FINAL EXAM, SATURDAY, MAY 4, 2019, 4:30-7PM LINEAR ALGEBRA 180 TOTAL POINTS

Use the following notion:

- $\mathbb{M}_{m, n}$ for the matrices with m rows and n columns.
- $0_{m, n}$ is $m \times n$ zero matrix; I_{n}, the $n \times n$ identity matrix.
- $\left\langle\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{k}\right\rangle$ for the span of the vectors $\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{k}$.
- For $\mathcal{B}=\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{n}$ a basis of $\mathbb{R}^{n}, A_{\mathcal{B}}$ for the matrix of $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ relative to that basis.
- Remember, an eigenvector $\overrightarrow{\boldsymbol{x}}$ for a linear transformation refers to the space spanned by $\overrightarrow{\boldsymbol{x}}$. So, one eigenvector means a dimension 1 space.

If matrix appears in a question on its eigenvalues, assume its eigenvalues are real. Use the following results from class. Refer to them by the labels used below.
C_{1} Any linear transformation $T: V \rightarrow V$ has at least one eigenvector.
C_{2} If $A \in \mathbb{M}_{m, n}$ then its row reduced echelon form can be written as $D \cdot A$ with $D \in \mathbb{M}_{m, m}$ invertible.

Question 1: Finding an invariant subspace: $\quad \mathbf{P t s}$ 35: Suppose A_{1} is a 3×3 matrix, and A_{2} is a 2×2 matrix and consider $A=\left(\begin{array}{cc}A_{1} & 0_{3,2} \\ 0_{2,3} & A_{2}\end{array}\right)$.
(1.a) Pts 10: Explicitly give spanning vectors for a dimension 3 subspace V_{1} and a dimension 2 subspace V_{2} of \mathbb{R}^{5}, both invariant under $A .^{1}$

Answer: For V_{1} take $\overrightarrow{\boldsymbol{e}}_{1}, \overrightarrow{\boldsymbol{e}}_{2}, \overrightarrow{\boldsymbol{e}}_{3}$. Since A applied to each of these gives the first 3 columns of A. each of which is in the space $\left\langle\overrightarrow{\boldsymbol{e}}_{1}, \overrightarrow{\boldsymbol{e}}_{2}, \overrightarrow{\boldsymbol{e}}_{3}\right\rangle$, the range of A is in V_{1}. Similarly, for $V_{2}=\left\langle\overrightarrow{\boldsymbol{e}}_{4} . \vec{e}_{5}\right\rangle$ since A applied to these gives the 4 th and 5 th columns of A, both of which are in V_{2}.
(1.b) Pts 15: Suppose P is the invertible matrix $\left(\overrightarrow{\boldsymbol{e}}_{4}\left|\overrightarrow{\boldsymbol{e}}_{2}\right| \overrightarrow{\boldsymbol{e}}_{5}\left|\overrightarrow{\boldsymbol{e}}_{3}\right| \overrightarrow{\boldsymbol{e}}_{1}\right)$. Now answer question 1.a) for $P A P^{-1}$. Show why this is correct.

Answer: Take $\overrightarrow{\boldsymbol{p}}_{i}, i=1,2,3$, to be the first three columns of P, and let $V_{1}^{\prime}=\left\langle P\left(\overrightarrow{\boldsymbol{e}}_{i}\right)=\overrightarrow{\boldsymbol{p}}_{i}, i=1,2,3\right\rangle$. Then, $P A P^{-1}\left(P\left(\overrightarrow{\boldsymbol{e}}_{i}\right)\right)=P\left(A\left(\overrightarrow{\boldsymbol{e}}_{i}\right)\right)$. Now each $A\left(\overrightarrow{\boldsymbol{e}}_{i}\right)$ is a linear combination of $\overrightarrow{\boldsymbol{e}}_{1}, \ldots, \overrightarrow{\boldsymbol{e}}_{3}$, and so P applied to each is a linear combination of $\overrightarrow{\boldsymbol{p}}_{1}, \ldots, \overrightarrow{\boldsymbol{p}}_{3}$ and so is in V_{1}^{\prime}. Similarly, take V_{2}^{\prime} to be the space spanned by $\overrightarrow{\boldsymbol{p}}_{i}, i=4,5$, the 4 th and 5 th columns of P.
(1.c) Pts 10: Why must A (no matter what are A_{1} and A_{2}) have at least two eigenvectors? ${ }^{2}$

Answer: The matrix A acting on $V_{i}, i=1,2$ has at least one eigenvector from C_{1}. So A has at least two eigenvectors.

[^0]Question 2: Row reduced form: Pts 25: Suppose $A \in \mathbb{M}_{3, n}$ is in reduced form with $\overrightarrow{\boldsymbol{e}}_{1}$ in the 1 st column, $\overrightarrow{\boldsymbol{e}}_{2}$ in the 3 rd column and $\overrightarrow{\boldsymbol{e}}_{3}$ in the 5 th column.
(2.a) Pts 10: Give a matrix $D \in \mathbb{M}_{n, 3}$ that is independent of any other information about A, such that $A \cdot D=I_{3}$.

Answer: Take $D=\left(\overrightarrow{\boldsymbol{e}}_{1}\left|\vec{e}_{3}\right| \overrightarrow{\boldsymbol{e}}_{5}\right)$.
(2.b)

Pts 15: Suppose A^{\prime} is any matrix whose row reduced echelon form equals A. Show there is a matrix $D^{\prime} \in \mathbb{M}_{n, 3}$ such that $A^{\prime} \cdot D^{\prime}=I_{3} .{ }^{3}$

Answer: From $\mathrm{C}_{2}, A^{\prime}=D^{*} A$ with invertible 3×3 matrix D^{*}. Multiply both sides by D from 2.a) on the right. Get $D^{*} A D=D^{*} I_{3}=D^{*}$. Multiply both sides of this by $\left(D^{*}\right)^{-1}$ on the right. The result is

$$
\left(D^{*} A\right)\left(D \cdot\left(D^{*}\right)^{-1}\right)=A^{\prime}\left(D \cdot\left(D^{*}\right)^{-1}\right)=I_{3} .
$$

Question 3: The matrix condition $B^{2}=B$: $\quad \mathbf{P t s}$ 30: In this problem B is a square, $n \times n$, symmetric matrix satisfying $B^{2}=B$. Denote its range by R_{B}.
(3.a) Pts 10: If \boldsymbol{x} is an eigenvector for B, what is the attached eigenvalue if it is not 0 ?

Answer: $B(\boldsymbol{x})=\lambda \boldsymbol{x}$ implies $B^{2}(\boldsymbol{x})=\lambda^{2} \boldsymbol{x}=B(\boldsymbol{x})=\lambda \boldsymbol{x}$. So, $\lambda=1$.
Pts 10: If $\overrightarrow{\boldsymbol{y}} \in \mathbb{R}^{n}$, why is $B(\overrightarrow{\boldsymbol{y}})$ perpendicular to $\overrightarrow{\boldsymbol{y}}^{*} \stackrel{\text { def }}{=} \overrightarrow{\boldsymbol{y}}-B(\overrightarrow{\boldsymbol{y}})$?
Answer: Notice that $\left.B(\overrightarrow{\boldsymbol{y}}-B(\overrightarrow{\boldsymbol{y}}))=B(\overrightarrow{\boldsymbol{y}})-B^{2}(\overrightarrow{\boldsymbol{y}})\right)=\overrightarrow{\mathbf{0}}$. Therefore $\overrightarrow{\boldsymbol{y}}^{\prime}$ is in the null space of B. While $B(\overrightarrow{\boldsymbol{y}})$ is in the range, R_{B}, of B. Since $B=B^{T}$, the null space of B is perpendicular to the columns of B, which give the range of B. Therefore, $\overrightarrow{\boldsymbol{y}}^{*}$ is perpendicular to $B(\overrightarrow{\boldsymbol{y}})$.
(3.c) Pts 10: For any subspace $V \subset \mathbb{R}^{n}$ define

$$
V^{\perp} \stackrel{\text { def }}{=}\left\{\overrightarrow{\boldsymbol{w}} \in \mathbb{R}^{n}|\overrightarrow{\boldsymbol{w}} \cdot \overrightarrow{\boldsymbol{v}}=0| \text { for each } \overrightarrow{\boldsymbol{v}} \in V\right\}
$$

Why is any $\overrightarrow{\boldsymbol{y}} \in \mathbb{R}^{n}$ the sum of a vector in R_{B} and a vector in R_{B}^{\perp} ?
Answer: From 3.b), write $\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{y}}^{*}+B(\overrightarrow{\boldsymbol{y}})$. The 1st term is in R_{B}^{\perp} from 3.b) and the second is in R_{B}.

Question 4: Null space of a matrix: Pts 35: Consider

$$
A_{1}=\left(\begin{array}{llllll}
1 & 3 & 0 & 2 & 0 & 4 \\
0 & 0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \in \mathbb{M}_{4,6}
$$

(4.a) Pts 10: Give three vectors in \mathbb{R}_{6} that span the null space of A_{1}.

[^1]Answer: The null space of A_{1} is

$$
\begin{gather*}
\left\{\left.\left(\begin{array}{c}
-3 u_{2}-2 u_{4}-4 u_{6} \\
u_{2} \\
-u_{4}-2 u_{6} \\
u_{4} \\
-3 u_{6} \\
u_{6}
\end{array}\right) \right\rvert\, u_{2}, u_{4}, u_{6} \in \mathbb{R}\right\} \text { or the span of } \\
\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{c}
-2 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{c}
-4 \\
0 \\
-2 \\
0 \\
-3 \\
1
\end{array}\right) \tag{4.b}
\end{gather*}
$$

Pts 10: Suppose the null space of a matrix $A_{2} \in \mathbb{M}_{4,6}$ equals the nullspace of A_{1}. Consider

$$
\mathcal{N}_{A_{1}}=\left\{S_{L} \cdot A_{1} \mid S_{L} \in \mathbb{M}_{4,4} \text { and invertible }\right\}
$$

Show A_{2} is in $\mathcal{N}_{A_{1}}$ by finding S_{L} with $S_{L} \cdot A_{1} \in \mathcal{N}_{A_{1}}$ equal to $A_{2} .{ }^{4}$
Answer: The nullspace of A_{2} is the same as the nullspace of $A_{2, \text { red }}=$ $S_{1} \cdot A_{2}$, with S_{1} an invertible matrix in $\mathbb{M}_{4,4}$. We have only to choose S_{L} invertible, so that

$$
S_{L}\left(\overrightarrow{\boldsymbol{e}}_{1}\right)=\overrightarrow{\boldsymbol{a}}_{1}, S_{L}\left(\overrightarrow{\boldsymbol{e}}_{2}\right)=\overrightarrow{\boldsymbol{a}}_{2}, S_{L}\left(\overrightarrow{\boldsymbol{e}}_{3}\right)=\overrightarrow{\boldsymbol{a}}_{3}
$$

are the first 3 columns of A_{2}. For the 4 th column of S_{L} take any vector $\overrightarrow{\boldsymbol{a}}_{4}$ that is not in the span of $\overrightarrow{\boldsymbol{a}}_{1}, \overrightarrow{\boldsymbol{a}}_{2}, \overrightarrow{\boldsymbol{a}}_{3}$ so that S_{L} is invertible.

Pts 10: Answer these two questions about other choices of S_{L}.

- Pts 5: Why does the choice of the 4th column of S_{L} not affect the result of $S_{L} \cdot A_{1}$?

Answer: The result of dotting column vectors of A_{1} into each of row of S_{L} doesn't depend on what is in the 4 th column of S_{L} because there is a 0 in every entry of the 4 th row of A_{1}.

Pts 10: How would you change your answer to (4.b) about columns of S_{L} if you were to consider matrices A_{2} whose null space contains the null space of A_{1} using $\mathcal{N}_{A_{1}}^{*}=\left\{S_{L}^{*} \cdot A \mid S_{L} \in \mathbb{M}_{4,4}\right\}$.

Answer: No matter what you choose for S_{L}^{*}, the null space of S_{L}^{*}. $A_{1}=A_{2}$ contains the null space of A_{1}. But if the first three columns of S_{L}^{*} are not linearly independent, then the nullspace of A_{2} would be bigger than the null space of A_{1}. The change would be: $\mathcal{N}_{A_{1}}^{*}$ consists of the matrices in $\mathbb{M}_{4,6}$ whose nullspace contains the nullspace of A_{1}.

Question 5: Upper triangular matrices: \quad Pts 35: Suppose for $A \in \mathbb{M}_{4,4}$ there is a basis $\mathcal{B}=\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{4}$ for which $A_{\mathcal{B}}$ is upper triangular.

[^2](5.a) Pts 20: Show for each $k, 1 \leq k \leq 4$, the range of A restricted to $V_{k}=\left\langle\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{k}\right\rangle$ is contained in V_{k}.

Answer:

$$
\text { Write } A_{\mathcal{B}} \text { as }\left(\begin{array}{cccc}
a_{1} & a_{1,2} & a_{1,3} & a_{1,4} \\
0 & a_{2} & a_{2,3} & a_{2,4} \\
0 & 0 & a_{3} & a_{3,4} \\
0 & 0 & 0 & a_{4}
\end{array}\right)
$$

For each k the range of $A_{\mathcal{B}}$ is the range of the first k columns of $A_{\mathcal{B}}$. The 1 st column is $a_{1} \vec{e}_{1}$, the 2 nd column is $a_{1,2} \overrightarrow{\boldsymbol{e}}_{1}+a_{2} \overrightarrow{\boldsymbol{e}}_{2}$, and the two of them are in V_{2}^{\prime}; the 3rd column is $a_{1,3} \overrightarrow{\boldsymbol{e}}_{1}+a_{2,3} \overrightarrow{\boldsymbol{e}}_{2}+a_{3} \overrightarrow{\boldsymbol{e}}_{3}$ which is in V_{3}^{\prime}.

Now consider A where $A=P A_{\mathcal{B}} P^{-1}$ with $P\left(\overrightarrow{\boldsymbol{x}}_{i}\right)=\overrightarrow{\boldsymbol{e}_{i}}$. Then,

$$
\begin{gathered}
A\left(\overrightarrow{\boldsymbol{x}}_{i}\right)=P A_{\mathcal{B}}\left(\overrightarrow{\boldsymbol{e}}_{i}\right)=\text { the linear combination of the } \overrightarrow{\boldsymbol{x}}_{i} \mathrm{~s} \\
\text { obtained by substituting } \overrightarrow{\boldsymbol{x}} \text { for } \overrightarrow{\boldsymbol{e}} \text { as above. }
\end{gathered}
$$

The final statement then is that A applied to V_{k} is in V_{k} by substituting $\overrightarrow{\boldsymbol{x}}$ for $\overrightarrow{\boldsymbol{e}}$ in the statement that $A_{\mathcal{B}}$ maps V_{k}^{\prime} into V_{k}^{\prime}.

Pts 15: Suppose there is another basis $\mathcal{B}^{\prime}=\overrightarrow{\boldsymbol{v}}_{1}^{\prime}, \ldots, \overrightarrow{\boldsymbol{v}}_{4}^{\prime}$ of \mathbb{R}^{4} for which A restricted to $V_{k}^{\prime}=\left\langle\overrightarrow{\boldsymbol{v}}_{1}^{\prime}, \ldots, \overrightarrow{\boldsymbol{v}}_{k}^{\prime}\right\rangle$ is contained in V_{k}^{\prime}. Show that $A_{\mathcal{B}^{\prime}}$ is upper triangular.

Answer: If $A\left(\overrightarrow{\boldsymbol{v}}_{k}^{\prime}\right) \in V_{k}^{\prime}$, then

$$
A\left(\overrightarrow{\boldsymbol{v}}_{k}^{\prime}\right)=a_{k, 1} \overrightarrow{\boldsymbol{v}}_{1}^{\prime}+a_{k, 2} \overrightarrow{\boldsymbol{v}}_{2}^{\prime}+\cdots+a_{k, k} \overrightarrow{\boldsymbol{v}}_{k}^{\prime}
$$

So, the k th column of $A_{\mathcal{B}}$ has only 0 s below the diagonal (k, k) entry. Since this is true for every column of $A_{\mathcal{B}}$, the matrix is upper triangular.

Question 6: Non-conjugate matrices: Pts 30: Consider the matrix

$$
A^{\prime}=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda & 1 & 0 & 0 \\
0 & 0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right)
$$

(6.a) Pts 10: Why does A^{\prime} have exactly one eigenvector?

Answer: First note that $\overrightarrow{\boldsymbol{e}}_{1}$ is an eigenvector of A^{\prime} with eigenvalue λ since it is an eigenvector of $N_{\lambda}=A-\lambda I_{6}$ with eigenvalue $0: A^{\prime}\left(\overrightarrow{\boldsymbol{e}}_{1}\right)=\lambda \overrightarrow{\boldsymbol{e}}_{1}$.

[^3]Now try a general $\overrightarrow{\boldsymbol{x}}$ to see if it could be another eigenvector of N_{λ} with eigenvalue 0 .

$$
N_{\lambda}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
0
\end{array}\right) ; \text { but this is supposed to be } \overrightarrow{\mathbf{0}}
$$

So, $x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=0$. The only nonzero vector possible $\overrightarrow{\boldsymbol{x}}=x_{1} \overrightarrow{\boldsymbol{e}}_{1}$ with $x_{1} \neq 0$, the same eigenvector as in 6.a).

Pts 20: Consider a matrix $A \in \mathbb{M}_{6,6}$ and $\mathcal{B}=\overrightarrow{\boldsymbol{v}}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{6}$ is a basis of \mathbb{R}^{6}. Now assume, $A_{1} \in \mathbb{M}_{k_{1}, k_{1}}, 1 \leq k_{1} \leq 6$, and $A_{2} \in \mathbb{M}_{6-k_{1}, 6-k_{1}}$ and $A_{\mathcal{B}}$ is block diagonal with A_{1} and A_{2} its blocks along the diagonal. Why is there no invertible matrix P such that $A^{\prime}=P A_{\mathcal{B}} P^{-1} ?^{6}$

Answer: Each block, $A_{i}, i=1,2$, gives $A_{\mathcal{B}}$ an eigenvector with eigenvalue λ_{i}, according to Prob. 1.c), $\overrightarrow{\boldsymbol{x}}_{1}$ and $\overrightarrow{\boldsymbol{x}}_{2}$. Since P is invertible, P maps $\overrightarrow{\boldsymbol{x}}_{i}$ to $\overrightarrow{\boldsymbol{y}}_{i}, i=1,2$. The result is two distinct eigenvectors. Since

$$
P A_{\mathcal{B}} P^{-1}\left(\overrightarrow{\boldsymbol{y}}_{i}\right)=P A_{\mathcal{B}}\left(\overrightarrow{\boldsymbol{x}}_{i}\right)=P\left(\lambda_{i} \overrightarrow{\boldsymbol{x}}_{i}\right)=\lambda_{i} \overrightarrow{\boldsymbol{y}}_{i}, i=1,2 .
$$

Therefore, $P A_{\mathcal{B}} P^{-1}$ has two eigenvectors. But from 6.a), A^{\prime} has only one eigenvector: a contradiction.

[^4]
[^0]: ${ }^{1}$ Hint: Your answer should not depend specifically on either A_{1} or A_{2}.
 ${ }^{2}$ Hint: Use C_{1}.

[^1]: ${ }^{3}$ Hint: use result C_{2}.

[^2]: ${ }^{4}$ Hint: Use spanning vectors of the range of A_{2} to give columns of S_{L}.

[^3]: ${ }^{5}$ Hint: First show why the statement is true for $A_{\mathcal{B}}$ with $V_{k}^{\prime}=\left\langle\overrightarrow{\boldsymbol{e}}_{1}, \ldots, \overrightarrow{\boldsymbol{e}}_{k}\right\rangle$ in place of V_{k}.

[^4]: ${ }^{6}$ Hint: Do proof by contradiction by assuming they are conjugate, and apply the conclusion of Prob. 1.c) whether you answered it or not.

