y0) ◦Rθ. The
groups T2 and O2 are commutative (abelian), while G+ is not.

Here is an exercise in the investigation of these groups.
(a) Write the element T(−x0,−y0) ◦ Rθ ◦ T(x0,y0) of G+

2 as T ◦ Rθ with T a
translation.

(b) Suppose cos(θ) 
= 1. Given T , find (x0, y0) so that

T(−x0,−y0) ◦ Rθ ◦ T(x0,y0) = T ◦ Rθ.

(c) Show an element of G+
2 has no fixed point if and only if it is a translation.

Hint: T(−x0,−y0) ◦ Rθ ◦ T(x0,y0) has a fixed point (what is it?).
In any group with two elements h and g, when you have an expression hgh−1

refer to this as h conjugating g.
Lemma 2. Elements of G+

2 have either no fixed points (translations) or one fixed

point. Reflection in the x-axis given by Mx =
(

1 0
0 −1

)
is not in G+

2 .

Proof. As reflection in the x-axis has the x-axis as fixed points, it is not a con-
jugation of a rotation or a translation. From the last exercise these are the only
possibilities for elements of G+

2 . �

Another way to write Rθ is as a matrix
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. Check it with the

effect on (1, 0) and with the effect on (0, 1). Now use matrix multiplication to
compute Rθ(x0, y0). Let G be the group by combining G+

2 and Mx.
Crucial properties of G2:

• It preserves distances (and so by the law of cosines, it preserves angles);
• Given a measure d(x) from the origin to the point (x, 0), invariance under
G2 would give a measure of any line segment in the plane.

5. The subgroup of G2 fixing a regular polygon

Let Cn be a regular n-gon. The set of elements in G2 that map Cn into itself
form a subgroup of G2. It has a name: The dihedral group Dn of degree n.
Lemma 3. If Cn is centered at the origin, and one vertex is at (1, 0), the elements
of Dn composed from {R 2π

n
, Mx}. What is the group D′

n corresponding to C ′
n, which

is Cn rotated by θ′, then translated by (x0, y0)? Hint: It is Dn except, conjugate
each element by T(x0,y0) ◦ Rθ′ .
The groups attached to different regular n-gons are different (we say conjugate)
subgroups of G2. Still, they are so so similar (isomorphic) we use for each only the
symbol Dn.
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