MIDTERM EXAM, LINEAR ALGEBRA FEBRUARY 27, 2019

Question 1: Range of a matrix: Pts 20: Consider the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

(1.a) **Pts 10:** Find a vector \vec{b} for which $A(\vec{x}) = \vec{b}$ has no solution.

Answer: $\vec{e}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ is *not* in the span of the columns of A.

(1.b) **Pts 10:** Why are the columns of A linearly independent?

Answer: If we row reduce A we get $(\vec{e}_1|\vec{e}_2|\vec{e}_3)$. Those are linearly independent, and if D is the invertible matrix whose left multiplication gives these row reductions, then as we have seen several times, the columns of D^{-1} , $D^{-1}(\vec{e}_1)$, $D^{-1}(\vec{e}_2)$ and $D^{-1}(\vec{e}_3)$ must also be linearly independent. You can also directly use the definition of linear independence.

Question 2: Transpose of a matrix: Pts 20:

(2.a) **Pts 10:** Find the null space of the transpose, A^T , of A in Prob. 1.

Answer: The null space of a matrix B is the same as that of its reduced matrix, B_{red} . The reduced matrix of A^T is $(\vec{e}_1|\vec{e}_2|\vec{e}_3|\vec{0})$. So, the null space is the span of \vec{e}_4 .

(2.b) **Pts 10:** A matrix B is symmetric if $B = B^T$. For any matrix A, why does multiplying A times A^T make sense, and why is AA^T symmetric?

Answer: If A is $m \times n$, then A^T is an $n \times m$ matrix. We have the formula $(AA^T)^T = (A^T)^T A^T$. But if you apply transpose twice to a matrix, you get the original matrix back. So, this is AA^T .

Question 3: A linear transformation: Pts 20: Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation for which

$$T\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}2\\3\end{pmatrix} \text{ and } T\begin{pmatrix}-1\\0\\-1\end{pmatrix}=\begin{pmatrix}3\\2\end{pmatrix}. \text{ What must } T\begin{pmatrix}1\\2\\1\end{pmatrix} \text{ be}?^1$$

¹Hint: Write
$$\begin{pmatrix} 1\\2\\1 \end{pmatrix}$$
 as a linear combination of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\0\\-1 \end{pmatrix}$.

Answer: Applying T to both sides of $2\begin{pmatrix}1\\1\\1\end{pmatrix}+\begin{pmatrix}-1\\0\\-1\end{pmatrix}=\begin{pmatrix}1\\2\\1\end{pmatrix}$ gives

$$2T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + T \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \end{pmatrix}.$$

Question 4: Commuting and noncommuting matrices **Pts 30:** Assume A and B are 4×4 matrices. Use these definitions: the diagonal entries of A are those in the (i,i) positions, i=1,2,3,4. The trace of A is the sum of the diagonal positions, and A is a diagonal matrix if all the nondiagonal positions are 0.

(4.a) **Pts 20:** If A is a diagonal matrix, with all of the diagonal positions different and nonzero, what are the matrices B that commute with A. ²

Answer: Consider the (i,j), for $i \neq j$, term in both products. The (i,j) term in AB is $\sum_k a_{i,k} b_{k,j}$ where $a_{i,k} = 0$, unless k = i. So the term is $a_{i,i}b_{i,j}$. Similarly, the (i,j) term in BA is $b_{i,j}a_{j,j}$. But these should be equal. Since $a_{i,i} \neq a_{j,j}$, then $b_{i,j} = 0$: B is also a diagonal matrix.

(4.b) **Pts 10:** Use without proof that the trace of AB equals the trace of BA. Consider the matrix AB - BA = C. Show that no matter what matrix A is, you cannot get all 4×4 matrices C by varying B.³

Answer: The trace of AB - BA is [trace of AB] - [trace of BA]. Since they are equal applying trace to AB - BA is 0. If there is a B for which $C = I_4$, then the trace of C would be 4. This is a contradiction.

Question 5: The geometry of the space of solutions: **Pts 30:** Suppose, for a 5×4 matrix A, the null space of A is spanned by a single (nonzero) vector \boldsymbol{v} .

(5.a) **Pts 15:** Assume $A(\vec{x}) = \vec{b}$ has a solution. Why is the set of solutions of this equation a line in \mathbb{R}^4 ?

Answer: Since \vec{b} is in the range of A, there is $\vec{b}' \in \mathbb{R}^4$ with $A(\vec{b}') = \vec{b}$. Then, $L = \{uv + \vec{b}' \mid u \in \mathbb{R}\}$ is the set of solutions of $A(\vec{x}) = \vec{b}$.

. The set L is the parametric form of a line.

(5.b) **Pts 15:** What are if and only if conditions on A that guarantee (5.a) holds for any \vec{b} in the range of A?

Answer: The null space of A has dimension 1 if and only if the range of A is of dimension 4-1=3 since the dimensions of the null space and the range add to 4. The dimension of the null space is the number of nonpivotal columns. Therefore A has exactly one nonpivotal column.

²Hint: Look at the term in the (i,j) position in AB and in BA. They should be equal if A and B commute.

³Hint: Consider whether there is B for which $C = I_4$.