FINAL EXAM, SATURDAY, MAY 4, 2019, 4:30–7PM LINEAR ALGEBRA 180 TOTAL POINTS

Use the following notion:

- $\mathbb{M}_{m,n}$ for the matrices with *m* rows and *n* columns.
- $0_{m,n}$ is $m \times n$ zero matrix; I_n , the $n \times n$ identity matrix.
- $\langle \vec{v}_1, \ldots, \vec{v}_k \rangle$ for the span of the vectors $\vec{v}_1, \ldots, \vec{v}_k$.
- For $\mathcal{B} = \vec{v}_1, \dots, \vec{v}_n$ a basis of \mathbb{R}^n , $A_{\mathcal{B}}$ for the matrix of $A : \mathbb{R}^n \to \mathbb{R}^n$ relative to that basis.
- Remember, an eigenvector \vec{x} for a linear transformation refers to the space spanned by \vec{x} . So, one eigenvector means a dimension 1 space.

If matrix appears in a question on its eigenvalues, assume its eigenvalues are real. Use the following results from class. Refer to them by the labels used below.

- C_1 Any linear transformation $T: V \to V$ has at least one eigenvector.
- C₂ If $A \in \mathbb{M}_{m,n}$ then its row reduced echelon form can be written as $D \cdot A$ with $D \in \mathbb{M}_{m,m}$ invertible.

Question 1: Finding an invariant subspace: Pts 35: Suppose A_1 is a 3×3 matrix, and A_2 is a 2×2 matrix and consider $A = \begin{pmatrix} A_1 & 0_{3,2} \\ 0_{2,3} & A_2 \end{pmatrix}$.

(1.a) **Pts 10:** Explicitly give spanning vectors for a dimension 3 subspace V_1 and a dimension 2 subspace V_2 of \mathbb{R}^5 , both invariant under A.¹

Answer: For V_1 take $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Since A applied to each of these gives the first 3 columns of A. each of which is in the space $\langle \vec{e}_1, \vec{e}_2, \vec{e}_3 \rangle$, the range of A is in V_1 . Similarly, for $V_2 = \langle \vec{e}_4, \vec{e}_5 \rangle$ since A applied to these gives the 4th and 5th columns of A, both of which are in V_2 .

(1.b) **Pts 15:** Suppose *P* is the invertible matrix $(\vec{e}_4 | \vec{e}_2 | \vec{e}_5 | \vec{e}_3 | \vec{e}_1)$. Now answer question 1.a) for PAP^{-1} . Show why this is correct.

Answer: Take \vec{p}_i , i = 1, 2, 3, to be the first three columns of P, and let $V'_1 = \langle P(\vec{e}_i) = \vec{p}_i, i = 1, 2, 3 \rangle$. Then, $PAP^{-1}(P(\vec{e}_i)) = P(A(\vec{e}_i))$. Now each $A(\vec{e}_i)$ is a linear combination of $\vec{e}_1, \ldots, \vec{e}_3$, and so P applied to each is a linear combination of $\vec{p}_1, \ldots, \vec{p}_3$ and so is in V'_1 . Similarly, take V'_2 to be the space spanned by \vec{p}_i , i = 4, 5, the 4th and 5th columns of P.

(1.c) **Pts 10:** Why must A (no matter what are A_1 and A_2) have at least two eigenvectors? ²

Answer: The matrix A acting on V_i , i = 1, 2 has at least one eigenvector from C₁. So A has at least two eigenvectors.

¹Hint: Your answer should not depend specifically on either A_1 or A_2 . ²Hint: Use C₁.

LINEAR ALGEBRA

Question 2: Row reduced form: Pts 25: Suppose $A \in M_{3,n}$ is in reduced form with \vec{e}_1 in the 1st column, \vec{e}_2 in the 3rd column and \vec{e}_3 in the 5th column.

(2.a) **Pts 10:** Give a matrix $D \in \mathbb{M}_{n,3}$ that is independent of any other information about A, such that $A \cdot D = I_3$.

Answer: Take $D = (\vec{e}_1 | \vec{e}_3 | \vec{e}_5)$.

(2.b) **Pts 15:** Suppose A' is any matrix whose row reduced echelon form equals A. Show there is a matrix $D' \in \mathbb{M}_{n,3}$ such that $A' \cdot D' = I_3$.³

Answer: From C₂, $A' = D^*A$ with invertible 3×3 matrix D^* . Multiply both sides by D from 2.a) on the right. Get $D^*AD = D^*I_3 = D^*$. Multiply both sides of this by $(D^*)^{-1}$ on the right. The result is

$$(D^*A)(D \cdot (D^*)^{-1}) = A'(D \cdot (D^*)^{-1}) = I_3.$$

Question 3: The matrix condition $B^2 = B$: **Pts 30:** In this problem *B* is a square, $n \times n$, symmetric matrix satisfying $B^2 = B$. Denote its range by R_B .

(3.a) **Pts 10:** If \boldsymbol{x} is an eigenvector for B, what is the attached eigenvalue if it is not 0?

(3.b) **Answer:** $B(\boldsymbol{x}) = \lambda \boldsymbol{x}$ implies $B^2(\boldsymbol{x}) = \lambda^2 \boldsymbol{x} = B(\boldsymbol{x}) = \lambda \boldsymbol{x}$. So, $\lambda = 1$. (3.b) **Pts 10:** If $\boldsymbol{\vec{y}} \in \mathbb{R}^n$, why is $B(\boldsymbol{\vec{y}})$ perpendicular to $\boldsymbol{\vec{y}}^* \stackrel{\text{def}}{=} \boldsymbol{\vec{y}} - B(\boldsymbol{\vec{y}})$?

Answer: Notice that $B(\vec{y} - B(\vec{y})) = B(\vec{y}) - B^2(\vec{y})) = \vec{0}$. Therefore \vec{y}' is in the null space of *B*. While $B(\vec{y})$ is in the range, R_B , of *B*. Since $B = B^T$, the null space of *B* is perpendicular to the columns of *B*, which give the range of *B*. Therefore, \vec{y}^* is perpendicular to $B(\vec{y})$.

(3.c) **Pts 10:** For any subspace $V \subset \mathbb{R}^n$ define

$$V^{\perp} \stackrel{\text{def}}{=} \{ \vec{\boldsymbol{w}} \in \mathbb{R}^n \mid \vec{\boldsymbol{w}} \cdot \vec{\boldsymbol{v}} = 0 \mid \text{ for each } \vec{\boldsymbol{v}} \in V \}.$$

Why is any $\vec{y} \in \mathbb{R}^n$ the sum of a vector in R_B and a vector in R_B^{\perp} ?

Answer: From 3.b), write $\vec{y} = \vec{y}^* + B(\vec{y})$. The 1st term is in R_B^{\perp} from 3.b) and the second is in R_B .

Question 4: Null space of a matrix: Pts 35: Consider

$$A_1 = \begin{pmatrix} 1 & 3 & 0 & 2 & 0 & 4 \\ 0 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{M}_{4,6}$$

(4.a) **Pts 10:** Give three vectors in \mathbb{R}_6 that span the null space of A_1 .

³Hint: use result C_2 .

Answer: The null space of A_1 is

$$\left\{ \begin{pmatrix} -3u_2 - 2u_4 - 4u_6 \\ u_2 \\ -u_4 - 2u_6 \\ u_4 \\ -3u_6 \\ u_6 \end{pmatrix} \mid u_2, u_4, u_6 \in \mathbb{R} \right\} \text{ or the span of}$$
$$\vec{v}_1 = \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -4 \\ 0 \\ -2 \\ 0 \\ -3 \\ 1 \end{pmatrix}.$$

(4.b) **Pts 10:** Suppose the null space of a matrix $A_2 \in \mathbb{M}_{4,6}$ equals the nullspace of A_1 . Consider

$$\mathcal{N}_{A_1} = \{ S_L \cdot A_1 \mid S_L \in \mathbb{M}_{4,4} \text{ and invertible} \}.$$

Show A_2 is in \mathcal{N}_{A_1} by finding S_L with $S_L \cdot A_1 \in \mathcal{N}_{A_1}$ equal to A_2 .⁴

Answer: The nullspace of A_2 is the same as the nullspace of $A_{2,\text{red}} = S_1 \cdot A_2$, with S_1 an invertible matrix in $\mathbb{M}_{4,4}$. We have only to choose S_L invertible, so that

$$S_L(\vec{e}_1) = \vec{a}_1, S_L(\vec{e}_2) = \vec{a}_2, S_L(\vec{e}_3) = \vec{a}_3$$

are the first 3 columns of A_2 . For the 4th column of S_L take any vector \vec{a}_4 that is not in the span of $\vec{a}_1, \vec{a}_2, \vec{a}_3$ so that S_L is invertible.

(4.c) **Pts 10:** Answer these two questions about other choices of S_L .

- **Pts 5:** Why does the choice of the 4th column of S_L not affect the result of $S_L \cdot A_1$?

Answer: The result of dotting column vectors of A_1 into each of row of S_L doesn't depend on what is in the 4th column of S_L because there is a 0 in every entry of the 4th row of A_1 .

- **Pts 10:** How would you change your answer to (4.b) about columns of S_L if you were to consider matrices A_2 whose null space contains the null space of A_1 using $\mathcal{N}_{A_1}^* = \{S_L^* \cdot A \mid S_L \in \mathbb{M}_{4,4}\}.$

Answer: No matter what you choose for S_L^* , the null space of $S_L^* cdot A_1 = A_2$ contains the null space of A_1 . But if the first three columns of S_L^* are not linearly independent, then the nullspace of A_2 would be bigger than the null space of A_1 . The change would be: $\mathcal{N}_{A_1}^*$ consists of the matrices in $\mathbb{M}_{4,6}$ whose nullspace contains the nullspace of A_1 .

Question 5: Upper triangular matrices: Pts 35: Suppose for $A \in \mathbb{M}_{4,4}$ there is a basis $\mathcal{B} = \vec{v}_1, \ldots, \vec{v}_4$ for which $A_{\mathcal{B}}$ is upper triangular.

⁴Hint: Use spanning vectors of the range of A_2 to give columns of S_L .

(5.a) **Pts 20:** Show for each $k, 1 \leq k \leq 4$, the range of A restricted to $V_k = \langle \vec{v}_1, \ldots, \vec{v}_k \rangle$ is contained in V_k .⁵

Answer:

4

Write $A_{\mathcal{B}}$ as	(a_1)	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$
	0	a_2	$a_{2,3}$	$a_{2,4}$
	0	0	a_3	$a_{3,4}$
	0	0	0	a_4

For each k the range of $A_{\mathcal{B}}$ is the range of the first k columns of $A_{\mathcal{B}}$. The 1st column is $a_1\vec{e}_1$, the 2nd column is $a_{1,2}\vec{e}_1 + a_2\vec{e}_2$, and the two of them are in V'_2 ; the 3rd column is $a_{1,3}\vec{e}_1 + a_{2,3}\vec{e}_2 + a_3\vec{e}_3$ which is in V'_3 . Now consider A where $A = PA_{\mathcal{B}}P^{-1}$ with $P(\vec{x}_i) = \vec{e}_i$. Then,

 $A(\vec{x}_i) = PA_{\mathcal{B}}(\vec{e}_i) =$ the linear combination of the \vec{x}_i s obtained by substituting \vec{x} for \vec{e} as above.

The final statement then is that A applied to V_k is in V_k by substituting \vec{x} for \vec{e} in the statement that $A_{\mathcal{B}}$ maps V'_k into V'_k .

(5.b) **Pts 15:** Suppose there is another basis $\mathcal{B}' = \vec{v}'_1, \ldots, \vec{v}'_4$ of \mathbb{R}^4 for which A restricted to $V'_k = \langle \vec{v}'_1, \ldots, \vec{v}'_k \rangle$ is contained in V'_k . Show that $A_{\mathcal{B}'}$ is upper triangular.

Answer: If $A(\vec{v}'_k) \in V'_k$, then

$$A(\vec{\boldsymbol{v}}_k) = a_{k,1}\vec{\boldsymbol{v}}_1' + a_{k,2}\vec{\boldsymbol{v}}_2' + \dots + a_{k,k}\vec{\boldsymbol{v}}_k'.$$

So, the kth column of $A_{\mathcal{B}}$ has only 0s below the diagonal (k, k) entry. Since this is true for every column of $A_{\mathcal{B}}$, the matrix is upper triangular.

Question 6: Non-conjugate matrices: Pts 30: Consider the matrix

$$A' = \begin{pmatrix} \lambda & 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 & 0 \\ 0 & 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & 0 & \lambda \end{pmatrix}.$$

(6.a) **Pts 10:** Why does A' have exactly one eigenvector?

Answer: First note that \vec{e}_1 is an eigenvector of A' with eigenvalue λ since it is an eigenvector of $N_{\lambda} = A - \lambda I_6$ with eigenvalue 0: $A'(\vec{e}_1) = \lambda \vec{e}_1$.

⁵Hint: First show why the statement is true for $A_{\mathcal{B}}$ with $V'_k = \langle \vec{e}_1, \ldots, \vec{e}_k \rangle$ in place of V_k .

Now try a general \vec{x} to see if it could be another eigenvector of N_{λ} with eigenvalue 0.

$$N_{\lambda} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ 0 \end{pmatrix}; \text{ but this is supposed to be } \vec{\mathbf{0}}.$$

So, $x_2 = x_3 = x_4 = x_5 = x_6 = 0$. The only nonzero vector possible $\vec{x} = x_1 \vec{e}_1$ with $x_1 \neq 0$, the same eigenvector as in 6.a).

(6.b) **Pts 20:** Consider a matrix $A \in \mathbb{M}_{6,6}$ and $\mathcal{B} = \vec{v}_1, \ldots, \vec{v}_6$ is a basis of \mathbb{R}^6 . Now assume, $A_1 \in \mathbb{M}_{k_1,k_1}$, $1 \leq k_1 \leq 6$, and $A_2 \in \mathbb{M}_{6-k_1,6-k_1}$ and $A_{\mathcal{B}}$ is block diagonal with A_1 and A_2 its blocks along the diagonal. Why is there *no* invertible matrix P such that $A' = PA_{\mathcal{B}}P^{-1}$?

Answer: Each block, A_i , i = 1, 2, gives A_B an eigenvector with eigenvalue λ_i , according to Prob. 1.c), \vec{x}_1 and \vec{x}_2 . Since *P* is invertible, *P* maps \vec{x}_i to \vec{y}_i , i = 1, 2. The result is two distinct eigenvectors. Since

$$PA_{\mathcal{B}}P^{-1}(\vec{\boldsymbol{y}}_i) = PA_{\mathcal{B}}(\vec{\boldsymbol{x}}_i) = P(\lambda_i \vec{\boldsymbol{x}}_i) = \lambda_i \vec{\boldsymbol{y}}_i, i = 1, 2.$$

Therefore, $PA_{\mathcal{B}}P^{-1}$ has two eigenvectors. But from 6.a), A' has only one eigenvector: a contradiction.

 $^{^{6}}$ Hint: Do proof by contradiction by assuming they are conjugate, and apply the conclusion of Prob. 1.c) whether you answered it or not.