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1. Warmup with a famous formula of De Moivre

We will combine some algebra and geometry to consider how encryption works. This is
supposed to illustrate that you can’t guess before hand what kind of mathematics will be
useful. To warm up, we develop a formula useful in many places in high school mathematics.

Recall the two basic functions of trigonometry: sin(x) and cos(x). Let n be a positive
integer. The formula I want is for a polynomial of degree n, T ∗

n(x), with this property:
T ∗

n(cos(x)) = cos(nx). We will use the imaginary number i =
√
−1. Multiply the following

expression formally: (cos(t) + i sin(t))(cos(t) − i sin(t)). Why is the result 1 for any value of
t? (Hint: Use that cos(t)2 + sin(t)2 = 1.) We also use a formula from trigonometry that has
the following memorable form:

(1.1) (cos(t1) + i sin(t1))(cos(t2) + i sin(t2)) = cos(t1 + t2) + i sin(t1 + t2).

Write xn + 1/xn − (x + 1/x)n (using the binomial theorem) as Un−1(x + 1/x) with Un−1

a polynomial of degree n − 1. Use an induction to show there is a polynomial Tn with

(1.2) Tn(x + 1/x) = xn + 1/xn.

Plug in x = cos(t)+ i sin(t) in (1.2) and apply (cos(x)+ i sin(x))n = cos(nx)+ i sin(nx) from
an induction using (1.1). The result is

Tn(2 cos(x)) = 2 cos(nx).

We call the polynomial Tn the nth Chebychev polynomial.

2. Long division

Let n be an integer not divisible by 2 or 5. Then, 1
n has a decimal expansion and it is a

pure repeating decimal. What does your hand held calculation say is the period — length
of the repeating part — of 1

23?

2.1. Investigating the periods of 1
n . The period n has something to do with the powers

of 10: Divide n successively into 100, 101, 102, 103, . . . , and let the remainders be r0, r1, r2,
. . . . The period is the smallest integer k > 0 with rk = 1. These remainders are all integers
with no primes in common with n. We use the symbols a|b to mean that the integer a divides
the integer b: In the long division of a into b, there is no remainder.

We now use the definition of prime that appears in Principle 2.2 to see that 23|1022 − 1.
Then, we develop from it a very famous formula due to Fermat around 1550, called Fermat’s
Little Theorem.

Start with all the numbers between 1 and 22, N23,1 = {1, 2, . . . , 22}. Multiply each of
them by 10 to get the set N23,10 = {10, 10 · 2, . . . , 10 · 22}. Now suppose a, b ∈ N23,1. Use
Princ. 2.2 to see that 23 does not divide 10 · a − 10 · b unless a = b. So, for every a ∈ N23,1,
there exists a unique ra ∈ N23,10 so that a − ra = qa · 23 for some integer qa.
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Big conclusion: 22!− 102222! = m · 23 for some integer m. Since 23 doesn’t divide 22!, by
Princ. 2.2, 23 does divide 1022−1. The same argument allows us to change 23 to any integer
n, and 10 to any integer a relatively prime to n: no prime divides both a and n.

2.2. Euler’s ϕ-function. The function ϕ(n) counts the integers m between 1 and n that
have no primes in common with n. We say 10 has order (or period) k modulo n if the length
of the repeating part of 1

n is k. The next statement tells us why the period of 1
n divides ϕ(n).

It is the case where a = 10. The mathematical phrase (a, n) = 1 means that no primes that
divide a also divide n.

Proposition 2.1 (Fermat’s Little Theorem). If (a, n) = 1, then n|aϕ(n) − 1. We write this
as aϕ(n) ≡ 1 mod n. This gives an x ∈ Z with ax ≡ 1 mod n (take x = aϕ(n)−1).

Suppose neither 2 nor 5 divide n. Then, the order of 10 modulo n divides ϕ(n). So, the
period of 1

n divides ϕ(n). If n is a prime, the period of 1
n divides n − 1.

Proof. The proof above works by replacing N23,1 by the ϕ(n) integers Nn,1 that are between
1 and n − 1 and are prime to n. Then, replace N23,10 by Nn,a. This gives aϕ(n) ≡ 1 mod n.

Suppose k is the smallest integer with ak ≡ 1 mod n. Here is why k|ϕ(n). By the
Euclidean Algorithm there are integers u and v with this property: uk + vϕ(n) is d, the
greatest common divisor of k and ϕ(n). Notice that v and k can have no common prime
divisor, or else d would be larger than the greatest common divisor of k and ϕ(n). Check:
Using that ak ≡ 1 mod n and aϕ(n) ≡ 1 mod n,

auk+vϕ(n) ≡ (ak)u(aϕ(n))v ≡ 1 mod n.

That means d must be k and k = uk + vϕ(n), and so k|ϕ(n).
Let rk be the reminder from dividing n into 10k. The period of the fraction 1

n is the
smallest integer k > 1 with this property. For some integer k0 ≥ 0, rk0+k = rk. So,

n|(10k0+k − 10k0) = 10k0(10k − 1).

By the prime principle, no prime of n divides 10k0 . Conclude that n divides 10k − 1, and k
is the smallest integer for which this holds, and this is the period of 1

n . �

2.3. Basic Notation. The integers: Z, the nonnegative integers N, the positive integers
N

+, the real numbers R, and if S is any set,

Sm = {(s1, . . . , sm} | si ∈ S, i = 1, . . . , m}.

• Polynomials over the integers: Z[x].
• p1, p2, . . . , pk, . . . a listing of the primes in order.
• a ≡ b mod n if and only if n | a − b.

2.4. FTA and Primes. Principle 2.2 has the defining property of a prime p. As a corollary
of it, there is one and only way to write a positive integer as a product of prime powers.

Principle 2.2 (Fundamental Theorem of Arithmetic). An integer p is a prime if and only
if the following holds for every two integers a and b (see the proof of Cor. 2.5). If p|a · b
(p divides a · b), then p|a or p|b. This shows there is one and only one way to write every
positive integer as a product of prime powers.

Question 2.3. Consider the number p = 4 and the integers a = 8 and b = 2. How does
Principle 2.2 support or disallow that p = 4 is a prime in this case?
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Let p1 = 2, p2 = 3, p3 = 5, . . . , pn the nth prime,. . . . FTA says, any positive n has a
unique expression: ps1

1 ps2
2 . . . psk

k . . . for some integers s1, s2, . . . .
Example: 15 = 3 · 5 = 20315170110 · · · . This notation gives a handy way to write n · m,

gcd(n, m) and lcm(n, m).

2.4.1. Casting out 9’s, 11’s and 7’s. Writing an integer n to the base 10 means writing it as
a0 + a1 · 10 + a2 · 102 + · · ·+ ak10k with 0 ≤ ai ≤ 9. You can use this to check if 9 |n (if and
only if 9 | a0 + a1 + a2 + · · · + ak) or 11 |n (if and only if 9 | a0 − a1 + a2 + · · · + (−1)k · ak).
Follow these hints for a check of divisibility by 7.

(2.1a) With k · 10 + k0 = n, notice 3k + k0 + 4 · (k − 2k0) = 7 · (k − 7k0).
(2.1b) Show 7 divides n if and only if it divides k − 2 · k0.

2.4.2. Euclidean Algorithm. Suppose n and m are integers. How can we calculate the smallest
positive integer d you can write as nu + mv with u and v any integers? The Euclidean
algorithm (EA) shows this is exactly the largest integer dividing both n and m.
Example 2.4. What is the greatest common integer in 12121 = r1 and 16027 = r0? What
does it have to do with the following process? 12121|16027 (r1|r0) to get quotient q1 and
remainder r2. Then, compute r2|r1 to get quotient q2 and remainder r3; compute r3|r2 to
get quotient q3 and remainder r4;. . .
Corollary 2.5 (Proof of the Prime Principle). Suppose p is a prime and p|a · b. Suppose p
does not divide a. We apply the EA to find integers u, v so that pu+av = 1, or b = pbu+abv.
Conclude that p|b.

3. Using congruences of integers

If f ∈ Z[x] is any polynomial with integer coefficients then, a ≡ b mod m implies f(a) ≡
f(b) mod m.

(3.1a) ax ≡ ay mod m if and only if x ≡ y mod m/(a, m).
(3.1b) x ≡ y mod mi, i = 1, . . . , t if and only if x ≡ y mod [m1, . . . , mt].
Think of x mod m as a set of integers. For example, 2 mod 3 is the set

2̄ = {2, 2 + 3, 2 + 2 · 3, . . . , 2 + k · 3, . . . ; 2 − 3, 2 − 2 · 3, . . . , 2 − k · 3, . . . }.
Then, 2 ≡ 5 mod 3 means the sets 2̄ and 5̄ are equal.

3.1. Z/n and (Z/n)∗: Two abelian groups. You can add and you can multiply congru-
ences. If a is an integer modulo n with (a, n) = 1, the multiplicative order of a mod n is the
smallest power of a ≡ 1 mod n. So, the period of 1

n is the same as the order of 10 mod n.
We consider these points.

(3.2a) Euler’s Theorem: If p is a prime, then for some a the order of a is p− 1.
(3.2b) The order of a mod n is the period of 1

n expressed in the base a.
(3.2c) The order of 10 modulo a prime p varies with p.

There are many unsolved problems about why and how the period of 10 changes as n
changes. Notice that the period of 10 comes up in computing fractions because we do
decimals to the base 10. Computer science uses base 2, and base 8 (octal) and base 16
(hexadecimal), rather than base 10. For these different bases, the period of repetition for 1

n
would be different.
Problem 3.1 (A variant on base 10). Suppose n is odd. How would you phrase the period
of 1

n to base 16 so the answer would be similar to the expression in Prop. 2.1 for base 10?
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Problem 3.2 (Unsolved). So, possible periods for p are p − 1, or (p − 1)/2. Do these hold
for infinitely many primes p?

3.2. Minimal degree of a polynomial whose values are all divisible by m. Consider
the polynomial fm(x) = (x + 1)(x + 2) · · · (x + m).

(3.3a) It has leading coeffient relatively prime to m.
(3.3b) For every integer k, m divides fm(k).

3.3. A special problem using congruences. Let Ym be all polynomials f satisfying
(3.3a)) and (3.3b).

(3.4a) Suppose p is a prime. Find the smallest possible degree of a polynomial
in Yp that satisfies properties (3.3a) and (3.3b) with m = p.

(3.4b) Now do the same for m = p2. Hint: Guess at the right answer. Then, if
f satisfies (3.3b) (even if (3.3a) doesn’t hold) so does f(x + 1) − f(x).

(3.4c) Do as for part (3.4a) with m = 1, 000, 000.
(3.4d) Find the function F where F (m) is the minimal possible degree of a

polynomial in Ym for each m.

4. Quadratic equations

The easiest quadratic congruence is x2 ≡ 1 mod m. How many solutions does this have
under these conditions?

(4.1a) m = p is a prime.
(4.1b) m = ps is a prime power.
(4.1c) m =

∏∞
i=1 pei

i , an integer presented by the FTA.

Notice that if x2 ≡ y2 mod m, then m | (x − y)(x + y).

4.1. To solve (4.1c) use the Chinese Remainder Theorem. Suppose a1 and a2 are
any integers and m1 and m2 have no common divisor. Then, the equations x ≡ ai mod mi,
i = 1, 2 have some common solution x ∈ Z. We call these CRT equations.

4.2. Finding the Solution. Let m = m1m2. Find an xi satisfying these simultaneous
equations:

(4.2) x ≡ 1 mod mi and x ≡ 0 mod mj , j �= i.
Get xi by multiplying m/mi by an integer that is its inverse mod mi. Then, x = a1x1 +

a2x2 is a solution to the Chinese Remainder Theorem equations.

Theorem 4.1 (Wilson’s Factorial Theorem). If p is a prime, then (p − 1)! ≡ −1 mod p.

Further, (p − 1)! ≡ (−1)
p−1
2

∏ p−1
2

a=1 a2 mod p. So, x2 ≡ −1 mod p has a solution if and only
if p ≡ 1 mod 4.

4.3. Some quadratics don’t have solutions modulo p. Suppose p is a prime. Consider
x2 − a ≡ 0 mod p. Suppose x0 is an integer that gives a solution. Put both sides of the
equation x2

0 ≡ a mod p to the power p−1
2 . Conclude from FLT that a

p−1
1 ≡ 1 mod p.

Problem 4.2. Why must there be an a for which x2 − a ≡ 0 mod p has no solution mod
p? Hint: Modulo p there are at most n solutions to the equation P (x) ≡ 0 mod p if a P is a
polynomial of degree n. In particular, there are at most (p − 1)/2 solutions to the equation
x

p−1
2 − 1 ≡ 0 mod p.
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4.4. Fermat’s Sum of Squares Theorem. This subsection characterizes integers that are
sums of squares of integers. There are two results.

(4.3a) If p is a prime, then p = a2 + b2 for some a, b ∈ Z if and only if p = 2 or
p ≡ 1 mod 4.

(4.3b) Write any integer n as 2e1P+1(n)P−1(n) with P+1(n) (resp. P−1(n)) com-
posed from the primes dividing n with p ≡ 1 mod 4 (resp. p ≡ 3 mod 4).
Then n = a2 + b2 for some a, b ∈ Z if and only if P−1(n) is a square.

4.4.1. Show (4.3a) if p ≡ 1 mod 4. Choose k the unique integer with k <
√

p < k + 1. Find
1 ≤ α ≤ p − 1 so α2 ≡ −1 mod p. Consider

X = {x + yα | x, y ∈ Z, 0 ≤ x ≤ k, 0 ≤ y ≤ k}.

So, |X| > p. Apply the box principle. Thus, there are two integers in X with the same
residues modulo p. So, there exists x0, y0 ∈ Z with

x0 ≡ −y0α mod p, x2
0 + y2

0 < 2p, x2
0 + y2

0 ≡ 0 mod p.

4.4.2. An identity. Apply the following to 2e1P+1(n) to prove Fermat’s Theorem:

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

5. Abelian cryptography

First we use FLT to understand how to scramble data embedded in Z/p using the polyno-
mial xn for n odd and for infinitely many primes p. A polynomial that permutes the elements
of Z/p for infinitely many p is called an exceptional polynomial. The polynomials xn are the
easiest scrambling (or exceptional) polynomials. This will be an application of Dirichlet’s
famous theorem on primes in an arithmetic progression.

Then, we show why the Chebychev polynomials Tn also allow scrambling data in Z/p for
infinitely many primes p if n is not divisible by 2 or 3.

5.1. Finite fields of order p2. Suppose x2−a has no solution modulo p. Then, in the same
way you can form the complex numbers from the real numbers, you can find a quantity α so
that α2 − a = 0 mod p makes sense. We use the notation Fp2 for the collection of elements
u + vα, u, v ∈ Z/p. We notice that every element in Fp2 , except 0, has an inverse: Fp2 is a
field. Because it has p2 elements, we call it a finite field of order p2. Now assume p is odd.

Proposition 5.1 (FLT for Fp2). If u + vα �= 0, then (u + vα)p2−1 is 1 mod p. Hint: The
same proof as we used for Fermat’s Little Theorem works here.

Suppose a′ is another integer that is not a square mod p.

Corollary 5.2. Then, x2−a′ has a zero of the form u+vα mod p. So, any quadric equation
in the integers mod p has a solution in Fp2 .

Here is a hint for the proof of the corollary. Show there must be (p2−1)/2 nonzero elements

of Fp2 that aren’t squares in Fp2 , and they are the solutions of the equation x
p2−1

2 ≡ −1
mod p, just like we did it in Prop. 4.2. Then, notice that p − 1 divides p2−1

2 , so no element
of the integers mod p is a solution of this.



6 M. FRIED

5.2. Why the Chebychev polynomials are exceptional. Suppose p is a prime for which
p2 − 1 and n have no common divisor. We show that if u0, u1 ∈ Z/p, then Tn(u0) = Tn(u1),
then u0 = u1: Tn is a one-one map. To do this we consider some x0, x1 ∈ Fp2 so that
x0 + 1/x0 = u0 and x1 + 1/x1 = u1. Now apply formula (1.2):

Tn(x0 + 1/x0) = Tn(x1 + 1/x1) = xn
0 + 1/xn

0 = xn
1 + 1/xn

1 .

From this conclude that either xn
0 = xn

1 or xn
0 = 1/xn

1 . Apply FLT for Fp2 to see this implies,
either x0 = x1 or x0 = 1/x1 (and therefore x0 + 1/x0 = u0 = x1 + 1/x1 = u1). So, Tn is a
scrambling function.

5.3. Cryptography with Chebychev polynomials. Here are the ingredients we would
need to know to do Cryptography with the Chebychev polynomials.

(5.1a) If (n, 6) = 1, show there are infinitely many primes for which Tn is a
scrambling function modulo p. Hint: Use Dirichlet’s Theorem on primes
in an arithmetic progression.

(5.1b) For a given Tn that scrambles mod p, find a polynomial that decrypts
Tn(M) where M is our message written as an integer mod p. Hint: Try
Tn′ where nn′ ≡ 1 mod p2 − 1.

Conjecture 5.3 (Schur, 1919; Solved 1969). You get all exceptional (scrambling) polyno-
mials by composing cyclic and Chebychev polynomials.


