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STABLE EXTENSIONS AND FIELDS WITIH THE
GLOBAL DENSITY PROPERTY

MICHAEL FRIED AND MOSHE JARDEN

Introduction. For a field M we denote by M, and M respectively the
separable closure and the algebraic closure of M. If V is a varicty which is
defined over A, then we denote by V(A1) the set of all M-rational points of V.
M is said to be pseudo-algcbraically closed (PAC) field, if V(M) = 0 for every
non-void abstract variety V defined over M. It can be shown that then V()
is dense in V(M) in the Zariski M-topology.

Suppose now that A is equipped with an absolute value w. M s said to have
the density property with respect to w, il V(M) is w-dense in V(A,) for cvery
abstract variety 17 defined over M. llere M, is the completion of A with
respect to w.

et K be a fickl and let 9 (K,/K) be the Galois group of K, over K. Let e be
a fixed positive integer and equip Z(K,/K)* with the normalized Ilaar
muasure u. For every (¢) € G (K,/K)® we denote by K, (0) the fixed field of
o5, .., 0. The lollowing theorem was proved in {3].

If K is a denumerable hilbertian field and of w 1is an absolute value of K, then
K (8) has the density property with respect to w for almost all (8) € G (K,/K)°.

The aim of this work is to strengthen this result as follows:

1f K is a denumerable hilbertian field and if v is an absolute value of K, then
K () has the density property with respect to cvery extension w of v to K for almost
all 8. In particular, if K is « plobal field, then for almost all (8) € ¥ (K,/K)*,
K (8) has the density property with respect to every absolute value w of K. (One can
say that these K (¢) have the global density property).

Thus we have solved Problem 2 of [3] affirmatively. In order to prove the
theorem we show that every I’AC held M has the following property:

For every finitely gencrated regular extension Fof K of dimension r there exists u
separating transcendence buse by, . . ., t, such that the Galois closure, I, of F/M(t)
15 regulur over K.

This we prove in two sleps, first for r = | by using the Riemann-Roch
theorent and then by reducing the case r 2 1 to the case r = | and using the
theory of simple points.

The authors wish Lo acknowledye their indebtedness to I’ Roquette for
Lemmas 3.1 and 3.2,

Received August 20, 1075,
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1. Stable extenstons. By the Galots closure of a separable algebraic field
extension FIF we mean the smallest extension I ol 77 which js Galois over [,

A finitely generated regular field extension [/ K of dimension r is said to be
stoble, if it has a separating transcendence base £, ... ¢, such thar the Galots
closure £ ol the (separable) extension F/K (1) is regular over K. The system
ty, ..., 4, is said o be a stabilizing base for F/K.

Note that il £, ..., 1, is a separating transcendence base for /K, then a
necessary and suflicient condition for ¢, ... f, to stabilize F/K is that
GP/K()) = Z(F - K({t)/K(t)). This lollows, since F/K is regular il and
only il fis lincarly disjoint from K over K.

A ficld K is said o be stable, il every finitely generated regular extension I
of K is stable.

An abstract variety Vs said to be stable over v field K, if 17 is definerl over K
and if the function field of V is stable over K.

One sces immcediately that the stability of a variety over a lield is preserved
under birational transformations. Further, if an abstyact variety 17 is stable
over a ficld K, then it is stable over every algebraic extension of K,

An absolutely irreducible polynomial £ ¢ KTy, ..., 1T, X] is said to he
stable over K with respect to Ty, ..., 1T, 103{/9X # 0 and il there exist elements
By, ooy, xosuch that: () f(t,x) =0, Gi) 4y, ..., ¢t are algebraically inde-
pendent over K and (iii) 1y, . . ., 4, is a stabilizing hase for K (¢, x)|K.

The most common example of a stable polynomial is that of (he general
polynomial, h(l', X) = X" 4- T/ X'+ ... + 1,, of degree n. It is well
known that the Galojs group 7 (h(t, X), K(t)), of k(t, X) over K(t) is iso-
morphic to the symmetric group S, for every ficld K (c.f. Lang [8], p. 201)).
Hence f s stable over K with respect Lo T4, ..., 7', over every held K.

Note that it is possible that a polynomial is stable with respeet (o one systen
of variables hut not with respect to another. Thus, for an odd prime £, X¥ — 1
is stable with respect 1o X over Q but not with respect to 7.

Note also that questions concerning the stability of abstract varietics can he
expressed as questions concerning the stability of absolutely irreducibie poly-
nomials, since every abstract variety is bhirationally equivalent to a hyper-
surface.

Featma VoL Let M be analgebraic extensionof a field K, et f ¢ M| Ty, ..., 1, Y]
be an absolutely irreducible polynomial which is stable over M with respect to
T ..., 1. Then there exists a finite extenston L of K which contains the co-
efficients of f and is contained tn M such thut f 1s stable over L wilh respect lo
... T,

Proof. Let ty, . .., 1, beralgebraically independent elements over Af and et x
he an element such that f(t, x) = 0. Then M (t, x) is a separable extension of
M), Let AT be the Galois closure of M (t, x)/A1(t). Then there exists an
clement y € A such that AT = M(t,3). Let g ¢ M1, 1] he an irreducible



770 ML FRIED AND M, JARDEN

polynomial snch thar g{t, y) = 0 and let y = y,, ..., yqa be all the roots of
g(t, V). Then x and yi, ...,y can be expressed as polynomials in vy wilh
coclhicients ¢(€) in A/ (6). Extend K by adjoining to it alt the elemenits of Af
appearing in the ¢(t) and all the coclficients of £ and g. Call this extension L.
Then Lis a finite extension of K which is contained in A, Write L = L.(t, v).
Then x, ¥, ..., va € Loand hence Lis the splitting field of g(t, V) over L(t),
lence it is also Galois over L(t). Morcover, L s linearly disjoint from A7(t)
over L.{t), since g(t, V) is cectainly wwreducible over £(t). It follows that Lis
the Galois closure of £.(t, x)/L(t), since any intermediate field L.(t, x) < L' C L
which is Galois over L{t) gives rise 1o a Galois extension A7' = A - L of A[(t)
such that A1(t, x) < M C M.

Now L isalso lincarly disjoint from Mover Land M = A £ is, by assump-
tion, lincarly disjoint from K over A Tlence L is linearly disjoint from K
over L. Thus L{t, x) is a stable extension of L,

1 Zasa hilbertian ficld and [ ¢ LTy, ..., 1, X]is an absolutely irreducibie
stable polynomial over L. with respect to T, then one can construct, by induc-
ton, a sequence (a,), (a.), (), ... of r-tuples of L such that the scquence
T, gy Ly, oo ool the splitting Gelds over £ of f(a,, X), f(a,, X), f(as, X), ...
(respectively) is linearly disjoint over L. This is the crucial property ol the
stable polynonnials and we shall use it later in an application to approximation
theory. But first we have to worry about getling sufliciently many stable
polynomials. Uhis is done by proving that every £AC ficld A is stable. The
above hilheroan fickd L will be obtained fromy 3 by using Lemma 1.

A sufficient condition for a scparating transcendence base (o he a stabilizing
base is given by the following fenmae

Foearva 120 Let 1y, ...t be a separating transcendence buse of « finilely
generaled regular extension /K, let n = | F: K()] and denote by F the Galots
closure of F/K (). If G (F - K/R(E)) is isomorphic to the symmctric group S,,
thenw fy, ... L, stubilizes F/K, and hence F/K s stable.

Proof. By Galois theory
GF-K/R)) =G/ FNEQ)).
Hence
nt=[F: FONER)) 2 [F: K] = a
stince [17: K()] = n. 1t {oltows that £ VK (€) = K(t) and hence
G(f - K/RU)) =9 (F/K (1)),
Lo dy oot i acstahilizing basis for £7/KA(t).
2. Function field of one variable. The thcory of divisors of function ficlds

ol one variable makes it possible to realize the conditions of Lemma 1.2 and
thus to constenct stabde extensions.
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Lissa 2.0, Let Lbe an algebratcally closed field let i be a transcendental clement
over L, let 1o be a separable extension of L1y of prime degree ) and let IS be iis
Galois closure. Suppose thal there exislis a privie divisor 2 of L)/, which
deconiposes i J¢ as

p= R4 B 4 27,
where By, .o R are distinet prime divisors of 15/1.. Then :(//(fi/],(l)) >~ S,
Proof. Write G = G (/T (1)) and I = G/, and let & = [ollls C G

De the set of all lelt cosets of I in G. The order of 2 is obvioustv 1. Note that
Gy = |1 ¢ GlseH = oIf for all ¢ € G} is a normal subgroup of ¢ which is
contained in IT. Its fixed field Fy is normal over L) and contains 17, henee
Ey = L. 1t Tollows that Gy = 1 or, in other words, G acts faithfully on . We
can thercfore consider G as a subgroup of the group S(Z) of all permutations
of Z. Choose now, forevery 1 £ ¢ <1 — 2, anextension Qof R, 1o Land ler Q
he anextension of B to & Then Qyis conjugate to Qover L{1), i.e. there exists o
o€ Gsuch that Vi = R I forV 4,7 =1 — 2,0]1 = o, 01, thena |15 = o)),
hence P, = B, hence 1 = 5. Tt Tollows that o771, ..., o ofl ave ]l — 2 distinct
clemenis of Z. Let o/ and o,H he the remaining two.

Our assumption that 1. is algebraically closed Ieads to the conclusion that
1) = [r ¢ GIQ = Qland I(Q,) = [+ € GClQy = Q) are the inerti groups
of Qand Q7 =1, .., — 2respectively. The Ryare, by assumption, untami-
ficd over L(1), hence the inertia ficlds of Q contain E, which means that
Q) C Hiord = t,..., I —2.0n theother hand Qs certainly ramificd over
L(t). Thercfore thereexistsar € T(Q) such that » 4 1. lorevery 1 €151 — 2
we have oy roy € 1( ), hence ro 01 = o J1. Tt follows that ra I = ¢ JJ1 and
10,01 = o401, i.e. 7 is a transposition. In addition, the order of G is a multiple
of 1, hence, by Sylow's theorem, G contains an element p of order I, which is
necessarily acycle of tength 7. T follows that G mnsi coincide with S(Z), since
obvionsly G acts transitively on £ (c.f. van der Waerden [10, p. 201]).

Tanma 2.2, Let Fhe a function field of one variahle with genns g over an infinite
field of constants K. Let vy, .. ., v, be prime divisors of I'/K and lel ay, .. ., a, be
posttive intepers such that

n

(1) 2. audegn > 3z — 2.

=1

Then there exists an x € 1" whase pole diwisor (x)., 15 cqual to 3\ yap, and
hence |19 K(x)] = Yleracdeg vy

Proof. Write a = Y vapand ay = a —p; for j =1, ..., The sct
L) = |x € Fl(x) = —a} is a finite dimensional K-vector space ((x) is the
divisor of ). We denote its dimension by dima. By (1) wehavedega > 2p — 2.
Hence, by the Riemann-Roch theorem

(2) dima =dega4 L — g
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If deg oy > 2g — 2, then by the Riemann-Roch theorem and by (2)
dima; = dega —degp, 1 — g < dima.
I deg a, £ 2¢ — 2, then by the Riemann-Roch theorem, by (2) and by (1)

dimay = dega; + 1 — g -- dim{c — ay)
20 -2+ 1 —p+ g <dima,

i

A

where ¢ is a ¢canonical divisor, since
dim(e — ;) 2 dime =g

(c.f. Lang [6, p. 241]). Thus in both cases we have din a; < dim a, henee % (a))
is properly contained in Z(a) for j = 1, ..., n It follows that \Jj-;.% (a;)
is also properly contained in % (a), since K is infinite. Every x € .4 (a) —
W% a7 €a)) will satisly the requirements of the lemuma (c.f. Lang [6 p. 237]).

Tovoresm 2.3, Let &7 be a function field of one variable over an infinile ficld of
constants K. If IFhuas a prime divisor Wof degree 1, then I'/ K 1s a stabie extension.

Proof. Let g be the genus of K, et p = char(K) and choose a prime [ such
that

3y 1 >3 and prYI(l —2)

By Lemma 2.2 there exists an s € F such that (s), = ({ — 2)P and
[/ K(5)] =1 — 2, since deg B = 1. There are inhnitely many prime divisors
ofl N (s)/K of degree 1, since K is infinite. By (3), #is a finite separable exten-
sion of K(s), hence we can find a prime divisor g of degree 1 of K(5)/K which is
unramificd in Fand such that il ..., Q,are the distinct prime divisors of I
which lie over g, then their residue fields Q1 (F are separable over K = qK (s)
(c.f. Chevalley (2, p. 72]). Furthermore we have 270, deg 1y =1 — 2 (cd.
(2, p. 02]).

Consider now the divisor ¥ = Q4 ... 4 Q,, -+ 2B, s degree lis, by (3),
greater than 3¢ — 2.0 Henee, by Lemma 2.2 there exists a ¢ € I such that
)., = Aand | I K()] =L

Extend the hickd of constants from K to K and write E = £ - F. I'hen
(£ KDY = 1F: K()] = 1, since Fislinearly disjoint from K over K. llence
E/K (1) is scparable. Denote by £ the Galois closure of E/K (1), 1f Q is any
prime divisor of £/K such that Q17 is a separable extension of K, then there
exists exactly deg 1 = | Q17 K| distinct prime divisors of 12/ K which lic over Q
(c.f. ]2 p. 95]). tn particular exactly one prime divisor, B', of E/K lies over
and exactly [ — 2 prime divisors, B/, ..., B¢, of E/K lic over Qo ..y Qo
1t follows that the pole divisor (£) . of Lin K (1), which is a prime divisor there,
factorsin £as (1), = B 1 ... 4 Booo’ + 2. By Lenmna 2.1 G (L/R (1)) = S,

Hence, by Lemma 1.2, 1 is a stable extension of K.
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3. Function fields of several variables. In thissection we apply Theorem 2.3

to develop a certain condition under which a finitely generated regular extension
I'/K is stable.

Lusnma 3.4, Let F/K be an arbitrary field extension. If I° has a K-rational
K-place ¢, then 1" 1s u regular extension of K.

Proof. Extend ¢ to a K-place of K - I and denote this place also by . Then
the restriction of ¢ to K is an isomorphism {c.f.: Lang {6, p. 8]). Consider now

clements ay, . .., a0, of K which are lincarly independent over K. Then
e(m), ..., p(1,) arc also linearly independent over K. Assume that they
become lincarly dependent over F, i.e. that there exists xy, ..., x, € 7, not all

zero, such that
(1Y x4 ... b 2, = 0.

Tt is known that for one of the x s, say xy, all the quotients x,/x, j = 1, ... n,
arc finite under ¢ and hence the ¢(x,/xy) belong to K. In particular xy #4 0.
IFrom (1) we therefore get that

elan) + ele/x)elar) + ..o+ elva/x)e(n,) =0,
which is a contradiction. It lollows that K is linearly disjoint from I over K.

By a nodel of a finitely generated regular ficld-extension I/ we mcan an
absolutely irreducible affine variety 17 defined over K, the function field ol
which is F.

Lumma 3.2. Let F/K be a finitely generated vegular field extenston of dinmension
r 2 1. Suppose that

") F/K has a model V with a K-rational simple point P.

Then:

a) there exists an intermediote field K < L C I such that L/K is a frurely
transcendental extension of dimensionry — Vand F/L is a regudar extension which
has a prime divisor v of degree 1;

b) 1if K ts an tnfinite ficld, then F is a stable extension of K.

Proof. a) The local ring R of P in IFis vegular. 'T'his means that its maximal
ideal AT is generated by 7 elements, say sy, .. ., 5, (e.f. Lang |6, p. 201]). R can
he imbedded into the ring of formal power series R = Kllsi, ..., 5]l R has a
discrete valuation v which can be described as follows: Fach element [ @ R ean
be written in o unique way as f = fo 4+ f1 -+ fo -+ ..., where [y is a homoge-
nous polynomial in sy, ..., s, of degree 1. The value, v(f), of v at { is the
smallest integer n such that f, # 0 (c.f. Zariski-Saumuel [12, p. 130]). This
valuation can he restricted to R and then extended in the usual way to the
quotient held Fol R, where it keeps the same notation ». The ring R is certainly
contained in (hut prohably not identical with) the valuation ring S ol 2 in F,
Let V Lie the maximal ideal of S and let ¢ he the K-place of Finto FF = S/N
induced by v.
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Now write t, = s¢/s,, e = 1,...,7r — L. Obviously ¢, . .. .4,y are in .S and
ilwewrite I, = () ford =1, ..., r — 1, then &, ..., I, are algebraically
independent over K and F = K, ..., 5_) (c.f. [12, 132]). Tt follows that
by oo Ly are also algehraically independent over K oand that if we put
L= K(,..., (), then the map £—=1, 1= 1,...,7r — I, induces a K-
isomorphism of £, onto £ L is therefore a purely (ranscendental extension of K
ol dimension r — 140 we identily F with L under the above isomorphism, we
get that ¢as an Lorational L-place of 2. This gives us the desired prime divisor p
ol F/L of degree Fand also imiplies, by Lemma 3.1, that F7is a regular extension
ol 1. :

b) By Theorem 2.3 there exists a £, in /7 which serves as a stabilizing basis for
the regalar extension [/L of dimension L. The system &, . .., ¢, will thercfore
he a stabilizing hasis for 17/ K.

Lassmn 3230 Let Ve an abstract varicty defined over a PAC field L. Then the
set V(L) of all L-rational poiuls of V is dense tn V an the Zariskt L-topology.

Proof. Without loss ol generality we can assume that 17is alfine and hence
conlaitied moa cortain affine space .S” et A be an L-closed subset of S* which
docs not contain 17 We have o show that V(L) — A @, Indeed, let
(x) = (v, ..., x,) be a generie point of UV oover L. Then L{x) is a regular
extension of Loand there existsa polynomial g € L1X,, ..., X,] which vanishes
on L bui notat (x). Writey = g()7" then L(x, ¥) = L(x) and hence (X, y)
generates an absolutely irreducible variety 17 over L. IV has an L-rational
point (a, #). e is a specialization of (%, ¥) over L. The point (a) belongs to
17(1.) and satishes g(a)h = 1, hence (a) ¢ A,

VeowriEn 3o Lvery PAC ficld 1. s stable.

Proof. Let I be a findvely generated regular extension of L and let 1V be an
athne model of 7770, By Lemma 3.3, 17 has-an L-rational simple point P, since
the set 1, of all simple points of 17is L-open in I” (c.f. Lang |2, p. 199]). In
addition L must he inhnite, since if L contains only ¢ clements, then the ab-
solutely trreducible polynomial (X4 — X)(V¢ — ¥) + 1 has no zevos in L. 1t
foltows, by Lemma 3.2, that /s stable over fo.

4. Valued fields. Let (A 2, 1Y) be a valued field of one of the following two
types:

I. The archimedean type: K is a sublicld of the field G of complex nimbers,
v is the usual absolute value and 'S R,

1. The non-archimedean type: & is an arbitrary field and » is a non-trivial
nialtiplicative valuation of K with values i the ordered, multiplicative,
divisible, abelian group U

We shall use the notations Ju|, instead of v(a) for clements v of K and reserve
the notation #(/) for the value sel of a subset A4 of K. 1" is assuinced to be the



STABLE EXTENSIONS T8I

divisible closure of (K*). We shall also denote by K, the completion of K under
v and always assume that v has been extended 1o K.

Along with  we shall consider also the set @ of all extensions of v to K. All the
completions K., w € €, are assumed to be contained in some upiversal ficld and
thus contain the same copy of K. Every w ¢ 2 defines a ficld topology on K,
the basis sets of whichare fx € K| |[x — al. < €], wherce € K,and e € P We
shall refer to it as the w-topology.

Lemma 4.1, Let
S %) = f,(0)X" A o L (D)X L (1)

be a polynomval with cocfficients in K an the variables (V, X) = (1, ..., 1, X).
Let {a, b) be a K-rationul zero of f for which there cxists w b, 0 < b < u, such that
Li(a) = 0. Then for cvery e € U there exasts a § € I such (hat for every w ¢ Q
and for cvery v, . .., o) € K which satisfy

laf —afo <8 =1, 7

L}

there exists a b € K such that
f@, 0y =0, f@)=0 and |V — b, < e

Proof. Without loss of generality we can assume that (a, b)) = (0, 0) and
e < ). Then fy(0) = Dand | £ k = . Let L be a hinite extension of K which
contains all the cocflicients of fand let vy, .. ., be all the extensions of v 1o L.
For every L £ j < [ we choose an extension w; of v, to K. Then there exists a
8 € I"such that forj =1,...,/,

() lelle, <8 i=1,...,r imphies fi(¢') 0 and
£ in Case 1
n

“i & in Case [l

sinee fo and fi are wj-continnous.

Lelw € 2 Then thereexistsa b £ 7 < 1 and anantomorphisin g of & over £,
suclh that @ = w; 00 (c.f. Lang {8, p. 203)). Suppose that o)/, ..., «, arc
clements of K such that ja/le <8 for 2 =1,...,r. Then |oa/|,, <8 for
t=1,...,7 and hence by (1), of, (") = 0, heaee fi(a’) 5 0 and

foa)
(@)

e

fo(@')

, Jo(ea’)
Jx@’)

J.A-((T“/)

n
€ .
=5 in Case |

(2) <
“ ¢ in Case [

w

Lel m he the greatest mieger for which [, (a%) 5 0. Then kb £ m < nand
g Y J

J@, X) = [u@)X" b .+ @)X 4+ @)

:fzn(a’) 2 (X - I’l'):
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where b/, ..., by ¢ K. Then
a’ [1.Y "

%ﬁ(a’)} — (= 1YBY by and ;jﬁ’)) S =) E Y Wy B

m ¢ m "
where m runs over all the injective maps of the set {1, ..., m — k] into the set
11, ..., m}. (@) =0, then b/ = 0 for at least one 7 between 1 and m. I
fo(a”) 5 0 then we extend each of the above w to a permutation of {1, ..., m].
Then

fe(a") x

LA | - e

fo(“,) ( ) ; Degm krty « o Dag

and by (2) we deduce that there must be a b, which satisfies [b/], < e

Luemaa 4.2 Lot w ¢ Qand let M be a PAC field which is algebraic over K.
Suppase that for every polyvnomial [ ¢ M| Ty, ..., T, X1 which ts stuble over M
with respect to 1y, ..., T, the set

f@, by =0 und

{(a, Dy ¢ 7"’{-(- (@, b) » 0}

1s w-dense 1n the set

{(ﬂ, ner,! ‘f(n, hy =0 and 50% (a, b) # 0}

Then M has the density properly with respect to w, ie. V(M) is w-dense in
V(K,) for cvery abstract variely Voahich is defined over M.

Proof. Let Y he an abstract variety of dimension » which is defined over Af.
Then 1Mis stable over A7, by Theorem 3.4, Let P be a generic point of 17 over Af
and Tet 4y, ..., 7, be a stabilizing base for AL(P)/ M. Then M(P)/M(t) is
finite separable extension and hence there exists an clement x such that
M(P) = M(t,x). There exists an absolutely irreducible polynomial f ¢ M|T, X|
stch that f{t, ) = Oand 3f/9X (t, x) > 0. By definition f is stable over M with
respect to (). Denote by 1V the hypersurface defined by fover A, 1t has (t, x)
as ageneric point and the map (¢, 1) — 7 defines a bhirational correspondence ¢
between TV oand 17 over A1 Fhe set W= [(a,b) € W|df/dX(a,h) = 0] isa
non-voidl open subset of TV in the Zariski M-topology. 11 contains a non-void
subset 1V whicl is open in the Zarviski Af-topology and I contains a subsct Vy'
which is open in the Zaiski-A7-topology such that ¢ is hiregular at 1, and has
I7s" as aset theoretic image of W/ (.. Lang |6, p. 94]). The correspondence
induces therefore w-homeomorphisims ol W/ (M), W/ (K.) onto 17/ (),
1 (K. vespectively (c.f. Weil [T, p. 352]).

By assumption 117(M) is e-dense in V/(K,), hence 11y (M) is w-dense in
Wo' (R). Hence Vo' (1) is w-dense in 1y (K,). By Lemma 2.2in 3], Vo' (K,) is
w-dense in V(KR,), since K, is algebraically closed (c.f. Lennna 1.0 in [3]).
Hence V() is o-dense in 17(K,).
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5. Hilbertian vatued field. Let K be a held. A hilbertion subset IT'ol K7 is a
set of the form

I = [(a) € K'|f,(a, X) is dehned and irreducible in K{X] for

‘7::'""11’L"

where fi, ..., fu are irreducible polynomials in K(74, ..., )| X, ..., X,|
The field K is said to be hilbertian il for every n = |1, all hilbertian subscts of
K* arc non-empty.

Lemsma 6.4, Let K be a hilbertian field and let f & K{[T, ..., T, X] bea stable
polynoniial over K with respect to T, ..., T, Let G = G (f(t, X), K(t)) be the
Gualois group of f(t, X)) over K(t) (4, ..., ¢, arealgehraically independent clements
over K, and let L be a finite separable extension of K. Then there exists a hilbertian
set H C K7 such that cvery (@) € H, G (f(a, X), K) = Y (f(a, X), L) = ¢,
hence the splitting ficld of f(a, X)) over K 1s lincarly disjoint from I. over K.

Proof. There exists a hilbertian set IT, € K7 such that ¢ (fa, X), K)=G
for every (a) € H, (c.f. Kuyk [5, p. 396]). There exists also a hilbertian set
Iy C L7 such that @ (f(a, X), LY== G fov every {a) € Iy, since f is stable
and hence F(f(¢t, X), L(t)) = G. Iy’ contains a hilbertian set Il, € K7 (c.I.
Lang [7, p. 152]). Il = H, M Hy will satisly the requirements of the letma.

f'rom now on we shall suppose that K is a hilbertian valued ficld and we
shall keep all the notations of § 4. We refer to § 5 of [3] for the introduction of
the Tlaar measure to 9 (K,/K). Here ¢ is a lixed positive integer.

LimMA 5.2, Let L be o finile separable extensionof Kandletf € LTy, ..., 1,, X]|
he « stable polynonital over L with respect to T'y, ..., T, Letc,,. .. ,c,,d € K, be
stch thet f(c, d) = O and 8f/X(c,d) £ 0. Lel § < ¢ be bwo elements of T such
that for every w € Qand for every ¢/, ..., ¢, € K, which sutisfy ¢/ — ¢. < 8
Jorv =1, .., r there exists ad’ ¢ K, such that f(¢/,d") = 0,9f/0X (¢, d’) =0
and |d' — d|, < e Suppose also that Jor every o € Q there existe)”, ..., ¢, € L
such that ¢ — ¢lo < 8/2 in Case 1 and ¢! — clo < 8 1n Cuse U1, for
b=, ...,r. Then, foralmost all (8)'€ G (K./L)* und for every w € Qlhere exist
ay, ..., a1, b C Ky(8) such that

(1) f@,b) =0, ‘—,%fz (a,b) =0,

e —cilo <€ fJori=1,...,r and |b—d|, <e

Proof. Let n be the order of G = G (f(1, X), L(t)) and let vy, . .., v, be all
the extensions of » 1o L. We construct by induction a lincarly disjoint sequence
{1,/ LY5=1 of Galots extensions of degree nl such that for every j 2 1 and for
every w € f there exist ay, ..., a,, 0 € L, which satisfy (1). Suppose that
Ly, ..., L,y have already been constructed. Then L' = L, ... L, is a
finite Galois exlension of L. Yor every 1 £ A £ [ there exist, by assuwmption
adyoooan € Lsuch that o — ey, < 8/2in Case Land o,/ — ¢}y, < 8in
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Case I for 7 = 1, .., 7. By Lemma 4.1 of [3] every hilhertian set of L7 s
vy-lensein L7 henee, by Lemmia 5.1, there existaqy, - .., ay, € Lowhich satisly.
lave — iy < 872in Case land [y — o]y < 8inCase 1l ford = 1,. .., 7,
such that 7 (f(a, X), 1) =~ % (f(a, X), L") = G. Let L, be the splitting held
of f{a, X) over L. Then L,y is a Galois extension of 1 ol degree o which is
lincarly disjoint from 1" over 1.

I w ¢ Qs an absolute value whose restriction to L coincides with vy, then
live — ¢ilw < 8/2in Case Fand |ay, — ¢4 < 8inCase Hfori =1, ..., r; hence,
by assumption, there exists ahy ¢ Kosuch thatf(a,, by) = 0,f/aX(a,,0)) 50
and by — d|, < e In particular iy is a root of f(ay, X) and hence helongs (o
L.

In the same way we can construct, step hy step, for every | A 1, a
Galois extension 1.y of Lol degreer whichis linearly disjoint from 'Ly .. Lyay
and elements any, .o, iy, by € Lposuch that (1) is satished for every w € 8
whose restriction to Lo coincides with vy,

The held 7., = L,y ... L, is a Galeis extension of L ol degree wl which is
lincarly disjoint from L over L which satisfies the requirements, since the
restriction of cach of the w ¢ Q1o 1. coincides with one of the oy,

By Lenumah L of [3] (e nnion U7y (K /L)) isalmost equal to 7 (K./1.)".
W (8) C Uy GRJL) then 1, © K (8) for at least one j. Hence for every
@ G Qithere exist oy, ..., a,, b G K (6) such that (1) is satisfied.

Loamn 830 1 K oas a denwmerable ilbertian field, then almost ol
(&) ¢ G (K JKY have the following property:

For coery d ¢ K and for cvery ¢ ¢ Vthere exists a fintte subset BB of K (d) such
that for cvery w ¢ Q there exists a b € B such that |b — d|, < e

In purticular, K (8) is w-dense in K for cvery o € Q.

Proof. Letd € K let f{Y) = X" - X" 4 ... 4 ¢, bea polynomiat with
coeflicients in K such that f(d) = 0 and fet € > 0. We shall construet by
induaction a linearly disjoint scquence (K /K|T-y, of Galois extensions of
degree wand inevery K asubsct 73, with o elements such that for cvery o € @
there exists a b ¢ B, such that |b — d|, < e

Suppose  that Ky, ..., K,y have already been constructed. Then
K' = Ky... K, isafinite separable extension of K. The general polynomial,
hE, X)) = X" - 17 X" 4 ... 4 T, ol degree nis, as we already noted in§ 1,
stable over K with respect 1o 17, ..., T, and it has the Galois group S, over
KUY, Henee, we can find, as o the proof of Lemma 5.2, ay, ..., a, C K which
are v-closc to g, ..., ¢, such that h(a, X) is a separable polynomial with S, as a

Galois group hoth over K and over K. Let K¢ be the splitting field of h(a, X)
over I Then K is a Galois exteusion of K ol degree n! Let by, ..., b, be all the
roots of Ji(n, X) and write By = |by, .., b} Then, by Lemma 4.1, for every
@ € Q there exists a b ¢ B, such that |h — d], < ¢
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Write now S(d, €) for the set of all () ¢ T (K ,./K) lor which there exists a
finite subset B8 of K,(a) such that forevery o € @ thereexistsa b ¢ B ior which
b —dl, < e Clearly Usy T(KJ/K) C S, ). The right hand side of this
inclusion has, by Lemmia 6.1 of [3], the measure 1, hence p(S(d, €)) = 1. Siuce
K is denumerable field, there are only countably many d ¢ K and ¢ T
Hence the intersection of all the sets S{(d, €) has the measure 1. This concludes
the proof of the lemma,

Turorenm 5.4, If K is a dewmmierable hilhertian field, then K (8) has the density
properly with respect to cvery w € Q for ulmost all (d¢) € G (K, /K)°.

Proof. Let She theset of all (¢) € G (K/K)¢such that K (a) isa PAC Geld
and which have the [ollowing property:

FFor every polynomial f(7y, ..., T,, X ) which is stable over K (8) with respect
o 1y, ..., 1, and for every w € Q the sct

W, (KL(6)) = | (a,b) € Ko(8) Hf(a, b) = 0, 9f/0X (a,b) 5= 0]

is w-dense in the set W (K) = [(a,0) € KV f(a, ) = 0,9f/dX(a,b) = 0).
By Lemma 2.4 in (3], 1V/(K,) is w-dense in the set

W/(R) = 1(a,b) = Ryt f(a, b) =0, 8f/0X (a, b) = 0),

hience W/ (K (6)) is w-dense in W,/ (K,). 1t Tollows, by Lemma 1.2, that K (¢)
has the density property with respect to w.

It suflices therefore to prove that p(S) = 1.

Let L be a Gnite separable extension of K andtet f ¢ L)1y, ..., 7, X])hea
stable polynomial over L with respect to 1y, ..., T, let e, ..., ¢, d ¢ K,
such that f(c,d) = O0and 3f/9X (¢, d) = 0. Let e ¢ 1. Then by Lemma 401 there
exists a 8 € I which satishes
(2) 8 < ¢
such that for every w € @ and for cvery ¢, ..., ¢,/ ¢ K which satisly
lef —cdo <8 Tori=1,...,r there exists a d' ¢ K such that f(c', d') = 0,
Af/aX (¢',d") # 0 and |[d —d|, < e In particidar, il ¢/, ..., ¢,/ € K thend' ¢ K.
Suppose further that for every o € @ there exist ¢/, .., ¢, € L such that
fe/" — cfu < 8/2incase Vand |, —¢,| <din Case I, foré = 1,... r

Denote by S(L, f{c, d), €) the set of all (8) ¢ G (K. /K)* for whiclh there
exist ay, ..., a,, b0 € K (d) such that

(o J@ ) =0, f’y (a, b) 5 0,

la,—cdo <e i=1,...,r and b —dj, <e

By Lemuna 5.2:

(1) w(Y(K,/LyY — S, f.lc,d),e) = 0.
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Denote by 1 the set of all (8) ¢ F (K /K)* such that K (48) is o PAC field
and which satisfy:

For every ¢ ¢ K and for every 6 € T there exists a finite extension J. of K
which is contained in K (a) such that for every w ¢ £ there exists an a € L for
which ja — ¢}, < 5.

By Theorem 2.5 of [4] and by Lemma 5.3

By w()Y = 1.
We prove that
6y T —SCUNTKJL) — S, f, (c,d), €]

where the vnion runs over all possible 7, f, (¢, d) and e

Let () € T — S Then K (8) is a PAC hickl and there exists a polynomial
(7, .., T, X) which is stable over K (a) with respect to T, ..., T, and
there exists a wy € @ for which the set W,/ (K (8)) is not wp-dense in W,/ (K,),
i.e. such that there exists ¢y, ..., ¢, d € K, which satisly f(c,d) = 0 and
A/IX(c.d) 0 and (here exists an e C ' for which there do not exist
ay, oo b ¢ K(d) which satisfy (3). Let 8 he an clement of ' which
satisfies (2). By Lemima 1.1 and since (8) ¢ 7' therc exists a linile extension L
of K which is contained in K () such that f is stable over L with respect to
Ty, o0 T and such thatforevery o € Qthereexist ¢/, ..., ¢,/ € L which satisfy
e/ — ¢ < 8/2 in Case ) and ¢ — ¢/ <8 in Case I, fori=1,...,r.
It follows (hat (8) € G(K./L)" — S(L,f, (c, d), ¢).

Now, there are onfy countably many summands on the right hand side of (8),
since K is denumerable. Each one of them is, by (4), of measure zero, Hence the
right hand side of (6) has measure zero and hence, by (5), p(S) = 1.

Let K now be a global field, t.e. a number ficld or a function ficld of one
variable over a finite ficld. Then K is denumerable, hilthertian (c.f. Lang
[7, p. 15]) and it has only countably many absolnte valucs (c.f. Cassels and
Frohlich |1, pp. 45, 46]). The intersection of countably many subscts of
GAK /K" of measure s again a set of measure 1. Theorem 5.4 therefore
implies:

Turores 5.5, 1f K is a global field, then for almost all (¢) € G (K /K)*, the
field K (&) has the density property with respect to every absolute value of K.
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