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These notes use groups (of rigid motions) to make the simplest possible analogies
between Euclidean, Spherical,Toroidal and hyperbolic geometry. We start with 3-
space figures that relate to the unit sphere. With spherical geometry, as we did with
Euclidean geometry, we use a group that preserves distances. The approach of these
notes uses the geometry of groups to show the relation between various geometries,
especially spherical and hyperbolic. It has been in the background of mathematics
since Klein’s Erlangen program in the late 1800s. I imagine Poincaré responded to
Klein by producing hyperbolic geometry in the style I’ve done here. Though the
group approach of these notes differs philosophically from that of [?], it owes much to
his discussion of spherical geometry. I borrowed the picture of a spherical triangle’s
area directly from there. I especially liked how Henle has stereographic projection
allow the magic multiplication of complex numbers to work for him. While one
doesn’t need the rotation group in 3-space to understand spherical geometry, I
used it gives a direct analogy between spherical and hyperbolic geometry.

It is the comparison of the four types of geometry that is ultimately most inter-
esting. A problem from my Problem Sheet has the name World Wallpaper. Map
making is a subject that has attracted many. In our day of Landsat photos that
cover the whole world in its great spherical presence, the still mysterious relation
between maps and the real thing should be an easy subject for the classroom.
The topic, why you can’t make World Wallpaper, says that Toroidal geometry
and Euclidean geometry are close, while Spherical geometry and Euclidean geom-
etry remain tantalizingly far apart. Projects related to and explainations of World
Wallpaper appear at the URL [Fr92].

The young students who attended this course had heard about Fermat’s Last
Theorem, though they didn’t remember its statement. Many had seen the PBS
broadcast. I took the occasion in my last lecture — surely more bewildering than
the others — to say a few words on the Shimura-Taniyama-Weil conjecture fitting
the topic of these lectures. They interpret as saying Q-toroidal geometries are all
given by those special hyperbolic geometries we call modular curves. So doing, I
gave the word given new meaning. Using the analogy as I did between spherical
and hyperbolic geometry had one goal. I wanted to introduce these young people
to the word group, through geometry; then turning through algebra, to show it as
the master creative tool it is. Combining rotations and translations in the plane,
through composition of each as functions on the points of the plane, contains ex-
traordinary lessons about combining algebra and geometry. Geometry pictures and
then overwhelms us, until algebra computes and gives proofs. One must wonder
that students never see examples of noncommutative groups until upper division
undergraduate courses. Wait! One needn’t wonder too much. Almost no courses
seriously combine algebra and geometry, though Lagrange in his famous Celestial
Mechanics book in the late 1700s tried to teach us to do just that.
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Many know it is impossible for me to speak with young people and not convey
the significance of Galois [Rig96]. He, modular curves, Goro Shimura and Gerhard
Frey all got into that last lecture (of eight). I should apologize to everyone and
everything of those mentioned, though at least one of them will forgive me; he too
tries hard to make mathematics include everything rightfully in its domain.

1. Making convex polyhedrons

First we make a sphere S2 (for simplicity of radius 1), and then we put down
n points P1, . . . , Pn on the sphere with no three lie on a line. So any three
{Pi1 , Pi2 , Pi3} have a unique plane Pi1,i2,i3 through them. Next step: Select collec-
tions of distinct triples {Pi1 , Pi2 , Pi3} from {P1, . . . , Pn} with these properties.

(a) The plane Pi1,i2,i3 has a side without points from {P1, . . . , Pn}.
(b) If for all {Pi1 , Pi2 , Pi3} you throw away the part of the sphere on the side

of Pi1,i2,i3 with no points, the surface of the result is a polyhedron S.
(c) Each Pj appears in the final figure.

The result S is a convex figure with n vertices, and for each face three edges and
for each edge two vertices. Further, each edge is on two faces.

Given two P1 and P2 on the sphere, if they are not antipodal (opposite ends
of a diameter), you can define the great circle through them by taking the unique
plane T through the origin, P1 and P2. (What would be wrong if P1 and P2 were
antipodal?). The great circle consists of the points of intersection of the sphere with
T . A straight line joining any two vertices lies under an arc along a great circle
on the sphere. So, any triangle in our polyhedron corresponds to a triangle on the
sphere made of arcs from great circles. Such a polyhedron gives a triangulation of
the sphere. This is a polyhedron with triangles as faces.
Question 1. If we choose the n points so no three lie on a line, is there a triangu-
lation using just those points?

Example: In the plane draw the unit circle. Put down vertices at 00, 1200 and
2400. Let R0, R120, R240 be the rays at each of the corresponding \ s: E = 9, F = 6
and V = 4, but we are missing something that would turn this into a polyhedron
on the sphere: The point at ∞. Adding it we get V = 5.

The Euler Characteristic of a polyhedron is F − E + V .
Question 2. Why is F − E + V always 2 for polyhedron?

Consider a filled connected graph in the plane: made from vertices and edges
(no two of which cross). Connected means all pairs of vertices are connected by a
path of edges. The edges partition the plane into connected regions, one of which
is unbounded. Think of the bounded regions as faces, and call the result filled. It
too has an Euler Characteristic made from its vertices, edges and faces.
Question 3. Why is F − E + V always 1 for a triangulated connected graph in
the plane? Hint: See the relation between graphs of k edges and graphs of k + 1
edges by removing one edge, but not its vertices.

What is the relation between Question 2 and Question 3? Suppose S is a polyhe-
dron whose vertices are on a sphere. Then, we make something we call a spherical
polyhedron, Ssph, from S by the following process: For each edge of S take the
corresponding arc of the great circle on the sphere. Use arcs of great circles in
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place of straight line segements; and use faces that these arcs bound. That gives
vertices, edges and faces for an Euler Characteristic for Ssph. Why is it also 2?

2. Platonic Solids

Platonic solids are convex polyhedron satisfying these two conditions:

(a) All faces are identical regular polygons; and
(b) the same number F0 of faces meet at each vertex.

Suppose F0 is the number of faces at a vertex. If the faces are triangles, then
the \ is 600, so you can only have F0 = 3, 4 or 5 or else it won’t be convex. This
gives the tetrahedron, octohedron and icosahedron.
Question 4. How can you count the vertices and edges from the Euler Characteris-
tic in each case? Hint: 3F/2 = E (use that the faces are triangles) and 3F/F0 = V
and F − E + V = 2. Example: 20 faces for an icosahedron.

If the faces are squares, then F0 = 3, and the result is a cube. If the faces are
pentagons, there are 3

5 ·π radians (for an n-gon that is n−2
n ·π) at each interior \. So

there are exactly three F0 = 3 faces at each vertex. This gives the dodecahedron.
How many faces does it have?
Definition 5 (Semiregular polyhera). A semiregular polyhedron is also convex,
its faces are regular polygons, and each vertex looks identical. We don’t, however,
assume all faces are the same regular polygon.

The hypo-truncated icosahedron (buckyball is the icosahedron with a shallow
area around each vertex cut off, so the former vertices are replaced by pentagons,
and each former triangle face is replaced by a hexagon.

You can describe the semiregular polyhedra by using the notation (n1, n2, . . . , nk)
with n1 ≤ n2 ≤ · · · ≤ nk indicates k faces are at each vertex, with the given number
of sides on each face.
Question 6. How many square faces are on a semiregular polyhedron represented
by (3, 4, 4, 4)?

3. Triangles and \ s on the sphere

We already have the notion of a triangle on the sphere. Call it a spherical
triangle. Let a and b be the sides meeting at a vertex C. To get a notion of the \
γ at a vertex of the triangle, consider the tangents Ta and Tb to the great circles
formed by the sides going through C. The two lines Ta and Tb meet in 3-space.
So, some plane contains them both. Call this Pa,b. The \ of their meeting is the \
at C. Notice we need the direction of the lines to define the \ between them. This
is a definition from using \ in 3-space!
Question 7. In the problem about World Wallpaper and Johnny B. Badde, if the
decorator could make world wallpaper, why would he be giving a function from a
plane to the sphere that is onto and continuous.
Question 8. Continue using Ta, Tb and Pa,b. Map the point that is a distance
of θ from C along Ta to the point that is a distance of θ radians along the great
circle Ga along a. Denote this function da : Ta → Ga. Similarly form the function
db : Tb → Gb. How can you fill this in with a function f from the whole plane Pa,b
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mapping to the sphere? Where does f map the circle on Pa,b around C that has
radius 2π? What does this have to do with World Wallpaper?

There is a different map f∗ from a plane P the sphere S2 called sterographic
projection. Let P be the plane passing through the equator of S2 (the locus where
z = 0 in (x, y, z)-space). Let C be the North Pole on S2. For any point (x, y, 0) ∈ P
draw the line Lx,y through C and (x, y, 0). Let f∗(x, y, 0) be the intersection of
Lx,y and S2.
Question 9. Why isn’t stereographic projection a solution to the problem of World
Wallpaper?

4. Distances on the sphere and the orthogonal group O3

Motions of 3-space (maps of 3-space to 3-space) that preserve distances form a
group: If you take two of them and compose them you get another one that also
preserves distances. This is the Galilean group in 3-space G3. This has a subgroup
of elements that fix the origin, called O3. In turn, this has a subgroup of motions
consisting of rotations around an axis through the origin. Call this set O+

3 (or
SO(3)).

It is not obvious that O+
3 is a group: If RLi,θi is rotation at an \ θi around the

(directed) line Li through the origin, i = 1, 2, what is RL1,θ1 ◦ RL2,θ2? The group
O3 also includesMx,y, reflection in the (x, y) plane (where z = 0). The group made
from compositions of Mx with elements of O+

3 is O3.
Notice: Suppose you have an arc along a great circle. Then some element of

O+
3 will take it to an arc along the equator. So, to measure distances along arcs

on the equator, we could declare that O+
3 is distance preserving. Then, this would

measure distances along any arc on any great circle. Does this sound silly? Yet,
that is exactly what happens in Hyperbolic geometry where there is no obvious way
to give a measure of distances along hyperbolic lines.

5. Geometry on a sphere

Suppose we declare great circles on the sphere to be the lines in our geometry.
Then, one of the first axioms of Euclidean geometry fails. There is not a unique
line containing any two distinct points.

5.1. Points in spherical geometry. To get rid of this, we change the definition
of points: A point in elliptic or spherical geometry is a pair of antipodal points on
the sphere. There is a unique line containing two distinct points if we lines are the
pairs of antipodal points on a great circle. Stereographic projection gives a picture
of elliptic points as being in a disc around the origin in the (x, y) plane.
Lemma 10. The 3 × 3 matrix Mx,y,z mapping each point on the sphere to its
antipodal point gives an element in O3. Further, M2

x,y,z acts like the identity:
Mx,y,z generates a group of order 2.

5.2. Use of complex numbers. Complex numbers appear in the next lemma.
By regarding (x, y) as a complex number x + iy, we retain that there is a first
and second coordinate. The conjugate of x+ iy is x− iy. That is like the phrase:
The conjugate of 1 + 2

√
2 is 1 − 2

√
2. The conjugate of x + iy is the point that

corresponds to flipping (x, y) in the x axis.
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Figure 1. Cutting the elliptic plane into triangles
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Suppose two lines L1 and L2 in the (x, y) plane have slope m1 and m2. Then,
you can test if they meet at a right angle by the formula m1m2 = −1. So, if you
know m1, then you also know m2 = −1/m1. The following formula works the same
way: Knowing x+ iy), solve for x′ + iy′ as the conjugate of −1/(x+ iy).

Lemma 11. Suppose a point (x, y) is a distance of at most 1 from the origin.
Let (x′, y′) be the point coming from the antipodal point on the sphere to (x, y).
Its distance from the origin is at least 1. Relate these two points by the following
formula: (x + iy)(x′ − iy′) = −1. Hint: Try it first with a point on the circle
bounding the unit disk.

Suppose a triangle ∆ABC has respective \ s α, β, γ as in Figure 1. A sphere of
radius 1 has area 4π. So the elliptic plane has area 2π (half of this, right!). Notice
the areas we can compute easily.

A sector on a sphere given by an \ α has area 4α on the sphere. So it has area
2α on the elliptic plane. The two areas in Figure 1 with the label ∆Q together give
one triangle on the elliptic plane with vertices A,B,C (the same vertices as has
∆ABC). The triangle ∆Q+ ∆P is called a 2-gon because it has two sides and only
one vertex, whose \ is α.

Lemma 12. The whole elliptic plane is ∆Q+ ∆R+ ∆S + ∆P :

(∆Q+ ∆P ) + (∆R+ ∆P ) + (∆S + ∆P ) − 2∆P.

So, the area of ∆P is α+ β + γ − π.

6. Geometry on a torus

Recall the lattice Γ2 of pairs (m,n) withm and n integers. As we made Spherical
Geometry, we now make Torioidal (Torus) Geometry. Instead of taking points in
2-space to be points, as in Euclidean geometry, for each point (x, y) in 2-space, take
Px,y to be the collection of points {(x, y) + (m,n) | (m,n) ∈ Γ2}. Example: If L
is a line in Euclidean space, then a corresponding line in toroidal space would be
PL = {Px,y|(x, y) ∈ L}.
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Question 13. In toroidal geometry we can ask about the Euler characteristic of a
toroidal polyhedron. Why must it be 0?

The figure of a donut in 3-space is like a torus — so people say. Do you agree?

Question 14. Look again at the problem World Wallpaper. Why is Johnny
B. Badde asking for a geometry on the sphere that comes from Euclidean geometry
like the geometry we just got on a torus?

7. Lessons from spherical geometry

In spherical geometry, points were pairs of antipodal points {P, P d} on the
sphere, and lines were the pairs of antipodal points moving along great circles
on a sphere. Distances along these great circles came from the distance in 3-space.
Given any arc along any great circle, some rotation would take the arc to any other
arc that went through exactly the same angle along that great circle.

We say this another way: O3 preserves distances between points on the sphere.
We switch this around now, and give a group first, acting on a space, then distances
by making them invariant under this group. This group is very famous, though it
has a funny notation, PSL2(R). The set of the geometry is not a plane or a sphere.
Rather, it is H = {x, y | y > 0}, called the upper half plane. We start by describing
distances along a special subset of H.

We draw pictures of spherical triangles as in Figure 1: These figures are in the
unit disk in the plane. This disk, which we call D, is the image by stereographic
projection of the southern hemisphere. Each spherical point {P, P d} creates a
unique point in this disk. Here are further thoughts motivating what is the group
PSL2(R). Denote the complex plane with the point at ∞ by C∞.

(a) Stereographic projection maps points on the sphere to C∞, and the map
is one-one and onto. Call this map f .

(b) A rotation R on the sphere should correspond to a map R∗ of C∞. The
rule: If P is on the sphere, then R∗(f(P )) should be f(R(P )).

(c) Stereograph projection maps a great circle on the sphere to a circle (or
straight line segment) in C∞.

(d) If {P, P d} is a pair of antipodal points on the sphere, and R is a rotation
of the sphere, then

{R∗(f(P )), R∗(P d)} = {f(R(P ))), f(R(P d))}.

Expression (d) says R∗ preserves antipodal pairs. Write x + iy as w (the typical
complex number). Use w̄ to mean its conjugate, and if w1 and w2 come from
antipodal points, then we know w1w̄2 = −1. Call w2 the antipodal to w1. Suppose
w is the point on the unit circle at a counterclockwise angle of θ. The notation for
this is eiθ. Let PSP be the south pole on the sphere.

Lemma 15. If Rθ is rotation around the north-south (z) axis on the sphere, then
R∗

θ consists of multiplication of w by eiθ, and it preserves antipodal points. Suppose
Uθ is rotation around the y-axis on the sphere. Then, U∗

θ maps the real line into
the real line. Suppose m1,m2 ∈ R and m1m2 = −1. Use that U∗

θ (m1)U∗
θ (m2) = −1

to see U∗
θ (w) = w−w0

w0w+1 with for some w0 ∈ R. How can you figure what is w0 and
its relation to the south pole?
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Let E be the group composed from {R∗
θ |θ ∈ R} and {U∗

θ |θ ∈ R}: the Elliptic
group. Then, E is the group of rigid motions of the figures in elliptic geometry
whose points are pairs of antipodal points in C∞.
Question 16. You can compose the maps R∗

α and U∗
β in either order. Rewrite

U∗
β ◦R∗

α as R∗
α ◦ U with U(w) = w−w′

w′′w+1 with w′, w′′ ∈ C. What are w′ and w′′?

8. The group PGL2(R) and hyperbolic geometry in H

Let R+ be the positive real numbers. We start by taking a distance along one
line in our new geometry, the line consisting of the complex numbers {iy|y ∈ R+}.

8.1. The ray from 0 to ∞ and distance along the iy axis. The usual distance
along the y axis between two values y1, y2 is |y1 − y2|. Suppose both values are
positive. What if we use | log(y1/y2)|? What is the distance from y = 1 to y = 0
along the y-axis? Now regard the y-axis as the set {iy|y ∈ R+}.

The group we take is an analog of that for elliptic geometry: PGL2(R)+ def=
{w �→ aw+b

cw+d |a, b, c, d ∈ R, ad − bc > 0. Here are some properties of PGL2(R)+.
This includes the special affine group A+ = {w �→ aw + b|a > 0, b ∈ R}. By our
definition, for a > 0, iay1, iay2 are the same distance apart as are iy1, iy2. By
declaring A+ distance preserving, we know how to compute distances along any
line perpendicular to the iy-axis. Just translate it by some b ∈ R to the iy-axis and
compute the distances of the image points.

Let sC be the collection of half circles, whose points (except the endpoints) are
in H and are perpendicular to the x-axis. Include also translates of the iy-axis.

(a) ad − bc �= 0 means exactly that w �→ aw+b
cw+d is one-one. What does

ad− bc > 0 guarantee addition for H under the map?
(b) Every pair of points in H is on a half circle in the upper half plane with

endpoints on the x-axis.
(c) Compositions of A+ with the map w �→ −1

w include everything in PGL2(R).
Call this last map τ(w). Why the minus sign?

(d) Any g ∈ PGL2(R) takes the iy axis to another element of C. Hint: A+

maps elements of C to other elements of C. So, it only requires the same
is true of τ(w). This is easy to see for any half circle around the origin;
leaving only to do the same for a translate of the unit half circle.

(e) For c ∈ C, there is gc ∈ PGL2(R) that takes c to the iy-axis.
Question 17. Why is PGL2(R)+ for the upper half plane like E for the elliptic
plane? Hint: The elements of E preserve the relation between antipodal points,
in this form. For w1, w2 ∈ C∞, w1w̄2 = −1, then g(w1) ¯g(w1) = −1 (Lem. 15).
Replace w1w̄2 = −1 with the relation w1 − w̄2 = 0.

8.2. Hyperbolic lines and distances along points on them. The elements of
sC are the lines in hyperbolic geometry. Suppose c ∈ C, and w0 ∈ H is not on c.
Many lines through w0 don’t meet c. So, the parallel postulate doesn’t hold.
Definition 18. For w1, w2 two points in H, let cw1,w2 = c be the element of C going
through them. The hyperbolic distance between w1 and w2 is | log(gc(w1)/gc(w2))|.

Call PGL2(R) the isometry group for the hyperbolic geometry. To get toroidal
geometry we took any subgroup H of Γ2 and made the points of the new geometry
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to be the collection of translates of the points of the plane. The exact analog is to
take any subgroup H of the following subgroup of PGL2(R):

PSL2(Z) def=
{
w �→ mw + n

uw + v
|m,n, u, v ∈ Z, mv − nu = 1

}
.

Call the resulting set HH . As with elliptic geometry, we take collections of points as
the points of our new geometry. Each point in HH is a collection Pw

def= {h(w)|h ∈
H} for some w ∈ H. Call this an H point. Line segments in this space are the H
points as w moves along an arc of a half circle in C. Compute distances along arcs
joining points using the distance of Def. 18. These spaces for various subgroups H
are probably the most important spaces in mathematics.

8.3. What H s give the spaces in the proof of Fermat’s Last Theorem?
Mathematicians call those spaces modular curves. Here is how to describe the main
examples. Let p be a prime. Take H to be

Γ0(p)
def=

{
w �→ mw + n

uw + v
|m,n, u, v ∈ Z, mv − nu = 1, p divides u

}
.

Opps! I haven’t told you why they appear in Fermat’s Last Theorem. Here
is a phrasing using our discussion on geometries. Gerhard Frey, of the Institut of
Experimental Mathetics in Essen, Germany, proposed that if Fermat’s Last The-
orem were false it would produce a Q-toroidal geometry – called an elliptic curve
over the rational numbers Q – that would not be a possible toroidal geometry type
predicted by a famous theorem of Mathematics called the Shimura-Taniyama-Weil
Conjecture. This says that every Q-toroidal geometry comes from a modular curve
(a very special hyperbolic geometry). When you know where things come from,
it usually gives basic information about them. Modular curves have those primes
attached to them. A number — called the conductor — attached to the toriodal
geometry had to reflect the way those primes appear. Frey guessed, and Ken Ri-
bet proved, that the toroidal geometry that violated Fermat’s Last Theorem had a
conductor that also violated the Shimura-Taniyama-Weil Conjecture.

Ken Ribet at Berkeley showed that Frey’s inspired guess was correct. Andrew
Wiles proved the Shimura-Taniyama-Weil Conjecture. That, however, is another
story about how Number Theorists would interpret the hyperbolic geometries that
we call modular curves.
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