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A NOTE ON AUTOMORPHISM GROUPS
OF ALGEBRAIC NUMBER FIELDS

M. FRIED!

ABSTRACT. For any finite group G the paper gives an explicit and simple construc-
tion of (not necessarily Galois) algebraic extensions of Q having their full automor-
phism group equal to G.

Intrigued by both the result and the last name of one of the authors, we
inspected the contents of [EFrK]. In there it is shown that, for any finite group G,
there is a (not necessarily Galois) extension L of Q such that the full automorphism
group of the extension L/Q is G. This is, of course, a weakened form of the
celebrated Hilbert-Noether conjecture that every group can be realized as a Galois
group over Q. In this note, we make further comment on the nature of the
construction of the field L; simplify the proof of the existence of L; and correct
one of the lemmas of [EFrK]. We have been uncompromisingly “generic” in our
approach in order to keep technique at a minimum, and also to reveal the many
alternatives for the construction of L.

First assume that G is contained in S,. Let #,, . . ., 1, be algebraically indepen-
dent indeterminates over Q. It is well known that the splitting field M® of
x" 4+t -x""' 4 - - 41 over Q(ty, ..., 1) = Qt) is a regular Galois extension
of Q(t) with group equal to S,. This is the starting observation of [Hi]: the
progenitor of so many notes in the style of this one. Let M be the fixed field of G
in M®, and let a(G, t) be a primitive generator of MY over Q(t).

Let N be any integer greater than 2 and let z, . . ., z, be algebraically indepen-
dent indeterminates over Q(t). Finally, let B(G, t) be a zero of x¥ + z,- x¥~!
+ - +zy_,-x + a(G, t) - z. Now consider the field

L = MO(B(G, t), z) = MP(B(G, 1), z) - MO(z).
Then L®?/ MY (B(G, t), z) is a Galois extension with group
G(L™?/MP(B(G. 1), 2)) = G(M;(2)/ M{P(z) N ME(B(G, 1), 2))
= G(M%(2)/ MP(2)) = G,

our original group.
Suppose that ¢ is any automorphism of L*®/Q(t, z). If o leaves M®(z) fixed,
then B(G, t)° is another zero of x™ + z;x¥ "' + ... 42z, x + (G, t) - z,. This
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implies that B(G, t)° = B(G, t) since the splitting field of this polynomial over
M®(z) is S,. Now suppose that ¢ does nor fix M{(z). Then B(G, t) goes to a root
B(G, t)° of x¥ + z,- x¥ '+ - -+ +a(G, t)° - zy. Our next lemma shows that

B(G, t)° & L“® for each such o. (1)

With (1) established, L®? is a regular extension of Q(t, z) (its Galois closure over
Q(t, z) is regular over Q(t, z) also) for which the automorphisms of L®?/Q(t, z)
give the group G.

LEMMA. Let z,, . . ., zy (with N > 1) be algebraically independent indeterminates
over a field M of characteristic zero. Let a,, a, € M be distinct nonzero elements, and
let B; be a zero of

xV+zp-xV '+ ooz x4 azy, i=12 (2)
Then the fields M(z, B,) and M(z, B,) are distinct.

Proor. Suppose that M(z, B,) = M(z, B,). Consider the field L =
M(zy,...,zy_,), so that M(z, B,) = L(zy, B), i = 1,2. Let L be an algebraic
closure of L, so that L(zy, 8,) = l—,(zN, B,) by assumption. The finite branch points
of the field extension L(zy, B8,/ L(z,y) with respect to the variable z,, consist of the
values (in L) of z, for which

NxV=1T4+ (N=1)-z;-x¥ 24+ -+ +z,_,=0 (3)

€€ 9

and equation (2) for “/” have a common solution in x. Since z,, ..., zy_, are
algebraically independent over M, these branch points are algebraically indepen-
dent over M. However, these branch points are determined by the field extension,
so the two sets of branch points corresponding to i = 1 and 2 are the same. If

Wy, ..., wy_,; are the zeros of Nx¥ '+ (N — 1z;-xV 2+ .- 4z, , =0,
then —f(w)/a,j=1,..., N — 1, runs over the branch points corresponding to i,
where f(x) = x"+ z,-x¥ '+ ... +zy_,-x. Thus multiplication by a,/a,

maps the branch points corresponding to i = 1 to the branch points corresponding
to i = 2. This contradicts the algebraic independence of these branch points over

M. O
Finally we prove the main theorem of the paper.

THEOREM. Given any finite group G, we can explicitly find an infinite number of
field extensions L/Q such that the automorphism group of L /Q is isomorphic to G.

PrOOF. Let L&? /Q(t, z) be the Galois closure of the field extension L®? /Q(t, z).
The automorphism group of L®®/Q(t,z) can be recovered as the quotient
N/G(L®?/L®) where N is the normalizer of G(L®?/L®?) in G(L*?/Q(t, z)).
From Hilbert’s irreducibility theorem there are infinitely many specializations
(ty, 2)) € Z" X Z" of (t, z) for which we obtain distinct field extensions L= and
L% % over Q with

G(L%*/Q) = G(L*?/Q(t, 2))
and
G( I (toz0) / L) ~ G( L&D /L&),
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Thus we deduce that the automorphism group of L% /Q is isomorphic to G.
From the explicit form of Hilbert’s irreducibility theorem in [MFr], we may find
arithmetic progressions P and P® in Z" and Z", respectively, such that this holds
for (ty, z) € P® x PO. O

The authors of [EFrK] base their proof on the result that there exists a finite
undirected graph having neither loops nor isolated points whose automorphism
group is G [Fru]. There is a correctable, but significant, error in the proof of their
Lemma 2. Let L be a number field, R the ring of integers. If f, .. ., f,, € R[x] are
monic polynomials that are not pth powers for some prime p, then there exists t € Z
such that f(t) is not a pth power in L, i =1,...,t The authors conclude that
yP — f(x) =0 is not a genus zero curve, and they apply Siegel’s theorem to
conclude that there are only finitely many integral points. First of all, such a use of
Siegel’s theorem would make their field construction completely ineffective (which
it should not be), and secondly (for a trivial counterexample) take m = 1, p = 2,
fi(x) = x* to get a genus zero curve. However, this can be corrected by using
Hilbert’s irreducibility theorem as in the proof of the theorem above. Let g“)(x, y),

j=1,...,m(), run over the irreducible factors of y? — f(x). By hypothesis,

gP(x, y) is of degree greater than 1 in y. By Hilbert’s theorem there exists t € Z

such that gY(¢, y) remains irreducible over Q forj =1,...,m@);i=1,.. .,
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