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Rational functions with variables separated, fi(X|)+/,(Xy)+ -+ (X)) =f(X), deg(f)>0,
i=1,...,I, appear in many applications. In characteristic 0, when /=3 the variety defined by
f(X)=0 is irreducible (Main Theorem, Section 1).

In most applications, however, /=2. Even excluding trivial cases (e.g., f,= —f,), there are
reducible curves with variables separated (Example 2.4). When f| and f, are polynomials, of
respective degrees n and m, if f; is indecomposable the irreducibility result holds excluding finite-
ly many n. The (2,3)-problem (Section 2) illustrates pure group theory formulations. In search
of infinitely many » for which there are nontrivially reducible curves f(X) =0 with deg(f)=n,
a natural parameter & appears. No new examples arise from k=1 or 2 (Proposition 2.10).

Introduction

Let K be a field of 0 characteristic and let fj, ..., f;€ K(x) be nonconstant rational
functions. Write f;(x) as h;(x)/h(x), (h;, hip)=1 and h;;, h;; € K[x]. Our main
theorem concerns the algebraic set V(f(X{)+ -+ /(X)) in affine [-space, A,
defined by the equation

l
(n hiz(X,»))(fl (X)) + -+ /(X)) =0. M

Main Theorem. If =3, then V(I'_, f) is irreducible.

The case where fi,...,f; are polynomials appears in [16,19] in characteristic 0,
and in [19] in positive characteristic. Also [15] considers the case that fi, ..., f; are
entire functions.

The proof (Section 1) works for arbitrary characteristic different from 2 if we add
the hypothesis that there is no additive polynomial m € K[ y], deg(r)> 1, such that
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[ =0 =m(f(x)) forsome feK(x), i=1,...,1, 2)
and

/
m(y)+ ¥, £(0) is reducible over K. (3)
i1

The main theorem responds affirmatively to a question of M. Jarden that was ap-
parently presented to the author and A. Schinzel at roughly the same time. The
proof in [18], even in the characteristic 0 case is quite long and it suggests no general
principles. Our proof is based on the short and purely Galois theoretic [5, Proposi-
tion 2] (the basis of results of the author’s discussed in [17]). Since this has applica-
tions to many problems, we have given here (Lemma 1.1) a generalized version of
[5, Proposition 2]. In this conceptual framework the proof of the polynomial case
of the main theorem follows an easy version of the expressions (12a), (13a) and the
last paragraph of the proof of Part 4 of the Main Theorem.

Let P! denote projective l-space with an inhomogeneous uniformizing
parameter x. The case /=2 in (1) amounts to looking at a fiber product lel Xp) lez
given by fi: lel_’Pyl and —f;: Px’2—>Py1. Section 2 discusses the (n, m)-problem: If
f1» > are polynomials of respective degrees n and m which are suitably general, do
there exist polynomials f{, f, such that V(fi(f)+5(f)) is reducible?

In order to exclude trivial situations of reducibility in the case /=2 we introduce
the concept of newly reducible pairs (h, g) (Definition 2.1). Of necessity, newly
reducible pairs of polynomials must be of the same degree (i.¢., deg(h) = deg(g) from
Theorem 2.3). From the classification of finite simple groups [3,9] if (h, g) is newly
reducible and 4 is not a composition of lower degree polynomials, then deg(#) must
be 7,11,13,15,21 or 31. It is unknown, even, if there are infinitely many values of
deg(h) for which (k, g) is newly reducible.

Application of Riemann’s existence theorem to Lemma 1.1 translates the (n, m)-
problem into pure group theory involving the integer parameter k = gcd(n deg(f}),
m deg(£y))/lem(n, m) (Theorem 2.6). We note that the (2,2)-problem has a
negative answer. Thus the (2,3)-problem is the first serious case (some discussion ap-
peared in [14] which refers to the existence of Theorem 2.6 through private cor-
respondence, and [1] related to connectedness of (1) for /=2). We show that neither
k=1 nor 2 give solutions to the (2,3)-problem (Proposition 2.10).

On the one hand, affirmative solutions to the (n, m)-problem for all pairs (n, m)
easily produces infinitely many values of deg(#) for which (4, g) is newly reducible.
On the other, a negative solution even to the (2,3)-problem suggests a strange rarity
of newly reducible polynomial pairs, and perhaps a simple classification of the
polynomial pairs f;, /5 for which V(f, + /) is reducible. Speculation here, however,
should await results on k=3, 4,... in the (2,3)-problem.

Connectivity results for fiber products far more general than those of this paper
appear in [11,13]. These have application to the computation of fundamental
groups of open subsets of projective space [13]. And irreducibility results, of
necessity more special, have been applied to discussion of the action of the absolute
Galois group of ©@ on various moduli spaces [6,8] (e.g., Jarden applies the Main
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Theorem to the theory of real fields by concluding a trivial action for complex con-
jugation on the components of (1)).
Lemma 2.9 is due to W. Feit and L. Scott.

1. Proof of the Main Theorem

For V a variety defined over a field K, denote by K(V) the field of rational func-
tions on V. Let ¢: W—V be a birational morphism of varieties defined over K.
Assume that ¢ is generically finite so that ¢ induces a field extension K(W)/K(V).
Denote by K(W) the normal closure of this extension: K(W) is the smallest
extension of K(W) with the property that all isomorphisms of K(W) into field
extensions of K(V), that are fixed on K(V'), are automorphisms. The automorphism
group, Aut(K(W)/K(V)) (or just Aut(W/V)), has a natural faithful permutation
representation,

T(W/V)=T: Aut(W/V)-S,, 4

with n=(Aut(W/V): Aut(W/W)) through the action of Aut(W/V) on the left
cosets of Aut(W/WwW).

Given ¢;: W;— V, i=1, 2, finite morphisms, counting the irreducible components
of Wy x, W,={(w;, w))|w,e W;, i=1,2, and ¢,(w;)=p,(w,)} is a birational mat-
ter which our first lemma interprets entirely Galois theoretically. Denote the com-
posite of K(W;) and K(W,) by K(W), W;). Then G=Aut(K(W,, W,)/K(V)) is
canonically identified with

{(o), 33) e Aut (W / V)X Aut(W,/ V)| o\ | = 03|} )

where L =K(W,)NK(W,). Furthermore, the fixed field, L', of G is the maximal
inseparable extension of K(V) in K(W;, W,). Finally, let T;:G—S, be the
permutation representation of G associated to the subgroup Aut(K(W;, W,)/
K(W;)), i=1,2. Denote {cgeG|T;(o)(1)=1} by G(T,), i=1,2, and denote
K(W)NKW)NLY: K(V)] by m=m(W).

Lemma 1.1. There is an m(W )-to-one association between irreducible components
(counted with multiplicity) of W, X, W, and orbits of the group G(T,) under the
permutation representation T,.

There exists a variety, W, that fits in a diagram of finite morphisms

@i .
Wi-w' —V, i=1,2, ©

with the following properties: K(W{)=K(W,); and the irreducible components of
W, x, W, are in one-one correspondence with the irreducible components of
W x, W,.

Proof. Use the notation prior to the lemma. Let v be a generic point of V and let
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Wiy --., Wi, be the points of W that lie over v, i=1, 2. Identify K(v), the field
obtained by adjoining the coordinates of v to K, with K(V). Thus
K(v, wy, j=1,...,n;,i=1, 2) naturally is identified with K(W;, W,) and the action
of G on wy,...,w;, is naturally identified with T;, i=1,2. Clearly the points
Wi Wwo)e Wiy Wy, k=1,...,n, {=1,...,0, run over generic points of irre-
ducible components of W, X, W,. Furthermore, two of these points correspond to
the same irreducible component if and only if they lie in the same orbit under the
action of G. Since G is transitive on {wy, ..., w;, }, the orbits of G on {(wy,, wy):
l<k=<n,, 1</<n,} are in one-one correspondence with the orbits of G(T;) on
{wy;: 1=l=<n,}. This proves the first sentence of the lemma except for the observa-
tion that each irreducible component appears with multiplicity m(W).

To find W, satisfying the conditions of (6), we need only work with the function
field, K(W;'), of W/, i=1,2. That is, we seek a field L; between K(V) and K(W;),
i=1,2, with these properties: the normal closure L} of L/K(V) is equal to the
normal closure L) of Ly/K(V); and the orbits of Aut(L3/L;) acting on the cosets
of Aut(L5/L}) in Aut(L,/K(V)) are in one-one correspondence with the orbits of
G(T)) under 7.

If K(W,) =K(W,) we are done. Otherwise, with no loss we may assume that
KW)ZK(W,). Let M|=K(W)NK(W,). From the theorem of natural ir-
rationalities

Aut(K(W,)/My) = Aut(K(W)K(W)/K(W})). M

Since each automorphism of K(W)K(W,) /K(W)) extends to an automorphism of
K(W,, W), the orbits of Aut(X(W,)/M,) on the cosets of Aut(K(W,)/K(W,)) are
in one-one correspondence with the orbits of G(7;) under the representation T ;.

Now let M| be the normal closure of M|/K(V). If K(W,)C M| we are done.
Otherwise, replace K(W,) by M| and K(W,) by K(W,) in the argument above. By
an induction on [K(W)): K(V)I[K(W,): K(V)] we are done. [

Corollary 1.2, a special case of Lemma 1.1, is a slight generalization of [5, Pro-
position 2]. Let V=p}, W,-:P‘i,, i=1,2, in Lemma 1.1. Thus (p,-:PVL‘_—>Py1 is given
by a rational function ¢,;(w;}=y in w;, i=1,2. The fiber product Pyll Xp) Pylz has
¢1(X)— ¢,(X,)=0 as an affine open subset. For wje K(w;) with y e K(w/), denote
the normal closure of K(w/)/K(y) by K(w/), i=1,2.

Corollary 1.2. In the notation above assume that ¢; is a nonconstant (thus finite)
map, i=1,2. There exists wje K(w;) with K(y)CK(w|) with the following proper-
ties, i=1,2:K(w;)=K(w}), and if ¢/(w))=y, i=1,2, then the irreducible factors
of 9/(X))— ¢5(X;) (With the denominators cleared as in (1)) are in one-one cor-
respondence with the irreducible factors of ¢(X,)—,(X;). O

Now we are set up to consider the proof of the Main Theorem. Assume that /=3
in (1). Let ¢;(X))=/1(Xy) and ¢,(X2) = — (L,(X2) + 5(X3) +--- + f(X})), a rational
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function in X, with coefficients in K(Xj,...,X,). Recall that if g=m,;/m,e K(x)
with (m,, m,) =1 and m,, m, € K[x], then deg(g) is defined to be max;_ , (deg(m;)).

Corollary 1.3. Assume that V(Ef.: \Ji) has at least 2 irreducible components. Then
there exists ge K(x) and G,€ K(X>, ..., X,) with g of degree at least 2, such that

(G (X3, ..., X)) = @2 (X3). ®

Proof. Apply Corollary 1.2 with the field K’ = K(Xj, ..., X}) replacing K. From the
assumptions there exist ¢;, ¢/, g G, € K'(x) such that ¢|(¢/(X;))=e,(X;) and (8)
holds. Let w/e K(w;), i=1,2, as in Corollary 1.2, so that ¢{(w;)=y. Then K'(y)
and K(wy) are linearly disjoint over K (). Thus there is a one-one correspondence
between the fields between K(») and K(w;) and the fields between K'(y) and
K’'(w]). Since K'(w;)CK’(w3)=K’(wj), there exists wjeK(w;) such that
a(w3)=wj; with @ € K’(x) a degree 1 rational function. Thus with (gca~ y=g*and
a©°G,=G; replacing g and G,, (8) still holds. As g*(w¥)=y, it is clear that
g*¥e K(x). With g* replacing g, this concludes the proof. []

Proof of the Main Theorem. From Corollary 1.3 it suffices to show that (8), with

g € K(x) of degree at least 2, is impossible. We organize the proof into 5 parts. The

first 3 build on degree computations under the assumption char(X) =0. The last two

list the modifications respectively, for the cases char(K)>2 and char(K)=2.
Part 1. Application of 3/0X, to sides of (8). From the chain rule

d 0 d
18 le= G A (G (X)) = d—X3( ~(X3)). ®

Now consider both sides of (9) as functions of X, only, so that the right side is
regarded as a constant. Thus

d a
degx;(@(g(x» Ixcz> =degy, (ﬁ(cz(Xz)O- (10)
3

The left side of (10) is deg((d/dx)(g(x)))degxz(Gz(Xz)) and, from the rules for
taking the derivative of a quotient, the right side of (10) is at most

2 deg (G5 (X7)). (11)
By comparing (11) with the left side of (10), conclude that either

deg(%@(}t))) =1, (12a)

or

deg(% (g(x))) -2 (12b)

Part 2. Deductions about g. Write g as m;/m, under the assumptions preceding
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Corollary 1.3. Since (m,, (d/dx)(m,)) is the only possible common factor of the
numerator and denominator of (d/dx)(g),

d
my—(my)—my— (iny)

d m?
deg(;(g)) =max | deg d’Z , deg dx q dx
x —
<m2, dx(m2)> (mz, o (m2)>
The first term inside the right side implies that deg(,) <1 and either
d
g(x)eK[x] with deg(d— (g)) equal to 1 or 2, (13a)
X
or
g()=(ax*+bx+c)/(x+d) for some a, b, c,dekK. (13b)

Part 3. (8) combined with (13) gives a contradiction. First consider the more in-
volved case (13b). With a linear change of x and replacement of g by a’ g(x) + b’ for
some a’, b’ € K, we may with no loss assume that g(x)=x+ 1/x. For notational
simplicity, assume also that /=3 (say, by treating X, ..., X; as constants adjoined
to K).

Write G, as u (X5, X3)/u(X,, X3) with u, and u, relatively prime polynomials in
K[X,, X;]. In the notation of the opening of the paper

U/ Uy + Uy /uy = — (hy 7hp(X5) — (B3 /) (X)), (14)

A comparison of the denominators of both sides of (14) gives u; u, = 2,(X;)g5(X3).

Therefore u,/uy =0,(X3)v,(X;) with vy, v, € K(x). Apply (3/0X,)3/3X;) to both
sides of (14) to conclude

dUl dl)z

dU[ dl)z
dx, dX,

1+@vy) 3=0, or — =0.
(I+(v1v7) %) X, dX,

That is, u;/u, involves only one of the variables X, or Xj, a contradiction to /=3.

For case (13a), assume with no loss that K is algebraically closed. Then as with
the reduction above, assume that g is without constant or linear term. As above,
if G,=u (X5, X;3)/uy(X, X3), then u, can be written as v;(X,)v,(X;) with
vy, Uy € K[x]. Now look at the numerator of (9) to see that u, involves only Xj3. By
symmetry u, is constant, and the technique of the previous paragraph concludes
the results.

Part 4. char(K)>2. These comments can shorten some of [18]. In this case we
must add to the list of (12) the possibility that (d/dx)(g(x)) is actually a constant.
If we assume that K is algebraically closed, and linearly change g(x), then
g(x)=ax+(g,(x))’ where g,(0)=0 and a=0 or 1. Our goal is to induct on the
degree of g to show that it is a composition of additive polynomials on the basis
of (8). This easily reduces us to the case that = 1. Furthermore, this induction pro-
ceeds quite nicely if we know that G, has a variables separated form. The assump-
tions also give that
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af o

= G [=2,3.
dXi aXl( 2)’ ! 4

In the case that g; is a polynomial this is quite a lot of information for a com-
binatorial attack on (8). [18, pp. 10-13] eliminates the possibility that g is a rational
function by using arguments from [10], and even with our extra information, this
perhaps deserves some attention with an eye to simplification. Finally, if (12a) or
(12b) hold, since char(K)>2 we still conclude that deg(m,)<1 (i.e., (13) holds),
and no new complications arise.

Part 5. char(K)=2. There is a new possibility over that given in Part 4: we may
have deg(m,)=2. [18] carefully lists the outcome of this. [J

2. The (n,m)-problem

In this section the field K is C. Now we consider the case /=2 in the Main
Theorem context at the beginning of the introduction: How do we describe the pairs
(/1. f») of rational functions over C such that V(f,(X;)+/(X;)) is reducible? Our
first discussion and theorem is a rephrasing of this problem entirely in terms of
group theory.

Start with an ordered pair of positive integers (n, m). Let &(n, m) denote the
ordered pairs of rational functions in C(x) of respective degrees n and m:
{(h), h1g1, &) | hy, by, 81, &5 € Clx], max(deg(h,), deg(h,)) =n, max(deg(g,), deg(g,)) =
m and hy, h, (resp., g,g,) relatively prime}. So (A, hy; g, &) represents
(hy/h,, 8,/8,) =(h, g) € & (n, m). In the earlier discussion we are replacing f, by A
and - f;, by g. Similarly, replace w, by x and w, by z in Corollary 1.2.

Suppose for (k, g) € R (n, m) there exists m e C(x) with deg(m)>1 and A= m(h),
g=m(g) for some h, g C(x). Then V(h—g) is easily seen to be reducible. We say
that (A, g) is composite with m, and if no such m exists, then (4, g) is noncomposite.
Denote the collection of noncomposite pairs by & (n, m)™.

Basic problem. Describe {(h, g) € R(n, m)*| V(h—g) is reducible}.

Suppose that A =h(h), g =g(Z) and either deg(h) or deg(Z)> 1, where V(h-g) is
reducible. Then V(h— g) is reducible. We say that V(4 — g) has inherited reducibility.
It is more instructive (at times) to avoid this situation.

Definition 2.1. Call (h, g) newly reducible if (h, g) € R (n, m)™ and is reducible, but
has not inherited reducibility.

We apply Corollary 1.2 (and Lemma 1.1) to put this in Galois theoretic terms.
Denote by T(#) and T(g), respectively, the representations called 77 and 75 in Lem-
ma 1.1. Denote Aut(C(x)/C(»)) by G(C(x)/C(y)).
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Lemma 2.2. The pair (h, g) € R (n, m) is newly reducible if and only if the following
hold:

(@) C(x)=C(z) and T(h): G(C(x)/C(2))— S, is intransitive but has no orbit of
length 1, and

(b) for h=h(h), g=g&) with either deg(h) or deg(8)>1, T(h): G(C(®)/CE)N
C(x))— S, is transitive, where h(x)=X, §(z)=Z and deg(h)=A. []

Let y(1), ..., »(r) be the points of ramification of the cover & : P, —»Pyl (i.e., over
y(i)ePyI there are less than n distinct points of le, i=1,...,r). From Riemann’s
existence theorem (as in [5, Proposition 4] or [7, §0.A]) the cover given by 4 is deter-
mined (up to equivalence of covers) by an r-tuple a=(a(l),...,a(r))e(S,), a
description of the branch cycles, with these properties:

o(1)---o(r)=1 and G(o)=G(CX)/C(»)) (15)

where G(o) is the group generated by the coordinates of ¢. Another 7e(S,) cor-
responds to the equivalence class of the cover if and only if there exists y € S, such
that y’lay=r.

The following group-theoretic restatement of the existence of newly reducible
(h, g) € R(n, m) is a slight tightening of [5, Proposition 4], in order to incorporate
the newly reducible concept. For ¢ € S,,, ind(g)=n—{ where / is the number of dis-
joint cycles in o. With T:G—S,, as prior to Lemma 1.1, G(T) denotes the
elements that fix 1.

Theorem 2.3. There exists a newly reducible (h, g) € R (n, m) if and only if there is
a group G=G(a) with an r-tuple of generators and faithful transitive representa-
tions T;,i=1, 2, with deg(T,)=n, deg(T,) =m with the following properties:

(@) L ,ind(T\(a(j))=2(n—1), L}_,ind(Tx(c(j)))=2(m—1);

(b) restriction of T, to G(T,) is intransitive but has no orbit of length 1; and

(¢) restriction of Ti* to G(Ty") is transitive if either deg(T*)<n or deg(T5)<m,
where T;® is the representation of G induced on some set of imprimitivity for T,,
i=1,2.

Furthermore, if (h, g8) can both be taken to be polynomials, then we must have
m=n and we may assume that

T\(a(r)) and T,(o(r)) are both n-cycles. ] (16)

The next example shows that there are many pairs of integers (n, m) for which
there exists newly reducible (4, g) € & (n, m). Denote the polynomial pairs by
P(n, m). If P(n, m) contains a newly reducible pair, then (16) shows that n=m.

Example 2.4. For each n>3 there exists m and newly reducible (&, g) € & (n, m).
Indeed m=n(n—-1)/2 works. Here is a description of the branch cycles for
h: PX1—>Py] (note that we may take h to be a polynomial):

6=((12),(134-—-n), (12--n""Ye(S,). 17)
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In Theorem 2.3, T; is the standard representation on S,, and 7, is the representa-
tion of S, of degree n(n—1)/2=m on the unordered pairs {i, j}, i#/, 1 <i, j<n.
Since neither representation has a system of imprimitivity, Theorem 2.3(c) holds
automatically, Furthermore, the subgroup of S, fixing 1 permutes transitively the
pairs of integers containing 1. Thus Theorem 2.3(b) holds. The crucial computation
is Theorem 2.3(a). Check easily that ind(7,(1 2))=n—2, and that T,((1 2---n)) is
a product only of n-cycles ((n—1)/2 of them) if # is odd, but has, besides n-cycles,
one n/2-cycle if n is even. Thus ind(75((1 2--n))=m-172/2 if nis odd, and
(n—-1)(n-2)/2+(n/2)—1=n(n—2)/2 if n is even. Consider two cases.

Case 1. n is even. By the Riemann-Hurwitz formula Z?Zl ind(T5(c(i))) =
2((n(n—1)/2)—1)=n(n—1)—2. Therefore, ind(T,(c@))=n(n—-1)-2—-nn-2)/2—-
(n=2=n(n—1)—-n*2=n(m-2)/2. But a(2) is of order n—1, so the maximal
possible value of ind(7,(c(2))) occurs if T,(a(2)) is a product only of n—1-cycles
(n/2 of them). Thus ind(7,(a(2))) =n(n—2)/2 and Theorem 2.3(b) holds.

Case 2. n is odd. Use the same argument to conclude Theorem 2.3(b) as in Case
1 except that the maximal possible value of ind(7,(c(2))) occurs if, besides
n—1-cycles, T,(0(2)) has one (n—1)/2-cycle.

By the way, if we take for 7, the representation of S, on unordered friples of
distinct elements from {1, 2,...,n}, only n=4 and 5 give examples of newly reduci-
ble elements of & (n, m).

Despite Example 2.4 it is still unknown if there exist infinitely many integers n
and newly reducible (h, g)e #(n, m). If we further constrain 4 to be indecom-
posable (i.e., no proper fields between C(x) and C(k(x)) — or T(4) is primitive), then
the existence of (newly reducible) polynomial pairs (#, g) implies that
n=7,11, 13,15, 21 and 31. This consequence of the classification of finite simple
groups, a list of applications (e.g., Davenport’s problem) and the explicit descrip-
tion of the polynomial pairs that arise for the (finite) exceptional values of » all ap-
pear in [9].

We now explain the (n, m)-problem. A solution of it, even in the case n =2, m =3,
might finish off the problem just stated.

Definition 2.5. Let n, m>1. A pair (h', g’)e P(n, m) is hereditarily irreducible if
V(h'(h))—g'(gy)) is irreducible for each pair of (nonconstant) polynomials (4, g).

The (n, m)-problem. For a given pair of integers (n, m), does there exist an
hereditarily irreducible (', g’) € #(n, m)?

The (2,2)-problem has a negative answer. Indeed, assume with no loss that (', g°)
is a noncomposite pair of polynomials of degree 2. Suppose that there exists a pair,
(hy, g1), of degree 2 polynomials for which V(h'(h)—g’(g))) is (newly) reducible.
Then Theorem 2.3 gives us a group G with two transitive faithful permutation
representations 7;, 7, of degree 4 such that G(7)) is intransitive in the representa-



18 M. Fried

tion 7,. Furthermore there is a group G/ properly contained between G(7;) and G,
i=1,2, and G{# G,. Just one group G fits this description: the dihedral group D,
of degree 4. Regard this as a subgroup of S, (given by 7;). Then, with no loss,
G(T)=<Q2 4, G(I)=<K1H24H), G=((13),24) and G;=<((1234)).
Finally, let 6=((1 3), 4 3)21),(1 23 4) ')= T,(o). Then T,(0), given by the ac-
tion on the cosets of G(T3) is (up to equivalence) ((4 3)(2 1), (2 4), (123 4)" 1.
Thus Theorem 2.3(a) holds. Since #” and g’ are determined (up to linear change of
variables) by the location of the branch points of A’: PXI,—>P),1 and g’: P;,—»Pyl, we
obtain the hereditary reducibility of all degree 2 pairs (#', g’) of polynomials by
varying the finite branch points y(1) and y(2) of the covers with branch cycles given
by o (i.e., o corresponds to the 4-cycle).

Thus the first serious case of the (n, m)-problem is the (2,3)-problem, and this is
the case on which we concentrate for the remainder of the paper. As with the (2,2)-
problem we can rephrase the (2,3)-problem entirely in terms of group theory.

Consider 6-tuples (G, T;, T>, o, v, k) with these properties: 7, and 75 are faithful
inequivalent permutation representations of G, both of degree 6k; y: G— S, %X S, is
a surjective homomorphism; ¢ =(a(l),...,a(r)), G(6)=G and o(1)---a(r)=1; and
if pry:S,xS8;—8,, pry:S;%xS;—5; are the projections, then

(priew)a(r)=(1 2)=(pr, © w)(a (1)),

(pr,ow)o@N=1, i=2,...,r—1, (18a)
and

(pryopa(r=0321), (pryeow)a(2)=(13),

(praop)@(B3n=(12), (proow)a(@)=1, i=1,4,5,...,r—1. (18b)

In addition:

r

Y ind(T(e(j))=26k~1), i=12; (192)
=1

J=
T(a(r) and T,(a(r)) are both 6k-cycles; and (19b)

G(T,) is intransitive under 75, but there is no length 1 orbit. (19¢)

Theorem 2.6. The (2, 3)-problem has an affirmative solution (equivalently, there ex-
ists hereditarily irreducible (h’,g)Ye PQ2,3)) if and only if there exists
G, T, T, 0, v, k) satisfying (18) and (19).

From Theorem 2.3 the selection of (#’, g’) only depends on the group theory of
the branch cycles for the maps given by (4, g’). That means that the composite of
the splitting fields of the field extensions defined by A4’ and g’ must have a descrip-
tion of branch cycles that satisfies (18a) and (18b). Any representative pair of
polynomials will suffice. Thus with no loss, in the (2,3)-problem, we could ask if
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(%, x(x— 1)(x—2)) € P(2,3) is hereditarily irreducible. We will use k as a parameter
by showing that (G, T, T», 6, v, k) does not exist for k=1 or 2. That is, neither
k=1 nor 2 works in the (2,3)-problem (note: k=2 did work in the (2,2)-problem).
The next arguments, however, have general application.

Definition 2.7. Suppose that f(¥) =f,(/(»)) with £, f;, € C[ y]. Call this decomposi-
tion of f in general position if the images of the finite branch points of f;: PX1 —>lel
under f; are all distinct and also disjoint from the finite branch points of
S lel :*iyl

Let C(x) be the Galois closure C(x)/C(y) with f(x)=y as in Section 1 (similarly,
for C(x,)/C(y) with fi(x;)=y where x,=/;(x)). Denote by C(x|x,) the Galois
closure of the extension C(x)/C(x,).

Lemma 2.8 (Fried [4, Lemma 15]). Let f=f,(f;) with fi, /€ C[x]. Then there is an
exact sequence

1= H~GEM/C()— GETE)/C()~1 (20)

where H is isomorphic to a subgroup of G(C(x|x1)/C(xl))d°g(f‘) that maps
surjectively to G((C(x}xl)/C(xl)) under projection onto each coordinate. In
addition, if the decomposition of f is in general position, then H is isomorphic to
G(C(x|x;)/C(x;)) ¥, [

As explained above, if k works in the (2,3)-problem, then there exist 4,, g, € C[x]
with deg(h,) =3k, deg(g,)=2k and V((#, Y —g,(g, — )(g; —2)) is reducible.

Lemma 2.9 (W. Feit and L. Scott). If h, and g, satisfy the properties above, then
the decomposition of (hl)2 is not in general position (i.e., Definition 2.7 — either
0 is one of the branch points of h, :P;—»le or one of the branch points is the
negative of another).

Proof. Go back to the formulation in expressions (18) and (19). From Lemma 2.8
the general position assumption implies

pry°y
1-H\ xH,»G—§,—1 2D

is exact. Here H;=H,(=G(C(z | x)/C(x))) and conjugation by G interchanges
H; X1 and 1x H,. pryow
Let M =Xker(y). Since S; has but one proper normal subgroup and H, X H,——S;
is surjective, either H;x 1 or 1x H, maps surjectively to S; by pr,© . Since H, x 1
and 1 x H, are interchanged by conjugation, H; X l/(H,Xx )N M=S;. But M’ =
M/AH, x 1O M) X1 X HyNM)=S;is a normal subgroup of (H, X 1/(H; x INM)) x
(I xH,/(1x HyN M))=8,;%S,. To conclude the lemma check that there is no such
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normal subgroup of S; X S; stable under an automorphism interchanging the two
factors. [

Proposition 2.10. In the notation of Theorem 2.6, neither k=1 nor 2 works in the
(2,3)-problem.

Proof. The case k=1, although not trivial, is immensely easier than the case
k=2. Therefore we do only the latter. As in previous notation let A=(h 1)2,
g=g1(g— (g —2) with deg(h))=6, deg(g)=4 and (&, g)e #(12,12) newly
reducible. This use of actual polynomials will be a mnemonic aid for following these
truly group theoretic arguments while still incorporating the Riemann-Hurwitz con-
ditions (19). Define x and z by A(x) =y and g(z) =y. Also let #,(x) =x, and g,(z) =2,
(i.e., x3=y). From Lemma 2.2, C(x)=C(z) and we denote G(C(x)/C(»)) by G.
Call meC[w] a cyclic (resp., Chebychev) polynomial if, with m(w)=y,
G(C(w)/C(p)) is cyclic (resp., the dihedral group of degree deg(m)). If m is indecom-
posable and neither cyclic nor Chebychev, then, in the notation prior to Lemma 2.3,

T'(h) is doubly transitive [4, Theorem 1]. (22)

Let H, (resp., H, be the kernel of res: G(C(x)/C(y))— S, (resp., res: G(C(z)/
C(»))—S;). Since C(x) =C(z), |H,| =3 |H,|. From Lemma 2.8, | G(C(x| x,)/C(x)))]
(resp. |G(C(z|z1)/C(z)))|) divides |H,| (resp., |H,|) which in turn is a proper
divisor of |G(C(x|x,)/C(x))|* (resp., a divisor of |G(C(z|z)/Cz))|>. If h, is
indecomposable, then (22) implies that G(C(x[xl)/C(xl)) is doubly transitive. Thus
|H,| is divisible by 5. But, G(C(z|z,)/C(z;)) C S,, and 51 \H,| — a contradiction.
Thus h;=h,(h,). Divide into two cases.

Case 1. deg(h;) =2, deg(h,) =3. Decompose 4 as hj(h5) with k)= (k,)?, hy=h,.
Easily exclude the possibility that 4] is a cyclic polynomial. From Lemma 2.8 there
is an exact sequence 1= H’' - G — G(C(%,)/C(»))— 1 with %, =h,(x) and H’ a sub-
group of (S3)4. Since (4, g) is newly reducible G, =G(7(g)) is a subgroup of G of
index 12, intransitive under 7'(h), with res(G,) (restriction to C(¥,)) transitive in the
representation given by the cosets of G(C(%,)/C(%,)). Also

(G:G))=12=(H": HNG)GCF)/T()) : res(G))).

As the subgroup of S; of order 3 is transitive, note that G, is transitive if 3
divides |H’NG;|. Conclude that only one power of 3 divides H’. Clearly A is a
Chebychev polynomial: |G(C(%,)/C(y))| =8. Therefore |H,| is a power of 2 and
g1 is also a Chebychev polynomial. Conclude from the following argument applied
to g, contrary to the above, that res(G,) is intransitive.

If m, is a Chebychev polynomial of degree 3 and m, is a Chebychev polynomial
of degree 4, consider m = m(m,) and the exact sequence 1 H,, » G(C(w)/C(y)) —>
G(C(w)/C(y)— 1, with m(w)=y, my(w)=w,. Suppose H, is a subgroup of
G(C(w)/C(y)) of index 12. Since |H,,| is a power of 2 and G(C(w,)/C(y))=S;,
conclude that (G(C(w;)/C(y)) : res(H,)) is divisible by 3, so that res(H,) is intransi-
tive.
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Case 2. deg(h;) =3, deg(h;)=2. Apply the argument of Case 1 to get an exact
sequence 1—>H’—>G—>G(WX1)/C(y))—> 1. Analogous to Case 1, G is transitive if 2
divides |H'N G| (and A" is a power of 2). Thus, from the formula for (G : G,) =12
in terms of (H': H'NG,), we have |H'| =2 or 4, and |G| divides 2-(6)*- 4.

If g, is not a Chebychev polynomial, then H, has S, as a quotient (Lemma 2.8).
Thus |G| has 4-3-2-3-2=67-4 as a divisor of its order (and |G| divides 6°- 8).
The final argument of the proof will exclude this case, so that g is a composition
of Chebychev polynomials and we conclude by the last paragraph of Case 1.

Suppose now that g; is not a Chebychev polynomial. Consider u(z;)=
Z)(zy—1)(z;—2) as a map on the 3 finite branch points z;(1), z,(2), z;(3) of
g :le —>le]. If u(z (1)) is distinct from the branch points of the map given by u,
and also from u(z,(J)), j=2,3, it is easy to conclude, for f replaced by g=u(g,) in
Lemma 2.8, that |H|=(12)’. This contradicts the observation, above, that |G|
divides 6*- 8.

Lemma 2.9 implies that 2= (A, (/72))2 has 3 (and not 4) finite branch points. This
leaves only 2 possibilities up to reordering of branch points:

u(z (1)) =u(z,(2)) = u(z,(3)), (23a)
or
u(z;(1)) is one of the branch points of v and u(z;(2)) =u(z,(3)). (23b)

We write out typical branch cycle generators for the image of G in S, under 7(g),
where o(1) corresponds to u(z,(2)) in each case, g(2) and a(3) correspond to the
finite branch points of u and g(4)=(1 2--- 12)"! corresponds to o. In this case the
action of G on the sets X;={1,4,7,10}, X,=1{2,5,8 11} and X3={3,6,9, 12} gives
the map res: G—S;.

A typical case for branch cycles in case (23a) is given by

a()=@2 56 9)(1 10),  a(2)=(4 3)(1 97 6)10 12),
a(3)=(1 5)2 4)(7 8)(10 11). 4

From the above, the order of H, cannot exceced 8-6 (i.e., the kernel of pro-
jection of H, on any factor of (S4)3 has order at most 2). But H, contains
a(1), o(4), and a(j)a(1)a(j) !, j=2,3,4. Thus H, contains g(2)a(1)a(2)a(1) =
(1. 7)(9 12)(6 9)(1 10)=(1 10 7)(6 12 9): the kernel of the projection of H, on the
Ist factor of (S4)3 has order at least 3. This concludes the exclusion of (23a).

A typical case for branch cycles in case (23b) is given by the form

o)=2)2), d@)=Q)D@), B3)=Q2)22)2) 25

where a(1) leaves the sets X, X,, X; fixed. In this case it is obvious that the kernel
of the projection of H, on the Ist factor of (S,)* has order exceeding 2. [

Although long, the proof of Proposition 2.10 is based on clear algorithmic prin-
ciples involving permutation groups with many systems of imprimitivity; a sharp
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contrast to the technique that gave the results for newly reducible (4, g) with # in-
decomposable (as following Example 2.4). Alas, it may require the skills of a real
group theorist to turn the ideas of Proposition 2.10 into a complete solution of the
(n, m)-problem.
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