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A geometrically interpretable condition on a correspondence between two 
algebraic varieties of the same dimension is considered and gives rise to the name 
finite correspondence. After an algebraic characterization of finite correspondences 
the paper considers many contests in which the concept appears to be very 
attractive and historically motivated. 

Suppose that V and W are algebraic varieties of the same dimension which 
are 2-schemes where the structure morphisms V Ã‘î  Z and W are 
finite morphisms. If U is a correspondence between V and W fitting into a 
commutative diagram, 

we say thai U is a finite correspondence on V and W. In Section 1 we start with an 
apparently weaker correspondence theoretic definition of finite correspondence. 
In Theorem 1 these two definitions are shown to be equivalent. The main 
problem may be phrased in the following way: Given varieties V and W, explicitly 
describe the finite correspondences between them, or (alternatively) given an 
explicit set of correspondences between them describe the subset of corre- 
spondences which are finite. 
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A plethora of influences have shaped this paper. McConnell and Berkson [2] 
starting from [8] gave a suggestion toward a useful characterization of finite 
correspondences in the category of compact Riemann surfaces. They left as an 
unsolved problem the production of an algebraic proof of this and their other 
results. We respond to their preprint with the sought for algebraic generaliza- 
tions of their results (Section 1). In  their simplicity these results fairly begged 
for illuminating illustration. This too we provided (Section 2). Our motivation 
for these examples was some infinished business in ongoing arithmetic investiga- 
tions of the fibers of the Picard bundles of algebraic curves [6]: work parallel to 
investigations by MacRae [12] and MacRae and Samuel [13]. 

Much of this might have remained private except that we heard a lecture 
given by P. Griffiths at UCLA on a "modern" treatment of a classical problem 
solved by Poncelet. Since Griffiths' lecture inspired the name Poncelet corre- 
spondence for the examples of Section 2, we explain in some detail. 

Poncelet considered the problem of the inscription of a polygon between two 
(real) nonintersecting plane conics. Let <^d and Vy1 be the real points of these 
plane conics, where G1 "surrounds" Vn2 in R2. There is a natural corre- 
spondence between Vml and qn2 given by p E Vyl corresponds to the points 
ql and 9% e gR2. where the lines from p to yl and ip, are tangent to Vm2. Also, 
ip gig2 corresponds to pl and pz e %y, where pl and pg are the points of inter- 
section of Cgl and the tangent to at ip. Let 22 be this correspondence on 
y1 x 9. Then 9 is of degree 2 over (if1 and W. The existence of the inscribed 
polygon is immediately (from Theorem 1 of Section 1) seen to be equivalent to 
the property: Q is a finite correspondence. T o  compute the genus of 3> we count 
the ramification points of the cover 9 -+ V^: the points p e '871 such that the two 
tangents to $9 from p are coincident. Since there are four such points, the 
Riemann-Humritz formula implies that the genus of Q is 1, and the situation is 
exactly that of Section 2. We have treated the investigation of the conditions that 
characterize such a Poncelet correspondence and the further conditions that 
guarantee that the correspondence is finite, over an arbitrary field. Such generality 
is compatible with the arithmetic considerations of [6, 12, 131. 

There are several immediate directions of investigation suggested by the 
completeness of these characterizations of Poncelet correspondences. A non- 
obvious generalization arises when we consider the transversal intersection of two 
nonsingular quadrics and 1$̂  in P3. Over an algebraically closed field each of 
these quadrics is isomorphic to P1 x P1, and the intersection Â = f f {  0 ŷ  
is an elliptic curve. The projection morphisms of Â on the various copies of P1 
provided by the isomorphisms of ŷ  with P1 x P1 (i = 1,2) are all of degree 2 
and thereby give rise to 4 involutions whose properties are described in 
Section 4.B. Indeed, these involutions give rise to the same geometric involu- 
tions to which Griffiths and Harris [lo] associated a polyhedral figure inscribed 
between the real points of ,$'? and . This polyhedral figure is finite if and only if 
the four associated involutions generate a finite group of automorphisms of 8. 



We observe the connection between the transversal intersection of quadrics in 
P3 and the theory of "2-descent of elliptic curves in Weierstrass normal form" 
in order to obtain generalization of the results of [lo]. These results are presented 
both in geometric form (i.e., over an algebraically closed field in Section 4.B) 
for simplicity, and then in arithmetic form for the sake of completeness of the 
relationship of this problem to the arithmetic of elliptic curves (in Section 4.C). 

The discussion of Section 4 concludes with further problems. We mention 
one suggested by Griffiths in private correspondence. Consider possible analogs 
of the situations above for two quadrics in Pn (n 2 4). In this connection Griffiths 
pointed out that the intersection of two transversal quadrics in P5 is a quadric 
line complex: a variety with doubly infinite families of lines, each family indexed 
by a point of the Jacobian variety of a hyperelliptic curve of genus 2 (see [29] 
for this and other interesting facts on intersections of quadrics). 

Surprisingly, there are few situations where it is easy to explicitly characterize 
the finite correspondences even on algebraic curves. In fact, an explicit descrip- 
tion of the finite correspondences of genus 0 on a pair of genus 0 curves would 
appear to be extremely difficult. Diophantine problems suggest the usefulness of 
such a description (as in [5 ] ) .  In Section 3 we take the opportunity to interpret 
a very deep theorem due to Ritt [16] that may suggest a route to further charac- 
terizations. We have tried to make as explicit as possible the relationship between 
the material of Section 3, formal groups, and the theory of Complex Multiplica- 
tion. Indeed, all the correspondences considered in this paper are in some way 
related to group laws; most coming from the group law on an elliptic curve or an 
Abelian variety. Still, we would predict that it is naive to think that all interesting 
examples will arise in this way. See for instance, the comments and example of 
Section 2.B. 

Our last motivation for this paper comes from a lecture presented by William 
Messing (in one of the 1975 meetings of the Southern California Algebraic 
Geometry Seminar) on Grothendieck's conjectural theory of motives. Naively 
put, the theory conjectures that all reasonable cohomology theories on algebraic 
varieties can be obtained from the theory of algebraic correspondences. Although 
Grothendieck's theory is not conjectural in the case of curves, many interesting 
results and problems about curves (and higher-dimensional varieties) suggest 
consideration of a motivic fundamental group. We were especially interested in 
the extent to which finite correspondences might be viewed as generators of 
other correspondences. 

There are important unsolved problems listed at the end of Sections 1,3, and 4. 
Although the description of quadrics given in Section 4.A may well be classical, 
we know of no reference. Much of this description we learned from B. Bennett. 
The reader need not read Section 4.24 except to see, most clearly, how the author 
sees that the ideas of Section 4.B should be generalized to higher-dimensional 
quadrics in Section 4.C. 
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1.A. Definitions and Proof of the Main Theorem 

Let F be an arbitrary field. For any field L we let L be a fixed algebraic closure 
of L. For V an (irreducible and reduced) algebraic variety defined over F we let 
F(V) be the field of $'-rational functions on V. Let U, V, W be normal algebraic 
varieties of dimension n where: U C TT x W, and; the projections 
pry: V x W-+ V, pry: V x W-+ W are finite morphisms when restricted 
to U. We regard U as a correspondence between V and W. 

For p e V, define U(p) = pr,r(U - ( p  x W)). Similarly, for q E W define 
"[/(a) = pry(Um (V x a)). If V = W we denote by Utn) the nth iterate of the 
correspondence U. All field extensions of this section are to be regarded as 
contained in a fixed algebraic closure of the function field F(U). 

The correspondence U is said to be a finite correspondence if there exists an 
integer n > 0 such that 

For vgen a (Well) generic point of V this expression is equivalent to 
(̂ U o C~')<~](vgen) = (trU 0 U)(n+l)(t,gen), The minimal integer n for which 
expression (1.1) holds is called the period of U ,  denoted Per(i7). 

In this section we compare the following field theoretic properties. 

(H.1) F{V) (and therefore is a finite extension of F(V) n F(W); 

(H.2) there exists a finite extension M of F(V) and F(W) such that M is a 
normal extension of both F(V) and F(W}, and; 

(H.3) the statement (H.2) holds and Aut(At/F(V)) and Aut(W{W)) 
together generate a finite group of automorphisms of M. 

It  is clear that for the consideration of each of (H.l), (H.2), and (H.3) we may 
assume (with no loss) that F(U) = F(V) -FO. In the main theorem of this 
section we show that U is a finite correspondence if and only ifproperty (H.1) holds. 

LEMMA. The properties (H.1) and (H.3) are equivalent. 

Proof. We show that (H.1) implies (H.3). Under the hypothesis (H.1) we 
consider Qy (resp. Qw) the normal closure of F(V)/F(V) nF (W)  (resp. 
F(W)j'F(Tf) n F(W)). Then M = Qv . Qw is a normal extension of F(F) f i  F(W) 
containing F(V) and F(W) and so At is a normal extension of both F(V) and 
F(W). Since M is a finite extension of F(V) n F(JV), Aut(M/F(V) n F(W7)) is a 
finite group. Therefore the subgroups Aut(M/F(V)) and Aut(lM/qFF)) generate 
a finite group of automorphisms of At, and (H.3) holds. 

Conversely, we assume that (H.3) holds. The fixed field of Av.t(~vj'F(V)) 
{resp. Aut(M/F(W))) is a purely inseparable extension Ly (resp. Lw) of F(V)  
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(resp. F(WJ). Also, the group generated b y  Aut (MjF(V))  and Aut(MiF(R7)) is a 
finite group G with fixed field L v  0 L w  . T h u s  L v  (resp. L y )  is a finite extension 
o f L v  n Ly . W e  have only t o  demonstrate that this implies t ha tF (V)  (resp. F ( W ) )  
is a finite extension o f F ( V )  n F(W) .  

Let J be the characteristic o f  F, and let pe (resp. p f )  be the exponent o f  the 
inseparable extension Ly lF (V)  (resp. LwlF(W)). T h e n  fF(V):F (L,,)fle] (resp. 
[F(W):F - ( ~ ~ ) d ] )  is finite, since F ( V )  (resp. F (W) )  is a finitely generated 
extension OW. Let m be the maximum o f  ps and p f .  Then ,  

T h e  terms in the last expression are finite, so [F(.V) : F ( V )  t̂ i F ( W ) ]  is finite, and 
(H.1) holds. 

THEOREM 1. Let U ,  V ,  W be normal F-varieties of dimension n ,  as at the 
g i n n i n g  o f  this section. Then U is a finite correspondence on V x W i f  and only i f  
there exists an F-variety Z such that 

is a commutative diagram where f y  and <pw are finite morphisms, Vi (rest. WI and 
U-,} i s  a Zariski F-open subset of V (resp. W and U ) ,  and pry (resp. pry) i s  the 
restriction of prv (resp. prw) to U,. 

If  U is a finite correspondence, then we may choose Z so t ha tF (2 )  = F ( V )  n F ( W )  
where F(V) and F(W) are regarded as subfields of F (U) .  With this choice. U is a 
separable correspondence (i.e. pr,, and pry are separable morphisms) i f  and only i f  
fpy an+ are separable morphims. I n  addition, Per(U) = 1 if and only i f  U(v) = 
f';l(yv(p)) for all p for which both sides are defined. 

Proof. T h e  existence o f  the commutative diagram o f  expression (1.2) is 
merely a geometric restatement of the field theoretic property (H.l), where 
F (Z )  is taken to be F ( V )  r\F(W). In order to facilitate our field theoretic proof, 
we let w*en be a (Weil)  generic point o f  U .  T h e n  vgf"i = prV(u@n) (resp. wgen = 
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pry(ugen)) is a generic point of F (resp. W). Then, with no loss, we may identify 
F(ugen) with F(  17). 

n n 
Let F(ugen)^ (resp. *sea)-) be the normal closure of F(ugen)/F(vgen) 

(resp.F(ug^)IF(wgen)). Let w{l) = ween, ..., w ( ~ )  (resp. v(l) = vgen, ..., v^} be the 
n 

conjugates of ween (resp. vgen) under the action of A~t(F(~gen)~~en/F(~g'n)) (resp. 
n 

A u t ( F ( ~ g e n ) ~ ~ ~ ~ / * g ~ ~ ) ) .  Then the collection {wfll, ..., wf8)} is identified with 
U(vgen), and the collection {v(l), ..., v ( ~ ) )  is identified with trb7(toSen). With 
the obvious continuation of our notation I J ~ ~  ^U(wfi)) is identified with 
^U 0 Â£7(vg*'n.) Successively we form the tth iterate (̂ U 0 U)tt) applied to vgen. 

From. the previous lemma we must show the equivalence of property (H.3) and 
the condition that Â£ is a.finite correspondence. 

First we assume that U is a finite correspondence. Let M be the composite 
of the fields 

-&fttl(ogenj = Qv*; V* ( t ru  U)(ti(vgen)) 
and 

Af(?wgen) = F(w*; W* e (Â£ tr [7)fO(wgen)), 

where t is the period of U. These are finite extensions of both 
F(wgen). 

Step 1 .  We show that M is a normal extension ofF<vgen) and F(wS^). 
Define V(vgen) (resp. W(wgenj) to be (^U o U)W(vgen) (resp. ( U  o trU)(*)(wgen)). 

Since M is generated by the coordinates of the elements of V(vgen) \J W(wgell}, 
we have only to show that the conjugates of each element of V(vgen) u W(wg^) 
over F(Gen) (resp. F(Men)) are in V(vgen) u W(wgen). 

I n  order to be specific, consider the conjugates of w* e W(wgen) and 
v* e v(vgen) over F(vgen). We do an induction on i (resp. j), where i (resp. j) is 
the minimal integer such that w* e ( U  0 trU)(i)(wgen) (resp. v* e (trUo W)(vgen)). 
There exists w** e ( U  0 trZ7)(i'-l)(wgenj such that w* e (Â£ 0 ̂ U)(w**). Let w' be 
a conjugate of to* over F(vgenj. Thus w' corresponds to an embedding of 
F(vge11, w*) into the algebraic closure of F(vgenj. This embedding extends to an 
embedding of F(vgen, w*,  w**) into the algebraic closure. We let w" be the 
conjugate of w** corresponding to this embedding. By the induction assumption 
w" e W(wgen). Since w' E (U 0 trU)(wn), w' E W(wg^). Thus, every conjugate of 
w * is in W(wgen). The argument for v* is similar. 

Thus M is a normal extension of Ffvgen) and of F(wgen), and the argument 
above easily shows that it is the smallest normal extension of both F(vgen) and 
of F(wgen), 

Step 2. We shozo that Aut(M/F(vgenj) and Aut(M/F(wg^)) generate a finite 
group of automorphisms of M. 

Indeed, the groups Aut(MIF(vgenjj and Aut(M/.F(wn)) act faithfully and 
transitively on the finite set of elements of F(v@n) u W(w@n). Thus we obtain 



PONCELET CORRESPONBENCES 473 

an embedding of the group generated by Aut(M/F(ogen)) and Aut(W(wgen)} 
into the finite group of permutations of V(vgen) u W(wgen). This shows that the 
group generated by AuqM/F(vgen)) and Aut(M/qwgen)) is a finite group. We 
conclude that property (H.3) holds. 

Conversely, let Af* be a normal extension of -F(vgen) and of F(wgen) such that 
Aut(M*/F(vgen)) and Aut(M*;'F(wgen)) generate a finite group. From the last 
comment of Step 1 (above) we see that for each integer t', W p g e n )  M^')(wgen) 
is contained in M*. Note that, in no essential way did we use the fact that 
t = Per(U) in Step 1 is a finite number, until the final conclusions of the 
argument. We now can conclude that AT = Gsi Af')(vgen) * M^j(wg^) is 
a finite normal extension of bothF(oget1) andF(wgen). The group Aut(M1/F@se*)) 
resp.  Aut(M'/F(a^en))) is a quotient of the group Aut(MWi*en)) (resp. 
A.ut(M*/F(@en))). Therefore, the hypotheses imply that the group G'generated 
by Aut(Mi/F@gen)) and Aut(Mr/F(w@n)) is a finite group. 

From the argument of Step 2 above, 6' acts transitively on the elements of 
W[agen) = u,"_ '-1 ( U  o t'-Ll)(t')(wgen) and on the elements of V(veen) = 
Ut,=i(trU 0 U}(t')(vgen). A group acting transitively on an infinite number of 
elements must be infinite. Therefore W{wW1) and V(ogen) are finite sets, and U is 
a finite correspondence. 

I n  the case that U i s  a separable finite correspondence we conclude in the above 
argument that JI'/F(vgen) and M'jF(wgen) are Galois extensions. Therefore the 
fixed field of the group generated by .Aut(M'/F@gen)) and Aut(Af'tfYa'genj) is 
exactly F(@en) n F(a^en). Thus F@gen) (resp. F{wge*)) is a separable extension 
of Ffvgen) qwge*). This shows that the morphisms W y  and pry , in the state- 
ment of the theorem, are separable. 

In order to conclude the proof of the theorem we have only to characterize 
the conditions under which a finite correspondence U has period equal to 1. I t  is 
clear that if t is the period of U, then (^U 0 L')(t)(@en) consists of the points of 
y;l(yv(i.m)). In the case that t == 1, this is clearly equivalent to U(vg6n) = 
y;l(yr(vgen)). The specialization of vgen to any point p of V gives the result. 

1 .B. Galois Correspondences and Comments 

Let U ,  V, W be normal F-varieties of dimension n, where U C V x Wand the 
projections prv: U-+- V and pry: U +  W are finite morphisms. Suppose that 
there exists a finite extension M of F(U) such that property (H.2) holds: M is a 
normal extension of F(V) and of F[W). 

DEFINITION 1.1. Assume the hypotheses above hold. Then we say that U is a 
normal correspondence. 

DEFINITION 1.2. Assume in addition to the hypotheses above that M is 
a Galois extension ofF(l-7') and of F(W). Then we say that U is a Galois corre- 
spondence. 
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There does not seem to be such a nice characterization of normal (or Galois) 
correspondences as the characterization of finite correspondences provided by 
Theorem 1. However, some simple observations serve to make the relationship 
between normal correspondences and finite correspondences less mysterious. 
The lemma of Section 1.A shows that a finite correspondence is a normal 
correspondence. 

Conversely, suppose that U is a Galois correspondence between two curves V 
and W. For simplicity's sake we assume that the field F is of characteristic zero 
(or just that it is a perfect field). Denote by g(U) the genus of the nonsingular 
(i.e., normal) curve U. Then g(U) g(V) with equality if and only if either 
g(U) = 0 or, q(U) = 1 and, pry: U +  V is an unramified cover. Also, as is 
well known, a curve of genus greater than 1 has only finitely many automor- 
phisms. Therefore, if U is not a finite correspondence, we must haveg(U) = 0 or 
1. Indeed, the problem of finding Galois correspondences U between non- 
singular curves V and W which are not finite correspondences is equivalent to 
finding function fields M,F(V), and F(W) in one variable such that: 

(1.3) M is of genus 0 or 1 and M is a Galois extension of both F[V) and 
Fo, and; 

(1.4) the Galois groups G ( v ( V ) )  and G{M/F(W)) generate an infinite 
group of automorphisms of At. 

Although we have never seen it written down explicitly, it is not hard to 
classify the set of function fields satisfying (1.3) and (1.4) since the finite sub- 
groups of automorphisms of a genus 0 or genus 1 curve are well known. 

When M and F(V) ale of genus 1, the description follows from the isogeny 
theory of elliptic curves as in [3]; so that when M,  F(V), and F(W} are all of 
genus 1 any Galois (more generally, normal) correspondence is automatically 
a finite correspondence. When M is of genus 1 and F(V) is of genus 0 the des- 
cription is started with the ideas that appear in Sections 2 and 3 of this paper. 
In Section 2, in particular, we are provided with Galois correspondences that are 
not finite correspondences. When M is of genus 0, the description can be obtained 
from the explicit list of finite groups of automorphisms of a genus 0 curve 
given in [4, p. 1331. The nonexceptional groups of [4, p. 1331 also provide many 
examples of Galois correspondences that are not finite correspondences. In  [9] 
some other examples are discussed explicitly in the case that Mis  ot genus 0. 

Our next comment also is related to the topics of [9].  Again let us assume that 
U is a finite correspondence between nonsingular curves V and W, where V 
and W are of genus 0. Assume also that V and W haveF-rational points so that 
F ( V )  = F{x), F(?V) = F(y) ,  and (by Luroth's theorem) F(V) pi F(W) = F{a) 
where x (resp. y) is a uniforming parameter for V (resp. W\ and f (x) = z = h(y) 
for some rational functions fo, h(X) eF(X), where X is an indeterminate. In 
this case, the curve ?7 corresponds to a divisor off (x) - h(y), a rational function 
of two variables with the variables separated. The period of U is 1 if and only if 



PONCELET CORRESPONDENCES 475 

f ( x )  - h(yl is irreducible as a rational function in two variables (i.e., cannot be 
written as a product of two rational functions in two variables, both of lower 
degree). The reducibility of special rational functions in two separated variables 
occurs as a phenomena related to many interesting Diophantine problems (as in 
[S]). Only in the case thatfand h are polynomials is there a good theory of such 
reducibility (see [71). 

From the uniqueness of a complete normal model of an algebraic curve, in 
the case that U, V, Ware complete normal curves, the birational character of the 
conclusion of Theorem 1 can be strengthened to: There is a complete normal 
curve Z fitting in a commutative diagram 

One last concept is of special value and still is not well understood, even in the 
case of curves. For simplicity assume that U is a separable correspondence, but 
is not a finite correspondence. We say that p G V is an exceptional point for the 
integer n if the cardinality of the support of ( ^U  0 i^7)(")(p) is less than the car- 
dinality of the support of (^U 0 Â£/)(f3)(vge^) where vgen is a generic point of V. 
The coordinates of the points of the set (^U 0 U)tm)(vgen) generate a finite 
extension of F(vgen) which we denote by F(vgen){^. Clearly, p is an exceptional 
point for the integer n if and only if p corresponds to a place ofF(vgen) ramified in the 
extension F(vgen)(*). We say that the exceptional point p G V is finite if for some 
positive integer n the support of ( ^ U o  Lym) (p )  is equal to the support of 
(tr (7 (7) ("+I) (PI. 

PROBLEM 1. For U, V, W normal varieties of dimension n (with special atten- 
tion to dimension 1 )  give an explicit characterisation of the points p G V that are 
finite with respect to the correspondence U on V x W. 

2.A. Poncelet Correspondences 

Wc retain previous notation except that we assume that F is a perfect field of 
characteristic different from 2. For p a point on a projective variety V let F(p )  be 
the field generated by inhomogeneous coordinates of p.  
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In  the introduction we considered Poncelet's problem. Compatible with that 
discussion we say that a correspondence U on V x W is a Poncelet correspondence 
if U, V ,  W are complete nonsingular curves defined over F, and: 

(a) U is of genus 1; 

(b) V and Ware of genus 0; 

(c) pry: U -+ V and pry: U-+ W are degree 2 morphisms (2.1) 
(defined over F) ,  and; 

(d) V and W have F-rational points. 

Our emphasis is on the curve U, and the constructions of this section can be 
stated entirely in terms of properties of U. We do not assume that U is an 
elliptic curve (i.e., U has a 3'-rational point). We use the phrase the inscription 
problem of Poncelet has an affirmative anszve;, if the Poncelet correspondence U is a 
finite correspondence and if V and W are represented by plane conics (as 
explained in Part C of the proposition below) having no common 3'-rational 
points. I n  the discussion of Poncelet's problem in the introduction, the field F 
was R. 

Basic Problem. For a given U of genus 1, describe explicitly all pairs (V, W) for 
whichthe inscription problem of Poncele't has an affirnzative anszoer. 

Let J(U)Ln1 (resp. J(U)p]) be the component of the Picard variety of U 
corresponding to divisor classes (resp. 3'-rational divisor classes) of degree n on U. 
Denote by U(") the symmetric product of Uwith itself n times. There is a natural 
morphism 

such that for p e J(U)Lnl the fiber (U("')? over p consists of the positive divisors 
in the linear system represented by p. From the Riemann-Roch theorem (U("))? 
is a complete projective algebraic variety defined over 0) and (U^)? @ p  is 
isomorphic to PN(F) for some integer N. Indeed, for U of genus g and for 
n 2 2g - 1, N = n - g (independent of p). I n  our case U is assumed to be of 
genus 1, so N = n - 1. 

Now we consider a functorial way in which to obtain covers U -pry V, where 
V is of genus 0 and the degree of the finite morphism prv is n. Consider the 
diagram 

y1n1 *("I 
U x U("-1) -- U('n) Ã‘Ã J(U)[nI, (2.3) 

I 

where pr, is the projection of U x U(n-l) onto its first factor, and; for q e U, D 
a positive divisor of degree n - 1 on U, Y(") maps (q, D) to q + D e U1"). 
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For p 5 J(lJ}p consider a closed subscheme V of the fiber ( U ( n l ) p  for which: 
V @F is a line in the projective space (V")),, @p,  and; the linear system corre- 
sponding to ir @ F (of dimension 1) is free of basepoints. From (2.3) we obtain the 
diagrams 

and; 

where is the restriction of pr1 to the fiber over p, and; V is the pullback of V 
under Y1,"). From the above remarks we easily conclude that Fl: V - U is an 
isomorphism, and we define U -^^v V to be the morphism obtained from 
Y" 0 

THEOREM 2. Part A. Let U be a complete normal curve of genus 1 defined over 
3'. The pairs (V, W^j for which (2.1)(a), (b), (c) hold are in one-one correspondence 
with distinct pairs of points on J(U)^. I n  addition, (V, W )  gives a Poncelet corre- 
spondence (i.e. (2.1)(d) holds) i f  (V, W )  corresponds to (pi , pa) e J(U)',21 x J ( U ) p ,  
where pi and pv are both represented by F-ratwnal divisors of degree 2. 

Part B. Let J(U)W x J(U)@] -+= J(U)fol be defined by 4 p i ,  pa) = pi - pz 
(regarded as a divisor of degree 0). I f  (pi, pz) E J(LT)Fl x J (LT)p  corresponds to 
(V, W )  satisfying (2.1)(a), (b), and (c), then U is a finite correspondence on V x W 
if and only i f  a(pi , pa) is a point of finite order in the elliptic curve structure on 
J(U)W. 

Part C. Suppose (p ,  , pa) e J(Lr)[21 x JW)̂  corresponds to a pair ( V ,  W )  
satisfying (2.1)(a), (b), (c), and (d). Then V (resp. W )  is represented by a plane 
conic from the linear system associated to the divisor prv(DZ) (resp. pry(D,)) on V 
(resp. W\ where Dl (resp. Zy is a positive F-rational divisor of degree 2 repre- 
senting pi (resp. pa). .@" these plane conics have no common F-rational points, then 
(pl , ps) provides an affirmative answer to the inscription problem of Poncelet. 

Proof of Part A. If (p ,  , p,) e J ( U ) P  x J(U}P, we obtain the pair (V,  W) 
from the discussion preceeding the statement of the proposition in the case w = 2. 
Conversely, assume that UÃ‘i- V is a degree 2 morphism of nonsingular curves 
with V of genus 0. Then the fibers of <p give a one-dimensional linear system of 
divisors such. that the divisor class (of degree 2) is defined over F. Thus <p 
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corresponds to a point of J(U)p]. This divisor class is represented by aF-rational 
divisor if and only if V has anF-rational point. 

Proof of Part B. Assume (pi , pJ and (V, W) correspond as hypothesized 
in the statement of Part B. The morphisms U -f^v V and U 4% W (since 
they are of degree 2) correspond to automorphisms uv and uw of U. From the 
proof of Theorem 1, U is a finite correspondence if and only if uv and a,v 
generate a finite group of automorphisms of U. I n  order to check the condition 
that ay and cry generate a finite group of automorphisms of U we may (with no 
loss) extend scalars to F. Over F, J(U)[OJ and U are isomorphic so that we may 
assume that U has the group structure of an elliptic curve. For a e Up let 
denote translation by a and let T be the canonical involution on U p .  Then we 
may write uv (resp. cry) as the composition of automorphisms T_aiy) 0 T 0 TM 
(resp. T_g(w) 0 T 0 for a(V) e Up (resp. a(W) e [/p). Consider a^ 0 CJ$ = 
uv Q urv . This can be written as T2.-.& = y. Clearly y and uv generate the 
same group as in generated by uv and cry . Also, the group generated by y and uv  
is easily seen to be of finite order if and only if y is of finite order (in which case 
the group is of order 2 times the order of y). Also, y is of finite order if and only 
if the point on Up represented by 2 - a(W) - 2 . a(V) is of finite order. We 
conclude the proof of Part 3 by noticing that, in the identification of J(U)p and 
Us , %(pi , pn) represents the point 2 - a(W) - 2 . a{V\ 

Proof of Part C. The Riemann-Roch theorem demonstrates that V (resp. W) 
is represented as a plane conic from the projective embedding associated to the 
divisor pi&) (resp. prw(Di)). The remainder of the assertion of Part C is clear 
once we have demonstrated that the correspondence induced on V and W as 
plane conics (the Poncelet correspondence as described in the introduction) is 
the same as the correspondence given by U. Actually, this need not quite be the 
case since if U' is the Poncelet correspondence (as in the introduction) then we 
obtain new correspondences on V and W (as plane conics) by composing V 
with an automorphism of V (on the left) or an automorphism of W(on the right). 
Modulo this inexactitude, however, it is clear that U is unique. 

I n  [6] it is shown that the P1-bundle 

over the elliptic curve J{U)[?] @may be identified with the P1-bundle denoted 
in Atiyah's classification [I]. The classification over F of such surfaces is 

also considered through explicit identifications within the Brauer group over 
J(U)l 3. As an example of the kind of results obtained, we remark that if F is a 
number field and if J(U)[ 3 has anF-rational point, then the essential obstruction 
to this bundle being locally trivial in the Zariski topology over F lies in the 
quotient of the Weil-Chatelet group of J(U)[21 by the Tate-Shafarevich group of 
J(U)VS (see [3] for definitions). 



I t  is only reasonable to point out that even though the proposition is very 
explicit in its classification of Poncelet correspondences, there is no defit ive 
theory of F-rational points on an elliptic curve over an arbitrary field. Therefore 
the proposition throws the classification back to unsolved problems in 
Diophantine analysis. However, in tile case considered by Poncelet (and Grdiths, 
see the Introduction) F = R. In this case (or the case where the field is a padic  
field) the Diophntine analysis can be made quite explicit (see [11] or [3]). 

2.B. Curves Whose Jacobim is Isogeneom to a Product of Two Elliptic Carves 

In this subsection we merely want to indicate an interesting example that is 
also related to elliptic curves. Therefore we will not be as arithmetically precise as 
we were in Section I .A. 

Let p be an algebraically closed field of characteristic different from 2. Let 
Ax > A$ EP - {O, I] be distinct elements of F7 and consider the elliptic curves in 
Legendre normal form given by 

Let EF be the completion of Ei in ff2 (coordinates given by (Xi I"$ , Z), where 
Yia - Z = X(X - Z)(X - i = 1, 2. Consider the complete nonsingular 
curve b7 whose function field over F is given by F(x7 (x(x - l ) (x  - Al)1j2)s 
(x(s - l)(x - A2))lI2). An afine model for U is described by the coordinates 
{z, yl , y& There are two natural projections: 

In  this way we have presented LT as a correspondence on 27: x Ez.  Since the 
degree of pr* is 2> i = 1, 2> F(LT)  is a Galois extension of p(Ef), i = 1, 2. Thus, 
b' is a Galois correspondence on l?: x E$ (as in Section lB] ,  and therefore, 
by the remarks of Section l.B, U is a finite correspondence. Indeed, E: and l?: 
are both degree 2 covers of the x-sphere, and U is a cover of the x-sphere 
ramified of order 2 at two places each over x = 0, 1, a, Al , and & .  By the 
Riemann-Hurwitz formula the genus g(b7 of Uis given by: 2(4 + g(U) - 1) = 
xpEU (e(p) - 1) = loj where e(p) is the order of ramification of the place p in 
the cover of the x-sphere by U. Thusg{b?') is 2. 

The canonical involution T on U is induced by multiplication by -1 on 
E: x EZ7 and the quotient of U by the group generated by T is a 2-sheeted cover 
of the x-sphere ramified at x = Al and at x = &. This situation might be 
regarded as the analog of the Poncelet correspondences for genus 2 curves. The 
point of the example is, howeyer, that in a lot of ways these analogs are much 
aimpler than are the Poncelet correspondences. 
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Let F be a field of zero characteristic. Let V be a nonsingular projective curve 
over F of genus 0. Since V is a Brauer-Severi variety of dimension 1, %' is deter- 
mined up to isomorphism by its class in the Brauer group H"(F). We denote this 
class by [*?]. Let V 4%" be a finite rnorphism of nonsingular, projective 
F-curves. The following proposition appears in [6] (but it is not needed for the 
main discussion of this section). 

PROPOSITION. In the notation above: [%"I is the 0-class of P ( F )  if deg(p) is 
even, and; [%"I = [%'I if odd. In addition, if %' and n (=deg(?)) are regarded as 
given, then a morphism V --Q V' (as above) exists, with deg(n)) = n. In fact, such 
morphisms correspond to the F-rational points on an F-form of a Grassmanian. 

One of the most intriguing problems considered in [6] is the description of the 
Poncelet correspondences between two genus 0 curves V and W for which [V] ,  
[W] e H^F} are given a priori. 

In this section we consider U, V, W, where U is an irreducible genus 0 corre- 
spondence between V and W (as in Section 1). From the proposition above, the 
class [Ul e F ( F )  determines [V] and [Wl from the degree of the morphisms 
prv: U-+ V and prw: U+ W. It would appear feasible to consider versions of 
the results of this section in the case that [U] is any element of H-(F). However, 
for the sake of clarity of presentation of our version of Ritt's theorem, we 
attempt only the case where [U] = 0 (i.e., U is isomorphic to P1). 

Let t be a uniformizing parameter for P1. Since the function fieldsF(U), F(V), 
and F(W) are all isomorphic to F(t), by explicitly choosing these isomorphisms 
we may assume that U is given by a pair ( j v  , jw), where jv , jpv eF( t ) .  Such a 
pair gives a (not necessarily irreducible) correspondence on P1 x P1 by: for 
x> d, xo + jw(j$(xo)), where f (/(xo) is the collection of values to in F such that 

f v^o) = Xo . 
DEFINITION 3.1. Let Cf = ( ji , js) and C, = (gi , ggj be pairs of elements of 

F(t). We say that Cf and C, are equivalent if there exist linear fractional trans- 
formations (i.e., degree 1 elements of F(t)j 4 , 1̂ , 1 such that il(j1(l(t))) = g1(t) 

and L(f2Wt))) = 
Note that Cf gives a finite correspondence if and only if there exists j, , f4 <=F(t) 

such that jL(/l(t)) = j1(j2(t)). Also, if Cc and Cn (as in the definition) are equiv- 
alent, then Cf gives a finite correspondence if and only if C, gives a finite corre- 
spondence. 

DEFINITION 3.2. We say that Cf = (fl , jo) is a commutative correspondence 
if ji(je(t)) = j2(fl(t)). Note that if Cf is equivalent to a commutative corre- 
spondence then it is a finite correspondence. However, Cf may be equivalent to a 
commutative correspondence and not be commutative itself. 
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For two correspondences Cf , C, we introduce a multiplication Cf * C, = 

(fi^gl(t)), j m ) ) .  Note that this multiplication is not related in any simple- 
minded way to the usual multiplication of correspondences that comes from 
intersection theory. However, we have the formula 

DEFINITION 3,3. For Cf = (j1 ,,fa) we let WCf) be the set of C, = (g, , gJ 
such that f&?(t)) = gt(j%(t)) for i = 1, 2. Then, for C, E fX(Cf) we have 
c, * Cf = Cf * c, , 

Consider the free Abelian group @(Cf) on the elements of ffffCf) equipped with 
a multiplication given by *. The identity for multiplication is (t, t ) ,  and Oi(Cfj is 
easily seen to have an associative ring structure. 

Our translation of Ritt's theorem [16\ to this context amounts to an explicit 
description of the ring Ol{Cf) when Cf is an irreducible commutative correspondence. 
First we list the relevant examples of commutative correspondences. Let h e m ,  
and let h("*(t) denote the functional composition of h, n times. We regard as 
trivial the commutative correspondence Cf , where /%(t) = h'"t)(t), i = 1, 2. 
The hypotheses of Theorem 3 (below) have been contrived to exclude this case 
(i.e., if n1 , % are positive and degree h is at least 2, then ( h t v ) ,  J~(~z)(t)) = Cf is 
not an irreducible correspondence). 

Let Gm(F) be the affine multiplicative group regarded as an F-scheme. We 
write the coordinate ring of G,,,(-F) as F[t, I/t]. The automorphism group 
Aut(G,,,(-F)) is generated by a m ,  which is induced on the coordinate ring level 
by the substitution t --+ lit. An isogony $., of Gm(F) of degree n is induced on the 
coordinate ring level by the substitution t --+ tq%. We obtain a commutative 
diagram 

GJF) Ã‘Ã‘*" GJ-F) 
I I 

where f n  is the effect of 4, induced on the quotient of Gm(F) by the group 
generated by aqn.  Consider the upper row of (3.2). A geometric point to of 
Gm(F) goes to (to)" E G(F). Consider the lower row in (3.2). A geometric point p 
of Gm(P)/{an,) corresponds to the value to + l / to if tÂ e Gm(F) lies above p. Then 
fJp) corresponds to (to)" + I/(tO)". Therefore f n  is a map from the affine line 
to the affine line corresponding to the polynomial (nth Chebychev polynonlial of 
first kind) Tn(Xj for which: Tn(t + 1/t) = tn 4- l/tn. 

If and no are relatively prime integers we obtain irreducible commutative 
correspondences from 

(a) C, = (tnl, tnz) (cyclic case), 
(b) C, = (Tnx(t), Tns(t)) (Chebychev case). (3.3) 
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Consider now an elliptic curve E defined over F. Consider also: 6(E), a non- 
trivial subgroup of the automorphisms of E fixing the origin, and; H, a finite 
subgroup of points of Ep such that H i s  both 0(E) and G ( v )  invariant, and E/H 
is isomorphic to E. From this data we obtain a commutative diagram 

Since 6(E) is a nontrivial group, E/6(E) is isomorphic to P1. If 6(E) (which is of 
order 2, 4, 3, or 6) is the full subgroup of automorphisms of E fixing the origin, 
then iliy is uniquely determined, independently of the choice of the isomorphism 
of E f H  with E. Write E i n  Weierstrass normal form: 

For details on these and further comments see [3]. In each of the cases for 
&(El the function field F(E/@(E)) has a preferred generator: F(EJQ(E}) = F(a;) if 
WE) is of order 2; F(E/O(E)) = F(x2) if 6(E) is of order 4; F(EfQ(E)) == F(y) if 
S(E) is of order 3, and; F(E/O(E)) = F(x3) if 6(E) is of order 6. We let this pre- 
ferred generator be t = t(@(E)). Thus the diagram (3.4) results in a rational 
functionfn such thatfa(t) is the preferred generator of the image ofF((E/Hl18(E)) 
inF(E/@(E)) coming from the lower row of (3.4). 

If & , H z ,  are nonintersecting subgroups of E, where E and 0(E) are fixed 
then we obtain an irreducible commutative correspondence from 

-- 
THEOREM 3. In  each of the cases (3.3a), (3.3b) or (3.5) above the ring 6Y(Cf) 

is a commutative ring. In fact, we describe explicit generators C, , as follows': 

(i) In case (3.3a), C, = (th, in%), where and & run over all pairs of 
integers; 

(ii) In  case (3.3b), C, = (T,-,(t), T,-,(t)), where % and Ã̂ run over allpairs of 
positive integers, and; 

(iii) I n  case (3.5), Cy = ( fg(t), fg(t)), where and & run over all pairs 
of finite subgroups of Ec that are G(FfF) and B(IT} invariant and for which E n i ,  
i = 1, 2 is isomorphic to Ec . 

Conversely, i f  we are given an irreducible commutative correspondence Cr  , there -- 
exists a linear - fractional transformation l ( t )  such that Ol{C<is obtained from one -- 
of the rings CS(Cf) described in (i), (ii), or (iii) by: Ol(Cf)  is generated -- by C^nd-l = 

(Z('gl(l-l(t')}, ligs(l-l(t))) where C, runs over elements generating Ol(Cf). 
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Comments on the Proof. Ritt computed explicitly (in terms of special functions 
such as the Weierstrass ^-function) the pairs of rational functionsf, andfa such 
that f,(fv(t)} = f t ( f i ( t ) ) .  We have merely rephrased his results to suit our more 
arithmetico-geometrical context. However, the proof of Ritt's results are 
unbelievably complicated. Our rephrasing suggests that to each commutative 

^3. 
correspondence there ought to be a natural way to associate a formal group. 

We describe a naive approach to simplifying the proof of Ritt's results. For 
z = f ( t ) ,  f ( t }  e F ( t ) ,  let Qj<tl-x be the Galois closure of the field extension 
F( t ) /F(x ) .  Let , f n  e F ( t )  be such that Cf = (' , f J  is an irreducible commu- - 
tative correspondence. Suppose it could be established that Q, (fi}_, is isomor 

1 2. 
phic (as a function field) to Qflw_,; (resp. Qf(tl)_Ã£) Then, since Qfu-,_y C 
QfAf,(ti)-x for i = 1, 2 we deduce that the genus of Qflb{t})-x is 0 or 1, and the 
results above can be easily deduced. 

One last comment for those unfamiliar with the theory of complex multiplica- 
tion (see [18, 191). For "most" elliptic curves E, the only subgroups H 
for which E/H is isomorphic to E are the congruence subgroups Ha = 
p e & 1 n . p = 0 on the elliptic curve}. Those elliptic curves for which there 
are additional subgroups are the elliptic curves with complex multiplications. 
Each of these (up to isomorphism) corresponds to some divisor class of the ring 
of integers 0, of a complex quadratic extension field L of the rational numbers. -- 
I n  order to explicitly describe the ring Ol(Cf) in this case, one must refer back to 
the concepts of algebraic number theory and an explicit description of the 
Abelian extensions of the field L via Artin's reciprocity law. 

PROBLEM 2. Give a proof of Theorem 3 (Ritt 's Theorem) based on the comments 
above. 

PROBLEM 3. Let U,  V ,  W be nonsingular complete curves over a field F, where 
U C V x Wgives  a correspondence on V X W. Assume that V and W a r e  genus 0 

curves (not necessarily having an F-rational point). Describe explicitly the possible 
U, V, W such that U (x) F, V (x) F, W (x) give one of the correspondences as 
described in (3.3a), (3.3b), or (3.5). 

4.A. Descriptions of Quadrics in P" 

We sketch an inductive description of the nonsingular quadrics in Pn whereby 
they are obtained from nonsingular quadrics in The nonsingularity 
assumption is not severe, and with the aid of the opening remarks of [20], the 
reader could put together an analogous construction for all quadrics. For 
simplicity's sake we assume that all construction takes place over an algebraically 
closed field .&? (but see comments at the end of the subsection). 
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Let Z C. Pn be a nonsingular quadric) and let P be a point of Z. Let P"' be 
a hyperplane of P* not containing P and meeting Z transversally. We may 
identify PE1 with the projectivized tangent one to P in Pn, denoted P(Tp.i,p). 
Projection from P gives a correspondence between Z and P r l  given by 
v :  Z - {PI--+ P y ,  where IT@) is the intersection of the line In from P to 0 and 
Pzl for 0 in Z - { P I  

Extend this to a map f r :  2- P r l ,  where 2 is Z with P blown z@ (see [14, 
Chap. 31). That is, Z is obtained by replacing P by all of its tangent directions in 
Z. Let V be the locus of those 0 in Z such that ln is contained in Z. Then 
TT f _ y  is an isomorphism onto its image. 

Assume that Xo ,..., Xn are the coordinates of the ambient projective space Pn, 
and let P be the origin in the afine subspace D_(&) (complement in P" of the 
hyperplane Xo = O), so that the coordinates of P are given by &jXy = x, = 0. 
Then, in a neighborhood of P, Z is defined by 

The condition that a line IQ through P lie entirely in Z is equivalent to In n Z 
contains three points (counting multiplicity), since Z is of degree 2. Thus IQ 
lies entirely in Z if and only if IQ lies in the tangent plane to Z at P, and l y  
contains another point, say 0, of Z. The tangent plane to Z at P is defined by 

a J ,  = 0, and we conclude that the set V n D-JX)) consists of Z n D+(Xo) fi 
(x a& = 0). If we change coordinates so that azxz = xi , then V Iy+a) is 
the affine quadric cone given by 2cja2 bi,pi * x, = 0 in affine n-space thus 
ir: V ->Â C C Pn-2 = P(Tzp), where C is a quad~ic in P++2. Indeed, C is then 
easily shown to be nonsingular from the fact that Z is nonsingular. Thus we 
obtain the following conclusion from these computations. 

Let C be a nonsingular quadric in Pn-2, where Pn-2 is regarded as a hyperplane 
of Pa-1. Let Y be the blow-up of C in Pn-l, and let we: Y -+ Pn-1 be the natural 
map. Let Y'  be obtained from Y by blowing down the closure of (r')-1(Pn-2 - c) 
in Y. 

LEMMA 4.1. Let Z be a nonsingular quadric in Pn. Then there is a nonsingular 
quadric' C in P7i-2, where Pn-2 is regarded as a hyperplane in  Pnel such that Z is 
isomorphic to the variety Y described above. 

Conversely, suppose we are given a quadric C in Pn-2, where PÃˆ- is regarded 
as a hyperplane in Pn-la Let -Yo ,..., be homogeneous coordinates for 
P and assume that the hyperplane Pn-% is described by Xy = 0, and that the 
quadric C is given by the intersection of Xo = 0 with G(Xo ,..., Xe-l) = 0, 
where G is a homogeneous form of degree 2. 

Consider the space of homogeneous polynomials ̂ U = {He KIXO ,..., Xn-J 
1 deg H = 2, and H = 0 contains the quadric C}. Then it is easy to see that 
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^ft is spanned by the n -{- 1 polynomials: G, X f ,  An Xi ,..., & Li , 
which we denote by Y o ,  Yl ,..., Yn , respectively. There is a map 4: 
Pn-I - C - Pn given by, 

fKp) = (Yo(y ) ,  ..., &(PI) for p e Pn-l - C. (4.1) 

The  map ifi extends to a map 

IF: V -+ Pn, where F is the blow-up of along C. (4-2) 

It is also clear that the locus of Xa = 0 in Y gets mapped by Y to a point, so that 
Y factors through TI: Y' -+ Pn,  where Y' is the blow-down of Y along the locus 
Xn = 0. Now it is clear that the image of Y' by P is a hypersurface of degree 
equal to the number of points of intersection of G = 0, 

lying off of the locus X, = 0. Thus, the degree of the image of Y' is the number 
of points of intersection of G = 0, X-, = 0, ..., Xa_a = 0, which is 2. Indeed, it 
is easy to give a degree 2 polynomial in Yo ,..., which generates the ideal of 
the image of Y' under V. Merely notice that some quadratic polynomial in 
Yl ,..., Fn is equal to Xy2 times G* (i.e., some quadratic in Yl ,..., Yn , say 
Q(Yi ,..., Yn) is equal to Yo . Y,). 

We conclude this subsection with comments about the case where we do not 
assume that all our con~putations are done over an algebraically closed field. 
In fact, if we started with a quadric Z C  Pn with Z defined over a field K (not 
necessarily a&ebraically closed), and i f  we selected a point P satisfykg 

P is defined over K, (4.3) 

then, the quadric C C Pn-3, where Pn-2 i s  regarded as a hyperplane in PS-l (as in 
Lemma 4.1) can be defined over K. 

Apparently, however, there is no obvious converse to this observation. Suppose 
we are given the following data: 

A quadric C in PnÃ‘1 defined over K, (4.4) 

where Pn-2 is regarded as a K-subspace of Pn-1. 

PROBLEM 4. Give a biregular (resp. birational) classification over K of the 
data in (4.4). 

PROBLEM 5. Give a biregular (resp. birational) classification over K of the 
quadrics in Pn. Recall that for PZ = 2 the usual classification of the quadrics in P2 
defined over K is via the correspondence with a subset of the elements of 
order 2 of the Brauer group W(K). 
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4 2 .  Intersections of Quadrics in P3 and the Griffiths-Harris Configuration 

In  this subsection we assume that is an algebraically closed field of charac- 
teristic different from 2 in order that the reader may easily compare our inter- 
pretation of the significance of the "canonical" involutions on an intersection of 
two quadrics in P3 with [lo]. In  Section 4.C we consider the arithmetic case and 
make special note of the relationship of this problem with the theory of 2-descent 
on an elliptic curve. 

With no loss we may assume that Y = (Yo , Y-, , Yy , Yv) are homogeneous 
coordinates for P3, and that we have chosen these coordinates so that, relative 
to the discussion below, the intersection of two quadrics and ff^ contains 
the point (1, 0 ,  0, 0) .  When we make this assumption we then also assume that 

Linear projection from ( 1 ,  0 , 0 , 0 )  maps either of these quadrics to 
theplane In = 0 (with homogeneous coordinates (Yi , Yy  , Yy)). (4.51 

The general form of a quadric through (1, 0 ,  0 ,  0 )  is 

where I any linear form in Y o ,  Y l  , Y ,  , Yy . 

OBSERVATION 1. Let 9 be a n o n s w l a r  quadric containing (1, 0 ,  0 ,  0). The 
linear projection from ( 1 ,  0, 0 ,  0 )  determines two points P ^ y )  and P^y} i n  
Yo = 0; the images of the lines of intersection of the tangent plane to 9 and 9 
itself. I n  addition, the tangent plane to 9 at ( 1 , 0 , 0 , 0 )  has equation 1 = 0.  

Let two quadrics and 3 be represented by the quadricpoly;zo~m'cds -ffj(Y) and 
&(Y), respectively. Then {P }̂, P^)} = {Pi[%), &(%A) i f  and on& i f  
HI@') ss a . Ha(Y)  mod 1, where Z = 0 represents the common tangent plane to the 
two quadrics at ( 1 ,  0 ,  0 ,O) and a i s  a nonzero constant. 

Argument. The tangent plane to 9 is computed b y  evaluating the partial 
derivatives of H ( Y )  with respect to the variables Y at (1 ,0 ,0 ,  0) .  Since 
8H(Y)/8Ys l ( l ,o ,o ,o )  is equal to the coefficient of Y, in I for i = 1,2, 3 (see notation. 
above), and 8H(Y)/8Y0 h Ã £ g S n  is equal to 1 l ~ l n , o , o ,  = 0, the tangent plane is 
given by 1 = 0. The remainder of the observation follows from Section 4.A. 

The reader should find no difficulty in generalizing Observation 1 to a general 
quadric. 

OBSERVATION 2. Let 9 be a nonsinplar quadric in P3 and let I = 0 be the 
tangent plane to 9 at ( 1 , 0 , 0 , 0 )  and let Pi{y'], P v ( 9 )  be the points of projection 
in the plane Yo = 0 ,  as in Observation 1 . Let 11(9) (resp. 12(Y))  be lines in the plane 
YÃ = 0 such that P I ( Y )  (resp. P̂ }̂} is  not contained in w) (resp. 12(Y)) .  
Then we can identify l , (9 )  with the projectivized tangent plane at qy), i = 1 ,  2 
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through projection from P ^ y l  onto lit^). Then 9 is isomorphic to P1 x P1, where 
we identify P1 x P1 with 1 1 ( 3  x 1^}- 

Proof. Let T be the plane Y o  = 0, and let P E TT-P~(Y)-P~(Y)-Z', where l r  
represents the points of the line, excluding PI and Pg ,joining P, and P, . Then P 
determines two lines, UP) and Lg(P)  from w) and P;^) to P. We define: 

The natural extension of (p to T-P1(9)-P2(Yj maps all the points of I' to the 
point (1 n l l ( 9 ) j  x ( I  f l  12(Y)).  Then the blowup of TT at Pi(^) (resp. P^y}) 
gets mapped to the points of & ( Y )  x (In w)) (resp. the points of 
( 2  n l l (9)I  x 1 4 9 ) .  

There is a natural embedding, the Segre embedding, (Pgeg: P1 x P1- P3. 
To describe this, let K ,  W l  (resp. Z o  , Zi) be homogeneous coordinates for two 
copies of P1, and let Y o  = W o  . Z o  , Y l  = W o  Zl , Y g  = - Zo  , and 
Y y  = W l  - Z l .  Then Bseg maps P1 x P1 isomorphically to the quadric 
Y o s  Y a -  Y l .  Y 2  = 0. 

OBSERVATION 3. By a projective linear change of coordinates each nonsingzalar 
quadric is the image of the Segre embedding of P1 x P. Let V be a curve on P1 x P1 
with bidegree (d^, d.J (i.e., pr,: W -+ P1, projection on the ith copy of P1, is of 
degree d, , i = 1,2). Theft W i s  the zero set of a polynomial, homogeneous and of 
degree dl in (Wo , W J  and homogeneous and of degree d2 in (Zo , Zl). Since the 
restriction of a hyperplane meets a noniingulw quadric 9 in a curve of bidegree ( 1 ,  l), 
the transversal intersection (i.e., nonsingular intersection) of two nonsingular 
quadrics is a curve of bidegree ( 2 , 2 )  on both quadrics. In addition this transversal 
intersection is an elliptic curve. 

Argument. Let the nonsingular quadric 9 be described by the equation 
H(Y)  = 0. By projective linear change of coordinates we may assume that 
l3o = ztn YS2. Let Yk = Y o  + (-l)lJ2Yl , Y1 = Y o  - (-1j1/"-Y, , etc. 
Then it is clear that 9 can be described as the zero set of Y i  * Yl +- Y i  a Y, = 0. 
From here a very simple change of coordinates gives 9' as the image of P1 x P1 
under the Segre embedding. Since the Segre embedding can now be seen to 
correspond to the same linear system as given by the description of a quadric as 
obtained from the blowup of P2 at two points, the remainder of Observation 3. 
excluding the last sentence, follows easily. 

In order to conclude that the transversal intersection of two nonsingular 
quadrics is an elliptic curve we use a deformation argument, as such an argument 
is compatible with our later discussion of 2-descent. 
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Let 3P be the pairs of quadrics (not necessarily nonsingular) in P3, and let 
9 " 0 j  be the open subset consisting of the pairs of quadrics which intersect in a 
one-dimensional set. We have a total space S and a natural morphism 

where, if p e .S^(O' corresponds to the pair of quadrics q ,  ŷ  then the fiber 4 
is isomorphic to S$ n $. We note first that Y is a flat nzorphim (see [12, 
Chap. 3 9  since the fibers of 'Y are a continuously varying family of complete 
intersections. We leave the proof of this to the reader. From 112, Chap. 2, p. 831 
the Euler characteristic of the structure sheaves of the geometric fibers of (4.7) is 
constant. The Euler characteristic of a nonsingular curve is 0 if and only if the 
curve is an elliptic curve. Therefore, in order to conclude Observation 3 we 
have only to compute the arithmetic genus of some special fiber of (4..7). We 
compute the arithmetic genus of the fiber 8 n s, where 3 is the zero set of 
the equation (=Yo - Yi) . @Yo - Yg) = 0 is the zero set of the equation 
(6 - Yy) F,, = 0 and a, ,8, y are nonzero distinct elements of E. Then 

n % consists of 4 lines which' we list as: 

(a) ( m y o - Y , = O ) n ( Y o = O ) ;  

(b) (PYn - Y ,  = 0) n (Yo = 0); 

(c) (do - Y, = 0) i-i (yYo - Y, = 0), and; 
(4.8) 

(d) @Yo - Y2 = 0) n (yFo - Yx = 0). 

Thus the intersection of y-̂  and ,9l consists of four lines meeting at four points, 
the four points defined by any three of the hyperplanes. We label these lines as 
J, , I n ,  1 3 ,  1. where I ,  and l,̂  meet at pi , i = 1 ,  2 , 3 , 4  and we make the usual 
convention of regarding the subscripts as reduced modulo 4. The Euler charac- 
teristic x (Up, - \y )  is given by 

where #pLnp2 is the strukture sheaf of 8 i-~ % and H*(@91p,pJ is the ith tech 
cohornology group of this sheaf. From Serre duality EP-(C'yflJ is isomorphic to 
HO(~p^y),  where i c y , , p  is the sheaf of differentials with poles of order at most 
one at the points p,, , i = 1 ,  2, 3, 4 and whose sum of residues is 0. Thus the 
Euler characteristic x(UynpJ is easily computed to be 0. 

Griffiths and Harris [lo] describe four involutions on an elliptic curve ? 
presented as an intersection of two nonsingular quadrics 3 and in P3. Their 
description is geometric. W e  show that these involutions arise from the various 
degree 2 projection morphisms of S coming from the isomorp1;istns of with 
P1 x P1, i = 1, 2 (i.e., Observation 4). 
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If" 

To fix the ideas, consider pr-,-,: % -+ P1 by projecting ,9? onto the first factor 
in the isomorphism 8 ̂-i P1 x P1. Let prIn: % - P1 be projection on the 
second factor. 

Before giving Observation 4 we make a few relevant remarks about dual 
varieties. T-ie points of projective n-space are noncanonically in one-one 
correspondence with the hyperplanes of projective n-space, which we denote by 
P n ) * .  Let  V be a nonsingular quadric of Pn. T o  p e F w e  associate, T p  e (Pn)*, 
the tangent plane to 5' at p .  We let the image of V be denoted by V*. If V is 
represented by the polynomial equation j(Y) = 0, then the point Jp e (Pn)* is 
represented by the coordinates (8jj9Y0 i p  ,..., 9f j8Yn I p )  E Pn,  so that there is 
a map, which we denote by a $ superscript from V to V*. 

Now apply the concepts above to y[ and ,9^, so that the intersection of 
yf and 9; consists of the bitingents to V, and 3, and y* n y'f is the dual 
* to the elliptic curve ff. 

OBSERVATION 4. Given a line I not contained in 9, , there are two tangents to 
9; through I. 

Let q e <  ̂ so that ~r,^'(~r-,-,(n)) = and pr;^fpr12(q)) = Zg are lines on q. 
Then, if q* E 8* corresponds to r, we have q* r\ V, = 1. u lB . We obtain an 
involution, denoted rA , given by: 

" ~ h )  = TI, (4.10) 

where (T)')* and T* are the two bitangents to ŷ  and ff̂  through l'4 . In addition, 
rA is the involution of 8 corresponding to prll . 

Proof. Consider the line / not contained in 8 . The statement that "there 
are two planes through I tangent to Ã§% is the dual to the statement "there are 
two points of intersection of a line I with a quadric not containing la' .  If TT is a 
plane containing I, where 1 lies on ff[ , and Â¥ is tangent to ,9' then TT is also 
tangent to 8 since the intersection of TT and consists of two lines. 

Now consider the lines l̂  and l y  corresponding to q e 8. Then lA r\ lB = T),  

and the tangent to 8 at q meets ff, in lA U Zc from Obseivation 3. This is 
equivalent to the statement rq* ff[ = ZA u lB . 

Let ? be a generic point of <S'. I n  order to show that T , ~  is the involution of S 
corresponding to pr,, we have only to show that the involution induced by T. on. 
the function field E(?) (i.e., K with the coordinates of 77 adjoined) leaves the 
subfield K(prI1(?)) fixed. That'is, we must show that pr f i )  and prl1(rA(+j)) are 
the same. However we recover ~ r ~ ~ ( ~ ~ ( f ) )  by knowing the lines of intersection of 
(rA(?))* with Y1, and we know that I,, is one of these lines of intersection by the 

1 definition of rÃ . Therefore the result follows, and we conclude the 
observation. 

Lastly, we consider the main problem suggested by Observation 4. Let 8, as 
above, be the elliptic curve obtained as a transversal intersection of two non- 
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singular quadrics % and Y2. From q (resp. 92} we obtain two involutions 
T s4,1 and T B , ~  (resp. T,.,,~ and T ~ ~ ~ } ,  and we want to know the nature of the groups. 

(a) G(&> q )  = {group of automorphisms of & generated by 

T ~ , l  and 7 2 , J ;  

{bj G ( g 1  g) = {group generated by TA,Z  and T ~ , J ,  and; (4.1 1) 

(c) G(&, Yz) = {group generated by T A , ~  T ~ , ~  , T A e 2  and 

r ~ r 2 1 -  

in  the case that 6 and 9% are real quadrics with R-rational points, Griffiths 
and Harris [lo] show how to associate a polygonal figure inscribed between the 
real points if and only if the group of (4.1 lcj  is a finite group. In  ordu to mahe 
clear the natwe o j  the groups obtained we assume that 8 is fixed1 and we vary the 
quadrics and & whose intersecths giee &. 

Let the original quadrics 8 and Y2 be represented by the equations Hl(Y) = 0 
and Hz(Y )  = 0, respectively, in P3, Then the quadrics containing 8 are 
represented by the pencil 

where (tl , t2)  represents homogeneous coordinates for a copy of P1. 
Thus, for a = (tl t2)  = P1, we obtain a pair of involutions T A , ~  and T B , ~  

from the observations above. From Section 2, T A , ~  (resp. T ~ , J  is given by con- 
jugation of the canonical involution of & by translation by a point p(A, a) (resp. 
p(B, a)) of 8. Therefore, in a natural way T ~ , ~  (resp. T ~ , ~ )  corresponds (uniquely) 
to the image in 8/cF2 of p(A, a) (resp. p(B, a) )> where 8% consists of the points of 
order 2 on &, Although is isomorphic to &, in our later discussion of 
2-descent, it can be important to distinguish between & and &I&%. 

At this point the reader might benefit from part of the discussion in [20, 
pp. 57-58]. To the pencil (4.12) we associate a a  elliptic cume %? represented as a 
double cox7er of P1 (the same copy of P1 that appears in (4.12)). Indeed, let 9 be 
the space of all quadiics (including singular quadrics) in P3. Then 9 is isomor- 
phic to Po and the singular quadrics A form a hypersurface of degree 4 (i.e., the 
locus of A is described by the condition that the determinant of the symmetric 
matrix associated to a quad~atic form is zero). The pencil of (4.12) meets A in 
four points, and %? is the double cover of P1 branched at these four points. 
Conversely, if %? is a double cover of P1 branched at four points, say hi , h 2 ,  , 
and A* , then the pencil generated by the pair of quadrics H i  = x:=o Ye2 and 
Hi = x:=o - AzY-> "results" in the double cover of P1 given by %, In  this way 
1201 explains (roughly) that the moduli space of intersections of quadrics in P3 
(resp. Pn+z) is the same as the moduli space of elliptic curves (resp. hypei- 
elliptic curves of genus 4 - ( ~ t  + l), for n odd). What m s t  interests us is the 
precke relation between the eâ‚¬&t curve & common to the mmbers o j  the pencil 
(4.12.) and the elliptic curve %?. 
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THEOREM 4. The curve V is isomorphic to by a map that associates to the 
pair ojpoi~zts of %? over a = (tl , t2) E Pi the points that are the images of p(A, a)  
and p(B, a) in i/gZ . 

Let a, a' E P1. I n  the notation above we obtain the relation (between involutions 
on 8 )  rASQ. 0 T~~~ 0 T B , ~  T a d  is equal to thÂ¥ identity. Also, we may pick a and a' so 
that rAn 0 -asa and T̂(,' 0 ra ,&,  hawe whatever pair of finite orders we may desire, 
thus generalizing the results of [lo] attributed to Steinberg. 

Proof. We start by considering the argument of 120, p. 581. Let T be the 
variety of lines in P* that are contained in one of the quadiics of the pencil 
(4.121, and let Alb(T) be the Albanese variety of T. We have a natural map 
4: T -+ PI since each line lying on one of the quadrics lies on just one of the 
quadrics. In addition, if a~ P1 corresponds to a nonsingular quadric then qkl(a)= 
PI u P1, and if a corresponds to a singular quadric then $-'Â¥(a is P2. Thus, 
from the basic properties of Alb(T), Alb(T) is a double cover of P1 branched over 
exactly the paints of P1 corresponding to singular quadrics in the pencil (4.12) 
i.e., Alb(T) =V). On the other hand, from our previous observations, for 
a E P1 corresponding to a nonsingular qiiadric, each of the copies of P1 in 
4-l(a) corresponds to an involution of 8, and thereby to a point of S\S  ̂. This 
establishes the first part of the theorem. 

The identity 0 r A Ã £  0 T , , ~  o r e Ã £  = Id. is equivalent to: The addition of 
the images of p(A, a) + v(B, a) in &'/î2 is independent of a E P1. However, 
we may assume (with no loss) that the isomorphism of (f/S2 with V takes the 
origin to the origin, and that the double cover of P1 given by V is in Weierstrass 
normal form, so that the images of p(A, a) and p(B, a) in Â£\ are inverse to 
each other. Thus the identity follows. In order to conclude the theorem we have 
only to show that -r4,= 0 rB,^ can have arbitrary order. However r A Ã  o TB*, 

corresponds to the image of y(A, a) - p(B, a) in S\Ŝ . Since this is arbitrary, 
and therefore can have arbitrary order, we conclude the theorem. 

4.C. Comments On The Arithmetic Case and Higher-Dimensional Quadrics 

This subsection consists entirely of short comments on Section 4-33. We 
start with a review of 2-descent (as in [3, p. 269-2721), Let K be a (not necessarily 
algebraically closed) field. Let (V, p,,) be an elliptic curve defined over K (i.e., 
:pg is the origin for a multiplication structure on V). By an HZ-covering (where 
m is a positive integer) we mean a commutative diagram 
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where Si is a curve defined over K;  0 is an isomorphism defined over l? and; 
the morphism M is defined over K. 

The case when K = Q, m = 1 is of special interest and has been used 
(endlessly!) to help decide the nature of the Q-rational points on %'. Indeed this 
classical case usually starts by assuming that %' is in Weierstrass normal form: 
Y 2  = n: ( X  - e,) with e, e 2. The idea of the Diophantine analysis is to let 
x ,  y) be a Q-rational point, change variables to x = r/t2, y = s/t3, (r, t )  = 1 ,  and 
r, s, t e Z  to obtain the equation s2 = IT, {r  - e,t).  Excluding the case s = 0, 
the only common factor of (r  - el f2)  and (r - e2t'-) divides el - ez , so r - e,f- = 
d p t ,  where d , da , d ,  are squarefree and include only a finite number of possi- 
bilities. Corresponding to any one such triplet dl , d, , 4 , upon eliminating r 
we obtain a pair of (singular) quadrics 

and 

in P3 with homogeneous coordinates given by ( t ,  z\ , %,  4. The intersection of 
the quadrics of (4.14) give the possible Sfl's, and the map M is given by 
( t ,  vl , vz  , v3) + (r / tq,  sift) where r = %t2 - d p j 2  and J = (dldzdI)1~ovlv2vy . 

If we return to the discussion preceeding Theorem 4 we notice that these are 
definitely not the same pair of quadrics that occurred in the discussion of [20] 
despite the fact that the argument was clearly also related to 2-decent. Indeed, 
of course, when we take the pencil of quadrics corresponding t o  Eqs. (4.14) 
we do not recover V as the double cover of P1 branched at four points. That is 
to say, arithmetic versions of Theorem 4 could well touch on very deep con- 
siderations. Part of these considerations has to do with a nice description of the 
coordinates over which a pencil of quadrics in P3 trivializes to a pencil of varieties 
isomorphic to P1 x P1. 

Also, in higher dimensions, as outlined in Observations 1 and 2, pencils of 
quadrics trivialize to varieties in a more standard form (the form given by 
Section 4A) if the "right coordinates are used". 

PROBLEM 6. Use the Albanese argument of Theorem 4 to find coordinates over 
which a pencil of quadrics in IPn trivializes to the "standard/orm" o f  Section 4.A, 
by incorporating the structure of the Jacobian of the corresponding hyperelliptic 
curve. 
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