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What Gauss told Riemann about Abel’s Theorem

Michael D. Fried

ABSTRACT. Historian Otto Neuenschwanden studied Riemann’s library record
in Géttingen. He also consulted job position letters in Germany in the 3rd
quarter of the 19th century. These show Riemann relied on personal discussions
with Gauss (in the late 1840’s) about harmonic functions. Mathematicians
rejected that early approach after Riemann’s death (in 1866) until near the
end of the 20th century’s 1st quarter.

Using Riemann’s theta functions required generalizing Abel’s work in two
distinct ways. Abel compared functions on the universal cover of a complex
torus; everything was in one place. Riemann had to compare functions from
two different types of universal covers. We explain struggles over interpreting
modern algebraic equations from the Gauss-Riemann approach.

Abel’s work on elliptic integrals motivated approaches to algebraic equations
that we don’t easily connect to him through just his published papers. There is
still no simple route through the beginnings of the subject. A student runs quickly
into difficulties that call into question these topics.

e How may one divide the vast finite group area between those that are
nilpotent and those that are simple?

e How may one meld existence results from complex variables with ma-
nipulative needs of algebraic equations?

[Fr03] and [V696] have background on analytic continuation. They cover many
issues on Riemann’s Existence Theorem toward modern applications. All detailed
definitions in this discussion are in [Fr03]. We explain here subtleties in Riemann’s
approach and why there is so much modern work on problems one might have
thought solved long ago.

We used the technical equation-oriented [Fay73] as a personal encyclopedia on
what counts to theta afficianados. We also respond to a challenge from [FaKO01,
Chap. 2,88]:

., partial motivation for the results discussed so far is to
better understand the multivariable case.
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2 M. FRIED

[FaKO01] only considers theta functions attached to elliptic curves, or one-dimensional
thetas. That is because they consider only theta functions (and theta nulls) vary-
ing along modular curves, natural covers of the j-line that first arose in Abel’s
work (§4.2.3). Likely the term multivariable in [FaK01] means thetas attached
to Siegel modular spaces. Our examples, however, note natural systems of j-line
covers for which the corresponding thetas are multivariable. Discussions of Gauss
and Riemann to which [Ne81] refers easily motivate these examples.

Few specialized territories exceed theta functions for giving the feeling its ad-
herants must slave endlessly over intricate details. Yet, even here we suggest, one
needn’t know everything to claim knowing something significant.

1. Interpreting Abel’s Problem

My notation for the Riemann sphere is P = C, U {oc}. This indicates for
different copies of C the chosen variable may change. For a finite set z on P.,
denote its complement by U,. We use the fundamental group 7 (Uy, 29) and related
fundamental groups. We start with a general problem.

1.1. Antiderivatives. Let ¢ : X — P! be a map between compact 2-dimensional
manifolds (the genus gy of X comes later) with all but finitely many points
z={z1,...,2} of Pl having exactly n points above them. Then ¢ gives X a com-
plex structure. By that we mean, there is a unique complex manifold structure on
X so that when we pull back the local functions on U, analytic in 2 to X \ {¢!(2)}
we get the functions we call analytic on X. That means there is a unique way to
declare the functions H (V) analytic in a neighborhood V of 2’ € p~1(2) to have
two properties:

(1.1a) Functions of H (V') restricted to V '\ {¢~!(2)} are locally the pullback
of analytic functions in z.

(1.1b) There is a (possibly smaller) neighborhood W of ' in V' to which the
functions called analytic there form a ring isomorphic to the convergent
power series in a disk about the origin on C,,.

Notice in this formulation: Pullback of z interprets z around each point as a mero-
morphic function. It is a global meromorphic function on X.

The simplest case of this situation is given by f : PL — P! by f(w) = w® for
some positive integer e. Even if we don’t a’ priori declare w as the variable from
which we get our local analytic functions around 0 (convergent power series in w)
and oo (convergent power series in 1/w) on PL, it will be forced on us if we declare
I PLA{0, 00} — PL\ {0, 00} analytic according to (1.1). Since these rules produce
a local variable w,/ giving the local analytic functions around 2’ € X, we also have
the idea of a local analytic differential h,/(w,) dw, .

Suppose w is a global holomorphic differential on X. That means at each
a2’ € X we give a neighborhood V,, and an expression h, (w,)dw, with h, a
holomorphic function of w,s subject to the following compatibility condition.

(1.2) If~:[0,1] — Vi NV, is any (continuous) path then

1

dwgy t

/ hx/ (U}I/) dw?{:/ d:ef / hx’ (U}x/ o] ’y(t)) %’Y()dt = / hrr” (wm//) d’LUI// .
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Anything contributing to adding up information along a path comes from in-
tegration of a tensor. The specific tensors that are holomorphic differentials corre-
spond to information attached to potentials, like gravity and electric charge.

It is a fundamental in the situation of ¢ : X — P! that in addition to the
global meromorphic function z, there is another global meromorphic function w on
X defined by ¢, : X — PL so as to have the following property.

ProPOSITION 1.1 (Function half of Riemann’s Existence Theorem). We may
express any local analytic function in a neighborhood of ' € X as h(u) where u is
a rational function in z and w and h is a convergent power series.

Prop. 1.1 suggests saying that z and w together algebraically uniformize X.
We differentiate this from uniformization in the sense that there is a map from
a (simply-connected) universal covering space to X. Though the two notions of
uniformization are related, there survive to this day many mysteries about this
relation. Prop. 1.1 is obvious in Abel’s situation, because it was easy to construct
one such w since Abel started with a Galois cover of PL with a group that is abelian
([Fro3, Chap. 1, §8.2] calls this the abelian form of Riemann’s Existence Theorem).
The rubric when ¢ is an abelian cover constructs w from branches of logarithm.
So, it truly belongs to elementary complex variables, except that understanding
this requires mastering analytic continuation, maybe not such an elementary idea
[Fr03, Chap. 1, §7]. Deeper issues, however, about Prop. 1.1 arose from the result
we call Abel’s Theorem. Gauss discussed these things with Riemann. Especially we
call attention to the combinatorial half of Riemann’s Existence Theorem, closely
related to the topic of cuts (§4.1).

ExaMPLE 1.2 (Finding where a differential is holomorphic). Consider the dif-
ferential dz/w = w on PL where f : P, — P! by f(w) = w®. The apparent zero
in the denominator of w cancels with material from the numerator, so w is holo-
morphic at w = 0. In detail: w is a uniformizing parameter in a neighborhood of
0. From z = w® express w as ew® ' dw/w = ew® 2 dw. This expression actually
holds globally where w is a uniformizing parameter. At oo, however, it is 1/w =u
that gives a uniformizing parameter. So dz/w = udu™¢ = —eu™¢,du has a pole at
oo. Notice: dz/w® is holomorphic at oco.

1.2. The gist of Abel’s Theorem. The word nonobvious is inadequate to
express the mystery in finding even one such w, whenever ¢ is not abelian. Abel’s
famous theorem showed how to construct all such global functions w, not just
one, in his special case. Our discussion is about how Gauss and Riemann may
have viewed Abel’s Theorem and his special case, and how this view generated in
Riemann the tools for its generalization to all ¢ : X — PL. Our documentation
of the conversations between Gauss and Riemann has much of heresay, and this
author is not an historian. So, to the cogent remarks of [Ne81] we have added
some observations of two types:

e That the subject is still very difficult today, even for experts.
e That the difficulty for even Gauss and Riemann sent them in directions
still inadequately understood today.

PROBLEM 1.3 (Abel’s First Question). What is the relation between elementary
substitutions for the integration variable ¢ in fww where v is a closed path and
algebraic manipulations of functions coming from ¢? Similarly, how do either of
these substitutions relate to deforming the set of branch points 27
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Our question is much more general than Abel’s because we ask it for general
. We should understand the question had a long formulation, much more precise
than given here, starting from a specific case of Euler and considered extensively
by Legendre, long before Abel. Gauss may have already had a good sense of Abel’s
Theorem by the time he met Abel.

Abel investigated this fundamental problem in the example where X is a com-
pactification of the algebraic set {(z,w) | w? = 23 + cz +d} and ¢ : (z,w) — 2
is the standard projection. His formulation allowed the following operations as ac-
ceptable. Including iterated compositions of rational functions in z, multiplication
by constants, selecting from elementary functions regarded as known, and

(1.3) the conceptual addition of functional inverse.

The problem of what we allow for elementary functions in ¢ is handled by a
key conceptual idea from complex variables. There really are but two elementary
analytic functions using (1.3): z and log(z).

EXAMPLE 1.4. cos(z) = (¢ 4+ e~%*)/2. Example: z'/F = elos(2)/k
We profitably consider integrals locally as an antiderivative in z. The problem
is to investigate how far integration removes us from elementary functions.

1.3. Details on Abel’s integral. Let g(u) be a local right inverse to f(z):
f(g(w)) = u. Apply the chain rule:

df dg
1.4 — — =1
(1.4) Az |y du
Therefore, g—i =1/ g—é‘ o’ This is the complex variable variant of how first year

calculus computes an antiderivative of inverse trigonometric functions. Abel applied
this to a (right) inverse of a branch of primitive from the following integral

dz
(15) /v (z3+cz+d)%

with ¢,d € C.

If g(z) is a branch of log(z) near z, so €9¢*) = 2, then e9/(*))/¥ is a branch of
f(2)"* on any disk (or on any simply connnected set) avoiding the zeros and poles
of f [Fr03, Chap. 1, §6]. Related to this, there is a branch of f(z)'/* along any
path in U, (z containing the zeros and poles of f).

Consider h(z)dz = m around some base point zo: h(z) = hcq(2) is a

branch of (23 + cz +d)~2. Let f(z) = fe,a(z) be a primitive for h(z)dz. Apply
(1.4) to f(g(w)) = u:
(1.6) d%ﬁ‘) = (g(u)® + cg(u) + d)2, a parametrization of the algebraic curve
from the equation w? = 23 + cz + d.

Let 2 = 2. 4 = {71, 22, 23,00}, the three (assumed distinct) zeros of P +ez+d
and oo. Denote the set of such (c,d) € C? by V°. Denote the points on (z,w)
satisfying (1.6) that are over U, by X(?’ 4 It has a unique complex manifold com-
pactification X 4.

LEMMA 1.5. We may integrate he qdz = we,q along any path in X, q (the point
of it being a holomorphic integral).

PRroOOF. Since there are places where the denominator of h.q4dz is 0, it be-
hooves us to explain why the differential has no poles on X, 4. For this, use the
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argument of Ex. 1.2 to express h.qdz locally in a uniformizing parameter. Only
the points in z cause any problems, and the point is that for each we should use

w=+/z—z,1=1,2,3 (at oo, use /1/2). O

The notation w4 for h. 4 dz is especially fitting when we emphasize that we
are restricting h. 4 dz to paths in X, 4.

1.4. Applying analytic continuation to the lattice from h. 4(z)dz. An-
alytically continuing a primitive f.4(z) of (23 + cz + d)_% along any closed v €
71(Uz, 20) produces a new analytic function Int(he q(2) dz), around z. This gives
a collection of functions Ay (Uy, z0) = {Int(he,a(2) d2)~ }yerm (U,,2) around 2.

1.4.1. Analytically continuing Int(h. q(z) dz) everywhere in X, 4. The related
subset is A7(X? ;, z0): Analytic continuations along closed paths from Xg 4- Then,

C7

(17) we Cyo pfu) S (gealw), 0o )

is one-one up to translation by elements of
Leg={sy = / he,d(z)dz,v € m(Xe,q,0)}-
v

A primitive for h. qdz analytically continues along every closed path in X, 4
(§1.3). Since h¢qdz is a global holomorphic differential, the set Ay (ng,xo) de-
pends only on the image of a path in Hy(X.4,Z). There is no canonical way to
choose representing paths 71,72 € 71 (Uy, 20) that lift to generators of Hy (X 4,Z).
Still, it helps to know the double of any v € m1(Uy, 2¢) lifts to 7T1(X60,7d7$0). Inte-
grate h. q(z) dz around such generating 71,72 to get s; and sg, so s1, 2 generate
Le.q. The following says L. 4 is a lattice in C,,.

PROPOSITION 1.6. The elements s; and sy are linearly independent over the
reals. So, ¥(u) in (1.7) gives an analytic isomorphism between X, q and C, /L q.

Proor. If both s; and sy are 0, then the holomorphic differential h. 4 dz is the
differential of an analytic function f on X, 4. This f would therefore have no poles
on X, 4. So, it would be an analytic function on a compact Riemann surface, and
from the maximum principle, such a function is constant.

Now we know one of s; and sy is not 0. Assume that is s;. Replace hqdz
by ihqd dz to assume s is 1. We have only to show ss cannot be real. Suppose
it is. Break h.qdz into its real and imaginary parts. Then, the imaginary part
has 0 periods. So, again, it is the differential of a harmonic function on a compact
surface, defying the maximum principle for harmonic functions. ([

1.4.2. Local exactness implies exactness on the universal covering space. First
year calculus: The inverse gi(u) of a primitive of hy(z) = (22 +cz+d)"2 is a
function of sin(w). This has a unique analytic continuation everywhere in C. We
have just expressed Abel’s discovery the same is true for the inverse g(u) = g a(u)
of fea(2); it extends everywhere in C,, meromorphically.

Even to seasoned Riemann surface enthusiasts it must be a little puzzling as to
which to emphasize first, differentials or functions. We suggest Gauss and Riemann
discussed this, and came to the conclusion that there were ways they could be put on
the par. The log-differential equivalent (Prop.2.5) of the next argument expresses
the defining properties of # functions.
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PROPOSITION 1.7. For ¢ : X — X the universal cover of X, pullback of any
holomorphic differential w on X is an exact differential on X.

INTERPRETING EXACTNESS. The definitions give this interpretation to the dif-
ferential w using a coordinate chart {(Uy,¥a)}acr for the complex structure on
X. As usual, ¥, : Uy — C,_ has analytic transition functions g o wa_l;,m :
Ya(UaNUg) — 13(UsNUg). This has the following properties [Fr03, §5.2 Chap. 3].

(1.8a) w retricted to U, is given by pullback from dF,(z,) with on F,(zq)

analytic on ¥(U,), a € I.
(1.8b) Restricting ¢ to ¢~1(U,) is one-one to U, on each component, o € I.

Consider any (piecewise differentiable) path v : [0,1] — X with v(0) € Uy,.

A primitive for w with initial value F,,(1(7(¢)) along the path is a continuous

F :[0,1] — C so for any to € [0,1] the following holds. If () € Ug for t close to

to, then F(t) = Fz(¢g(v(t))) + cg with cg constant (in ¢). This assures for ¢ close

to 1, F(t) is the restriction of an analytic function in a neighborhood of v(1). We

have analytic continuations of a meromorphic function along every path. So, the
Monodromy Theorem [Fr03, Chap. 3 Prop. 6.11] gives an analytic F on X with
(1.9) F(i&) — Fo(¢a(@(F))) constant on any component of ¢~ (U,).

Then, the differential of F' is the pullback of w to X. That is the meaning of

exactness in the proposition. (Il

2. Abel’s Theorem

Before we launch into our main points, we note the formula for the theta func-
tion on a complex torus is in [Ah79, Chap. 7]. It differs, however, in that we don’t
start with a doubly periodic function, but a holomorphic differential on a Riemann
surface. Secondly: We will see modular curves arise, Abel being the first to produce
them, and Galois one of the first to apply them. Thirdly: We will ask questions
about the nature of the functions described by Abel that influenced Gauss and
Riemann. These have no appearance in [Ah79] because they give nonabelian cov-
ers. Thoughout Riemann’s generalization, holomorphic differentials are the starting
point. Modern treatments of the topic tend just to give the o, eschewing our dis-
cussion on properties of the sought for object. In the forty years, however, between
Abel’s work and Riemann’s generalization there was time for such contemplation.

2.1. Substitutions versus field operations. A substitution in a variable
corresponds to a composition of functions. Suppose we substitute w(z) for z to get
fap(w(z)) from f, . Consider values of w where w(z) has a local inverse, which we
express as w~1(z). Then, rewrite f o g(u) =u as fowow ! og(u) = u.

Investigating the substitution f ow(z) is equivalent to considering the compo-
sition w~! o g(u). An important case is when w~?! is a rational function. The two
functions g q4(u) and its derivative in u generate a field over C. Denote this M, 4.
As gcq has up to translation a unique pole of order 2 at v = 0, and no residue,
we can guarantee g(u) — g(—u) is 0 at the origin, bounded everywhere, and so is
indentically 0: g(u) is even. From (1.6) this is closed under taking derivatives in u.
Abel rephrased his investigation.

PRrROBLEM 2.1. For what pairs (¢,d) and (¢/,d’) is go.a an element of M, 47
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While technically this doesn’t pin down all allowable substitutions, the answer
shows the whole story. For each (c,d), gc,q(u) is to the exponential function e* as
fe.a(z) in (1.5) is to a branch of log(z).

Abel described every element of M. 4. So, describing elements of M, 4 is the
same as describing analytic maps ¢ : C/L.4 — P. [Fr03, Chap. 4, Prop. 2.10].
Such a map has as many zeros Do(¢) = {a1,...,a,} (with multiplicity) as it has
poles Do (¢) = {b1,...,b,} [Fr03, Chap. 4, Lem. 2.1].

Further, describing the function fields M ¢+ C Mec,d is the same as describing
the analytic maps (. ) (/,a) : C/Le,a — C/Lerar. Such a map has a degree, and
Abel described a valuable equivalence class of such maps . qy,(,a) of each prime
degree p. Modern notation calls that equivalence the modular curve Xo(p): It
relates the j-invariant j(z.q) of 2.4 to that of 2./ 4. §4.2.3 describes this in detail.

2.2. Analytic maps P, — P.L. Let ¢ : X — P! denote a meromorphic
function on a compact Riemann surface. Use C(X) for the complete collection of
these. They form a field, using addition and multiplication of any two functions ¢
and @a: 1 - pa(x) = ¢1(x)@2(x) with the understanding you resolve the meaning
of the product when ¢ (z) = 0 and p2(x) = 0 by expressing the functions in a local
analytic parameter. Up to a multiplicative constant Do () and D () determine
¢. Conversely, suppose ¢ : PL — PL. Up to multiplication by C*,

B HZL:1(U - a;)
plu) = H?:1(u —bi)

Replace u—a; or u—b; by 1, if either a; or b; is co. So, u is an odd function (exactly
one zero of multiplicity one, at u = 0) whose translations give the local behavior of
©(u). From it we craft the desired function p(u) having the right zeros and poles.
Given maps between P! and P! it is to our advantage to have the expression
of functions on P! pulled back to P! be compatible with that on P.. The oddness
of u is a nice normalizing condition, leaving the only ambiguity in the choice of u
multiplication by an element of C*. It is forced on us by this condition: We want a
globally defined function with exactly one zero of multiplicity one at u = 0. With
u already attached to PL, it is part of our naming rubric to have normalized u.

2.3. Log-differentials and Imitating the genus 0 case. Suppose there
is a nonconstant analytic map ¢ : C/Leq = X.q — Pi with D° = ¢~1(0) and
D> = ¢71(00). Denote its branch points by w = {wy, ..., w, }. Tricky notation:
Denote the subset of X. 4 over Uy, by X;'fc’io. Take a path v from 0 to oo on U,,.

2.3.1. Abel’s necessary condition. Let 7; be the unique lift to X:)&O of v starting
at a; (it will end in D*>®). If 0 € w or oo € w (D° or D> have points with
multiplicity), lift v without its endpoints. Then take the closures of these paths.

PROPOSITION 2.2 (Abel’s necessary condition). Then, >;; [ headz = 0.
So, existance for ¢ requires there are paths {7/}, on X. 4 with initial points D°,

end points D> and
n

Z/ he.qdz = 0.

=177

COMMENTS. Here are brief details from the argument of [Fr03, Chap. 4, §2.6.1]
(a rougher version is in [Spr57, Thm. 10-22]). Suppose ¢ : X — P is a finite map
of analytic manifolds. For any differential w (not necessarily holomorphic) on X
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there is differential t(w) (the trace) on Py, so that 37", [ w = [ t(w). Further,
t(w) is holomorphic if w is. So, in that case, t(w) = 0 since there are no global
holomorphic differentials on PL. As above we need « to avoid the branch points
of ¢, except at its end points. So, this does allow zeros and poles to appear with
multiplicity. To handle that case, take the lifts of v with its endpoints, and then
just take the closures of the resulting paths on X. O

2.3.2. The log-differential property. Here and for general X replacing X, 4, we
emulate aspects of the sphere case. Find a function o(u) with a zero of multiplicity
one whose translates craft a given function through its zeros and poles in the sense
of expression (2.1). (Significantly, we will find we are able to normalize it to be odd.)
There is no such function on C/L, 4: Or else that function would give a one-one onto
map of the complex torus to the sphere. Use this notation: u € C,, +— [u] € C/L. 4.
The function v on P has only one zero, though it also has one pole (o).

DEFINITION 2.3. A meromorphic differential w on a Riemann surface X is a
log differential if w = dv/v for some meromorphic v on X. It is local log if locally
around each point it is a log differential.

Any local log differential w has its poles of multiplicity 1, and its periods along
paths bounding a disc about a pole are integer multiples of 27i. On a compact X,
the sum of the residues of w is 0: It defines a degree 0 polar divisor D,,.

EXAMPLE 2.4. On P!, When ¢(u) = u the log differential has poles at 0 and
oo with residue respectively +1 and —1 according to Ex. 1.2.

Here is the analog for local log differentials of Prop. 1.7.

PROPOSITION 2.5. For ¢ : X — X the universal cover of X, the pullback of
any local log differential w on X is a log differential on X.

ProOF. Use notation of the proof of Prop. 1.7. For each a € I, denote re-
striction of w to U, by w, which by hypothesis expresses as dvg(za)/Va(24) on
¥a(Us). The general principle is that this is a differential equation for v, (¢q (2),
x € U,. So, analytic continuations of v, along any path + : [0,1] — X are uniquely
well-defined. As a reminder of this, it comes to considering the case of continuing to
U, UUpg from its solutions v (¥a(x)), ¢ € Uy, and vg(¥s(z)), v € Ug, with U, NUg
connected. Further, on the overlap the two functions differ only by multiplication
by a constant cg . To extend the solution requires only to multiply vg(5(z)) by
1/¢g,o- It now matches vy (¢4 (z)) on the overlap.

Again, apply the Monodromy Theorem to conclude the existence of & on X so
the pullback @ of w has the form dov /0. (]

2.4. Exactness on X and the 6 property. The proof of Prop. 2.5 produces
from w a 1-cocycle ¢, = {¢g,a}a,serx1. The co-cycle property ¢y gcga = Cy,a for
UaNUNU,, nonempty, follows immediately from the uniqueness up to multiplicative
constant statement in the proof.

2.4.1. A locally constant sheaf from a local log differential. In modern par-
lance: The collection {v,}aer is @ meromorphic global section of the locally con-
stant fiber bundle (sheaf) defined by ¢,. In turn this cocycle gives an element
of Hom(71(X,x0),C*). If f : X — P! is any meromorphic function on X, then
{fva}aecr is another meromorphic section of this sheaf. The local log differential
attached to this meromorphic section is w + df /f. This has divisor of poles the
divisor of poles of w plus the divisor of f. We summarise.
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PROPOSITION 2.6. The divisor of poles D, of any log differential w on a com-
pact X defines a (degree 0) divisor class [D,)] and a locally constant sheaf L. Its
global meromorphic sections are {fva }acr running over all f € C(X).

Suppose w' is another local log divisor for which D,, = D,,. Then, the difference
w — W' 1s a holomorphic differential on X. If w — W' # 0, L, is holomorphically
isomorphic to L, through a locally nonconstant isomorphism.

PROOF. Only the last statement requires an argument. For w (resp. w’) the
proof of Prop. 2.5 gives functions {vq }acr (resp. {v) }acr). The ratio v, /v, = w,
expresses the local exactness of w — w’ as the differential of a branch Of log of wy
(which has no zeros or poles). Then, the collection of maps Oy, MOUQ
twines between L, and L. ([

REMARK 2.7 (Unitary bundle). Consider the compact Riemann surface X and
w as in Prop. 2.5. Periods for any paths around disks bounding the poles of w
are imaginary since locally the differential is mdz/z for some integer m. So, it
makes sense to ask about differentials w with polar divisor D for which fv w is pure
imaginary. Suppose there is a holomorphic differential y with w — pu = w’ having all
its periods pure imaginary. Then, £, corresponds to a representation of 71 (X) into
the circle group of absolute value 1 imaginary numbers (a unitary representation).

PROPOSITION 2.8. Suppose w is a local log differential on X, q with divisor of
poles not on 1 or va. Then, there is a unique ay (resp. az) so f"m Ww—a1weq =0
(resp. f% W — QaWe q 1S pure imaginary for i =1,2).

So any degree 0 divisor D on X, 4 gives a unique locally constant unitary bundle.
Also, we can analytically continue a primitive Wp for w — agweq along any path
avoiding the support of D. Then, Rp(x;x0) = R(Wp(x) — Wp(zo)) (xo,z € D), a
harmonic function of x, is independent of the path between xo and x.

ProOOF. Multiply w. 4 by a nonzero element of C to assume (as in Prop. 3.4)
s1 = 2mi and s = 7/ with (') < 0. So, pick a; so 2wia; = f,“w. Subtract
§)‘E(f,y1 W) We,q t0 go from w with a 0 period along 77 to a differential with the same
polar divisor and pure imaginary periods. O

REMARK 2.9 (Green’s functions). The harmonic expression for existence of
local log differents is the existance of Green’s functions Rp(x,xzp). Its uniqueness
is from the maximum modulus principle on the compact surface, and it having local
log behavior at the support of D.

2.4.2. Universally constructing all local log differentials. Legendre had written
a whole book on the topic of differentials on X. 4 (though not expressed in that
language). To whit: One algebraically commands the nature of all meromorphic dif-
ferentials on X, 4 (from his perspective, of rational functions in z and v 23 + cz + d)
from a primitive f.q(z). For X, 4, by the early 1800s, it was clear there are local
log differentials with any degree 0 polar divisor.

The hypothesis of Prop. 2.10 that we can construct all log differentials on C,
from the desired o(u) gives the rubric for generalizing the case PL. Refer to this as
o(u) has the log-differential property.

PROPOSITION 2.10. Suppose o(u) is holomorphic on C,, with zeros of multiplic-
ity one at each element of L. 4. Assume also, for anyn and ay,...,a,,b1,...,b, €
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Cu, translates by elements of L. 4 leave invariant the log differential of

[l o(u—ai)
[Ty o(u—b)
(2.2) Then, o(u+ s) = e*=“tlg(u) for each s € L.q: Ezactly the log-
differential property.

For o(u) with these properties, every degree 0 divisor D on X4 has a local
log differential with D as polar divisor, and with e*“o(u), running over a € C,
substituting for o, log differentials of ¢(u) give all log differentials on X, 4.

Translations from L 4 leave (2.1) invariant (giving a meromorphic function on
Xea) if and only if Y1 [ai] — > 1 [b;) € C/Le.q is 0. Equivalently, d“;(u”)/gz)(u) du
is a logarithmic differential on X. 4.

There exist k,1 € C with e***lo(u) an odd function of u. It, too, has the
log-differential property. This determines k, and it determines | modulo miZ.

(2.1) p(u) =

PROOF. Assume o(u) is holomorphic in C,,, and it has a zero of multiplicity
one at each period, o(u + s)/o(u) has no zeros or poles. So, there is a well- defined
branch h(u) of log on all of C,,. Conclude the ratio has the form e”+(*), The differ-

ence between the log differential of ¢(u) and p(u + s) in (2.1) is >, W -

> dha(u=bi) = Oy hypothesis is that this is 0 for all a,b. So, dhji“) is constant

du
and hg(u) = ksu + Il for constants ks and l;. Clearly this produces a local log
differential for any [a1],...,[an], [b1],- .-, [bn] € Cu/Lea.

Now consider when the do(u)/¢(u) is a logarithmic differential dv/v on X, 4.
From Abel’s necessary condition, with no loss assume Y ;- ; a;—> ., b; = 0. Check
translation of s € L. 4 leaves (2.1) invariant:

pluts)/p(u) = ehGrimamXin®) =1, j =12,

Multiplication by -1 on C,, induces a corresponding automorphism on C,, /L. 4,
which in turn induces an isomorphism on all meromorphic differentials. Therefore,
o(—u) has the defining property of the paragraph above. As o(—u) has the same
zeros (with multiplicity 1) as does o(u), conclude that o(—u) = "™ (u) for some
h(u) holomorphic on C,. Taking the log differential of (2.1) with o(—u) replacing
o(u), conclude from the above computation:

" dh(u—a;)  ~= dh(u —b;) .
;T_;T is 0 for all a, b.

Again, the conclusion is h(u) = k'u+1’ for some k',1’ € C. It is automatic that
e* "+t 5 (u) has the log-differential property for any k*,1* € C. Iterate applying
the automorphism induced by —1 on C,. Then, o(u) = e="eM®g(u), and so
e~ M=) = W) Conclude: 21’ € 2miZ. Let o*(u) = e¥*/2¢(u). Compute:

o*(—u) = eik/“mo(—u) = ek,“HLklu/Qa(u) = el/a*(u).
Since ¢* has a zero of multiplicity one at 0, from local behavior around 0 conclude
el is —1 (I’ can be taken as 7). O
3. Implications from an odd ¢ with the log-differential property

The rubric of §2.3.2 goes far toward generalizing Abel’s Theorem. We see that
from natural puzzles likely occurring in Gauss and Riemann discussions (§3.2).
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3.1. The unique odd 6 with zero at the origin. In the last step, we
actually find this odd o(u). When we do, we have what practioners often call the
dimension one (or genus one) odd @ (it is a 6 function, though tradition calls this
Weierstrass version o). Yet, there is unfinished business even then (§6.4).

ProrosiTiON 3.1. Up to multiplication by a constant, there is a unique odd
homolomorphic function o q(u) on C, with a unique multiplicity one zero (modulo
L.g4) at u=0, for which

(3.1) Oea(u+s) = e, y(u) = o(u)

do(u)
du

for some ks € C* and l; € miZ, s € L. q. The derivative in u of s a translate

of the even function g.q(u).

COMMENTS ON FINDING o. We know from Prop. 2.10, the log-differential prop-
erty forces the conditions (3.1). Given (3.1), remove the cocycle factor eF+u+!s by
forming the logarithmic derivative

)

do
(3.2) %(u +5)=ks+ )

4 (y),
One more derivative in u gives g(u) invariant under translations by L. 4.

Since o(u) has (modulo L. 4) but one zero of multiplicity one (at 0), we know
g(u) has (modulo L. 4) precisely one pole of multiplicy two (at 0). Such a function
is ge.a; u = 0 corresponds to the point on X, 4 lying over co € PL. That the sum of
the residues is 0 determines g. 4 up to a change z — az+b, with a,b € C. Inverting
the process of taking the derivative of the log derivative gives o. Consequently, from
81.4, kg is f% ge,d dz. For the two generating periods s;, i = 1,2, it is traditional
to use n; for ks, i = 1,2. We have only to figure what is e’ to conclude the
uniqueness of ¢ up to constant multiple. For that, the oddness of o is crucial.
For s;, 0(u — 8i)u=s,s2 = —0(s:/2) and it also equals e~misi/2=lig(s;/2). That
determines ebi, i = 1,2.

Apply (3.1) to o(u+ s+ 5') to see ks = ks + kg

The main point left is to consider for aq,...,an,by,...,b, € C,, what happens
if dfi—gtu)/go(u) du = dv/v for some meromorphic function v on X, 4. Pull v back
to C,, and conclude from the differential equation that me¥“*"v = ¢(u) for some
m,y,n € C. From this equation, v has the divisor > " ;[a;] — Y i [b:], and so by
the above, p(u) defines a function on X, 4. O

Denote Lqp \ {0} by L ;:

(3.3) oealu) =ou) =u ] (1 - 3>eu/s+%<u/8>2.

S
sEL:’b

Clearly, o(u) is an odd function. Also, o(u+s1) = —o(u)e™ (“+51/2) etc. As in the
proof Prop. 3.1, the oddness of o(u) gives a special role to the u = s;/2 , i =1,2.
The construction of ¢ = o, 4 gives a holomorphic function (as in §1.3):

(3.4) o:((c;d),u) € VO x Cy + 0ealu).

PROPOSITION 3.2. We may craft all local log differentials (and so all meromor-

phic functions) on all complex 1-dimensional torii and all compact curves of form
Xeca from (3.4).
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3.2. Puzzles from Abel’s Theorem. Here are puzzles Riemann handled to
describe all functions on a compact Riemann surface.

(3.5a) For a general ¢ : C/L.q4 — PL, there is no branch of log description of
¢ (Galois’ discovery). So, how to picture such a cover?
(3.5b) How to relate the beginning and end points of allowable paths lifting
from D° to D> in Abel’s Prop. 2.2 condition (from describing ¢)?
(3.5¢) For any odd n, how to describe equivalence classes V.0 from correspond-
ing (c,d) and (¢/,d’) if there is a degree n analytic map X q — Xo a7
(3.5d) What conditions govern normalization of the function o 4 in Prop. 2.107
If n is composite, several different types of maps have degree n in (3.5¢), though
the question still takes a good shape. When n = 1, the phrasing would be to
describe V7, equivalence classes of the many pairs (¢, d) € VO corresponding to the
same isomorphism class of complex torus.
The function o.q in Prop. 2.10 is actually Weierstrass’ version of a 6 func-
tion, not Riemann’s. The likely Gauss-Riemann conversation helps considerably in
figuring the different possibilities for normalization.

3.3. Normalizing the #s. We have already put one condition into our nor-
malization that we must relax to appreciate the long history of 8 functions: We've
kept the origin in C,, as a zero (of the function o, 4(u)).

3.3.1. Even and odd thetas. Any translation u + ug of the variable u also gives
a 0 function o, 4(u + ug) according to Prop. 2.10: Use the functional equation
o(u+ s) = eFsuFlsg(u) for each s € L. 4. Further, a necessary condition that o (u)
be either even or odd is that multiplication by -1 preserves its zero set.

LEMMA 3.3. Among the functions e®o.q(u + ug), those that are either odd
or even correspond to values of ug for which 2uy € L.q4. For these there is a
unique a = ay, for which it is odd or even. More precisely, o.q(u) is odd, and
e oo, g(u+ ug) with ug = s1+ s2 or ug = s;/2, i =1,2, is even.

PROOF. Except for the precise values for evenness and oddness, this is in
Prop. 2.10. Since o, 4(u) has exactly one zero (mod L. q4), for up a nontrivial 2-
division point, o, q(u+ up) is not zero, and so it is §3.1 for the precise changes. O

Riemann’s choice of the fundamental 6 function is that with ug = s1 + s2. The
other three complete the list of 8 s with half- integer characteristics. Denote any one
of the functions e®"o(u+ug) by 0(u). An equivalent condition to it satisfying (2.2)
appears in the proof of Prop. 2.10. For each s € L. 4, d0(u+s)/0(u+s)—db(u)/0(u)
is a constant ks times du, the holomorphic differential on C, /L 4.

The following properties are explicit from o, 4. Still, they restate the general
technique given in Prop. 2.8.

PROPOSITION 3.4 (A-period normalization). Replace u by cu, ¢ € C*, so s1 =
2mi. Denote sy = 7'. With no loss R(7') < 0. So, with T &f 7' [2mi, () > 0.
Given any 0, multiplying it by e®" for some a produces a 6 with 0(u + 2mi) = 6(u).
Such a 6 has a Fourier series expansion in the variable u.

3.3.2. The Fourier expansion and 6-characteristics. There is no aspect of 6
functions more used than this Fourier expansion. Euler, Jacobi and many others
used it (as explained and generalized in [Sie29, Chap. 1-2] and [FaKO01, Chap. 3]
titled Function theory for modular group and its subgroups). Once we see the sig-
nificance of using 7’ (or 7) as an essential parameter for the complex torii C, /L 4, &
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whole subject takes off. Yet, §6.3 shows there are problems applying this to natural
equations not officially from the study of theta functions.

Suppose 6(u) is odd and has a Fourier expansion. Evaluate 8(—u+27i) = —0(u)
at u = mi to conclude 6(mi) = 0. This is contrary to our assumption of only one
zero mod L. 4. So, we can’t get the Fourier expansion and oddness simultaneously.
Having, however, the Fourier expansion was so valuable, Riemann followed Jacobi
to choose an even function to express it [Fay73, p. 1]:

(36) e(u’ Tc,d) — 6[8:| (u77—c,d) _ Z e'mTriTc,dm-‘r'rnu _ Z eTriTc,dm2+mu'

MmEZ meZL

§3.3.3 suggests why we expect such an expression for all 7. 4. Of course, 7.4 is
an entirely mysterious function of (¢, d), almost the whole point of Abel’s investiga-
tions. Further, it depends on a choice: The basis of L. 4. The other three even and
odd thetas get a similar look from this. Following Fay, use € and § to indicate real
multiples of the periods: Each point of C,, has the form e = 2mi(e + 67 4). For an
integer n, the n-division points C, /L. 4 have representatives by taking J, ¢ € %Z.
The theta with characteristics (4, €):

0 [‘2] (U, Teq) = €TiTeadt(ut2mic)d g [8} (u+e Teq)

— ZmeZ e(m-l—ts)ﬂ’iTC,d(m+6)+(u+27rie)(m+6)) .

(3.7)

LEMMA 3.5. With €,6 € 37, (3.7) gives even and odd functions. The one odd
function goes with e = § = %

For (d,€) € %Z, the 0s have %—Characteristics. The notational difference be-
tween [Fay73] and [FaKO01] appears in changing e* in the former to > in the
latter. This has a slight effect on the expression for the heat equation given by
comparing the effect of g—; with g—T on (3.6). As theta function topics go, this
equation is reasonably memorable.

(3.8a) (3.6) is invariant under 2mit +— 2miT+2-2mi: A Fourier series in 2 - 7.
1

(3.8b) The odd 6, 0[ ? ] (u, Te,q) is invariant under z — z + 2 - 274, close to a
2

Fourier series in z.
(3.8c) (3.6) makes sense in g complex variables: u — u € Cy, ... u,)
replace 7 by any symmetric g X ¢ matrix II.

def
= Cy;

(3.8d) For k € NT, the collection {9[ i ](u, T)}{ momleal g evaluated at 0
& (m,

k)=(m’,k)=1
(or use derivatives in u) are analytic functions on 7-space.

Reality check on (3.8¢): Convergence in z for a particular II requires its real part
be negative definite. Also, replace (m+0)7wir. 4(m+0) by (m+68)mill(m+46)" with
m € 79 and § € RY.

3.3.3. The jump to T-space. Consider why we expect in (3.6) a function with
a natural analytic continuation in 7 = 7. 4. Given a set of branch points 2z, and
a choice of 71,7 (as in §1.4), you may fix 71,72 even as you wiggle the z a little,
and therefore continue 7 = 7, uniquely. Further, in a continuous wiggle of z, you
uniquely determine 2’”T+T/ the place of the zero mod L of the 6 function, among
the discrete set of points of order 2 on C/L,. So, now we know 6(u,7,) uniquely
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from C/L,, under this small wiggle hypothesis, up to multiplication by a (nonzero)
constant. With no loss assume for each 7, the constant coefficient of the Fourier
series expansion in €% is 1. Then, this function is extensible over the whole 7 plane.

That (3.6) is a theta function is now an elementary check. Example: u +— 2miT
has the effect e™mm +mu , o—u=mit omir(m+1)*+(m+1)u for each m.

Suppose ® : 7 — H is a connected family of genus 1 curves. A section p: H —
7T to ® allows us to regard ® as a family of complex torii: The point u(p) gives a
canonical isomorphism: = € 7, — = — u(p) € Picz(,o) from 7, to divisor classes of

degree 0. We assume known that Picz(,o) has a structure of complex torus through
a holomorphic differential on 7, (§6.3).

Subtly different is considering on each fiber 7, the set of divisor classes of de-
gree 0 whose squares are the trivial divisor class. Denote this Dg. The subtlety is
that we won’t easily recognize such divisor classes without an explicit torus struc-
ture. Unless there are special conditions, there won’t usually be specific divisors
representating them, varying analytically with p. Thisis a %-canonical divisor class.

The definition works for general genus. In (4.7), >"'_, ind(C;) —2n is the degree
of the differential dy of ¢ : X — PL. This defines g(X) (independent of ) because
all differentials on X have the same degree. So %—canonical divisor classes have
degree g(X) — 1.

DEFINITION 3.6. Suppose (dy) = 2D,, for some divisor D,. Call D, an exact
%—canonical divisor.

We use a technical lemma later [BFr02, §B.1].

LEMMA 3.7. Such a D, exists if and only if all elements of C have odd order.
For any a € PGL2(C), Dqoy is linearly equivalent to D.,.

THE EXPLICIT LINEAR EQUIVALENCE. With no loss represent o by %j;db with
ad — bc = 1. Then,

op= do(w) z) = b z
B0 O = g om0 = ey A2 )
S0 Daop = Dy, — (cp(2) + d). O

It would be wonderful if one could summarize Riemann’s work by saying (3.8c)
works for general compact Riemann surfaces, and it’s a great memory device, so
done. It isn’t quite that easy.

Still, we profit by turning to questions that arose from cuts have a modern cast
and many modern applications. The unique odd theta function when the genus
is 1 is in (3.4): Onme function works simultaneously to describe all functions on
all compact Riemann surfaces appearing as complex torii. That is very useful, if
solving a problem about functions depends only on zeros and poles, rather than on
the branch points and if the coordinates given by the variable 7 are appropriate for
the problem. We can phrase why that isn’t so by looking at (3.5a) and analyzing
the signficance of finding out that all analytic maps ¢ don’t come from (3.5¢). The
conversations between Gauss and Riemann, on whose outcome the rest of this paper
concentrates, are appropriate for seeing this even through the case g = 1.

Abel’s Theorem is perfect for forming abelian covers of a complex torus similar
to using branches of log to describe abelian covers of PL. Knowing only the gen-
erators of a function field like M, 4 gives surprisingly little help in understanding
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properties of elements in the field. Abel’s Theorem is valuable for many questions,
and yet it too leaves us powerless against those in Ex. 6.5.

4. Compact surfaces from cuts and the puzzle (3.5a)

To this point we interpreted the compact Riemann surface X, 4 as coming from
a branch of V23 + ¢z + d. The value was that the differential h. 4(z) dz interprets
as a holomorphic differential on X, 4. Its integrals around all closed paths on X 4
produce a lattice L. 4. The goal (as in (3.5¢)) is to glean how this integral changes
as (c,d) varies. The phrasing of that goal was how to put order in relating (c, d)
and (¢/,d’) when g ¢ € M.q4. The production, however, of all functions on the
compact Riemann surface X, 4 raises the question of how objects on X, , appear
from the view of P} given by ¢ : X, 4 — PL.

For example, is a general ¢ really given by one of those g 4 s? If not, how
would holomorphic (and meromorphic) differentials appear as a function of w? Our
discussion documents that the negative answer to the former and how to consider
the latter must have occurred in discussions between Gauss and Riemann.

4.1. Data for cuts and Nielsen classes. The treatment of [Fr03, Chap. 4,
§2.4] emphasizes unramified covers as locally constant structures (and has complete
details). We here go for the simplier goal of clarifying one look at Riemann’s
Existence Theorem. Here is the starting data for connected degree n covers.

(4.1a) r+ 1 distinct points zg and 2 = {z1, ..., 2} on the sphere.
(4.1b) Semi-simplicial paths 7;, (with range) from zg to z;, 7 =1,...,r, meet-
ing only at their beginning points, that emanate clockwise from zj.
(4.1c) a collection of elements g1, ..., g, € S, satisfying two conditions:
e Generation: The group G(g) they generate is transitive.

e Product-one: The product g; - - - g, Lef I1(g) (in that order) is 1.

4.1.1. Covers from cut data. We show how the data C = C(¥,g) (4.1) canoni-
cally produces a new compact Riemann surface cover pc : X¢ — PL. Equivalences
between two such covers are important, though we suppress that here. Given that
there are cuts as in (4.1b), call the elements g from (4.1¢) a branch-cycle description.
Let P!, i = 1,...,7, be copies of P, and on each remove the points labeled
20,21, -+ ., %p. Call the result P;. Form a pre-manifold IP’;t (not Hausdorff) from P;
by replacing each point z along any one of the ;s by two points: zT and z~. We
form a manifold from an equivalence on the union of the ]P’Ji, j=1,...,n, using
the expected neighborhoods of all points except 2™ and z~. For neighborhoods of
these, we use the following sets. Let D; . be a disk around z. Write this as as a
union of two sets: D:Z (resp. D; ), all points on and to the left (resp. right) of ~;.

PROPOSITION 4.1. Form a manifold from an equivalence relation (in the proof)
on U?zlﬂ”;t based on using the r-tuple g. Running over all n and product-one r-
tuples g (even with the cuts fized), forming the compactification gives all possible
compact Riemann surfaces mapping to PL ramified over z.

PROOF. If g; maps k to [, then identify 2~ € P in the g; cut with z* € PF.
In the resulting set, put on a topology where the neighborhood of such a z~ is
lez U Dy, identified along the part of v; running through z. O
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4.1.2. Changing the cuts and s-equivalences. There are many ways to consider
the cuts changing. Eventually one must consider that in great generality. The
simplest change, however is just to change the #1,...,7;, noting this canonically
changes the g if we keep the analytic map ¢¢c : X¢o — P! fixed [Fr03, §2.4.3].

LEMMA 4.2. Suppose we fix z, but change the cuts (leaving zo fized) and pos-
sibly changing the order of (21,...,2.) to correspond to condition (4.1b), the cuts
emanate clockwise from zg. Then, the corresponding cover ¢ : X¢ — PL has a new
(canonical) branch cycle description g’ = (g}, ..., g.) satisfying these conditions.

(4.2a) G(g) = G(g') (andT1(g') =1).

(4.2b) For m € S, corresponding to the change in order of z (z; v Z(ix,

i=1,...,7), g; is conjugate in G(g) to g(;x-

Record the set of conjugacy classes in G = G(g), repeating them with multi-
plicity though without regard to order, as C = C4. We say g,¢’ € C.

DEFINITION 4.3. We call the collection Ni(G, C) of ¢’ satisfying (4.2) the
Nielsen class of (G, C).

There are many possible further equivalences on Nielsen classes. All come from
modding out by the action of certain groups on Ni(G, C). Describing the cuts starts
with a permutation representation of G(g). Let Ng, (C) denote the subgroup of
S, that normalizes G and permutes the conjugacy classes C. It makes sense to
conjugate any r-tuple g € Ni(G, C) by elements of Ng, (C). Two equivalences
apply for all values of 7:

(4.3a) Inner Nielsen classes: This is the set Ni(G,C)/G %ef Ni(G, C)™m.

(4.3b) Absolute Nielsen classes: Ni(G,C)/Ng, (C) f Ni(G, C)2b* with an

understanding this requires giving a permutation representation.

We say an element g € Ni(G, C) represents the Nielsen class. It also represents
an (absolute or inner) s-equivalence class, so giving an element of Ni*™* or Ni™™.

A natural set of operators, which we designate as qi,...,q-—1, acts on any
of the s-equivalence classes of a Nielsen class. For g € Ni™ (or Ni**®), ¢; sends
(915---,9r) = g (in order) to the new r-tuple of G(g) generators

(44) (gla e agi—17gigi+1gi_13.giagi+27 R 797-)a 1= 17 BN A 1.

There is an actual group, the Hurwitz monodromy group H, that these operators
generate. It has a presentation by generators and relations. We list these.

(4.5a) Braid relations: ¢iq; = ¢j¢;, 1 <i<j<r—1;j#i—1ori+1, and

49410 = Gi1GiGit1, 1 =1,...,r = 2.

(4.5b) Hurwitz relation: ¢(r) = q1g2 - ¢r—1gr—1- - g2q1-
Let U, = P" \ D, be the space of 7 distinct unordered points in P!, the image of
(PH"\ A, =U". Thus, ¥, : U" — U, is an unramified Galois cover with group S,..
[BFr02, §2.1] reminds how giving a set of cuts identifies H,. with 71(U,., 2).

It has great value to be precise about what happens as we change the cuts.
While this was not apparantly explicit in the discussions of Gauss and Riemann, it
will be a tool for our discussion.

PROPOSITION 4.4. The Hurwitz relation q(r) acts as g — g1(g)qy " on Nielsen
class elements, so it acts on inner (or absolute) Nielsen classes [Fr03, §3.1.2]. The
action of H, commutes with the action of Ng, (C).
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Keep the hypotheses on the cuts as in Lem. 4.2 (like fix z, etc.). Then, the
action of H, on s-equivalence classes gives all the possible changes in the branch
cycles from changing the cuts.

RELATING TO THE FUNDAMENTAL GROUP OF U,.. . Suppose v : [0,1] — U, is
any closed path with beginning and endpoint z € U,.. Since V¥,. : U" — U, is un-
ramified, any such path lifts uniquely to v* : [0, 1] — U" starting at (21, ..., 2,) and
ending at some (2(1)r, -, 2(r)x). S0, each coordinate /', gives a path on PL. Then,
given 7y, . .., 7, giving cuts, we may form a new r-tuple of paths (3177, ..., ¥ 7).
These can serve as the basis for a new set of cuts, so long as the hypotheses for cuts
hold. [Fr03, Chap. 5] (or [Fri77, §4]) lists vs by which we calculate explicitly the
effect of the ¢, ..., q-—1. It shows for allowable such paths, the result only depends
on the homotopy class of ~, and that the effect of the ¢i,...,¢q-—1 generate all
such changes. The proof comes to computing representatives of 71 (U, z) modulo
providing such representatives satisfying a few constraints. ([

4.1.3. Cuts and r-equivalences. There are no new equivalences for r > 5. We
tend to ignore r = 2, whenever we can, and the other equivalences apply to r = 3
and r = 4. For r = 4 these come from the action of a group Q" that acts through
a Klein 4-group (Z/2 x Z/2) on any Nielsen classes. First consider the shift sh =
419293: (91,--.,94) € Ni(G, C) — (g2,93,94,91). Then, consider qlqg_1 which acts

as (g1, -,94) € Ni(G, C) > (919291 ', 92,93, 95 9495 ' )-
Two new equivalences for r = 4 [BFr02, §2|:

(4.6a) Reduced inner Nielsen classes: Ni(G, C)/(G, Q") 2 Ni(G, C)inrd,
(4.6b) Reduced absolute Nielsen classes: Ni(G, C)/Ng, (C) dof Ni(G, C)absrd,

Reduced equivalence classes for r = 3 replace the group Q”, by the group (¢1¢2, ¢1)-
This comes from setting g3 = 1 in Q”, though that is misleading, for this group acts
through S3, and is not a quotient of Q”. The operators qi, ..., q._1 are specific to
a particular value of r. We simplify in dropping that notation, though we must be
careful for there is no natural homomorphism from H, to H,_;.

4.2. Source of the cuts and modular curves. B. Riemann (1826-1866)
from his thesis 1851 and his 1857 articles on abelian functions, used the Cauchy-
Riemann equations exclusively. He based many of his proofs on potential theory.

4.2.1. Where the cuts came from and a map through the rest of the presentation.
[Ne81, p. 89]: It was Gauss’ (1777-1855) writings the young Riemann studied wth
special zeal. From these he drew significant inspirations for his [doctoral] thesis.
He wrote his father how he found these papers. What he especially appreciated was
Gauss’ contributions to conformal mapping using essentially a Dirichlet principle.

According to Betti, Riemann said he got the idea of cuts from conversations
with Gauss [Ne81, p. 90]. Letters of Klein and Schering attest to Gauss’ influence
on Riemann’s theory of hypergeometric series. Though this influence came partly
from Gauss’ papers, it is striking to consider, possibly in 1849, the over 70 year old
Gauss sketching plans for such an etherial construction to the very young Riemann.

We show how modular curves arise from the cuts. Then, we give examples
parallel to modular curves that show what Gauss and Riemann might have been
considering. The group generated by the product-one g is the (monodromy) group
G(g) of the Galois closure of the cut map ¢ : X — P.. §4.2.3 uses this group to
characterize the answer to (3.5¢). Euler’s classification of compact 2-dimensional
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manifolds raises the question of finding which complex manifolds have given pre-
sentations (§6.3.1).

4.2.2. Appearance of the j-line. Linear fractional transformations, z +— 22+2

cz+d
with (¢ %) € GLy(C) form a group acting on P.. Identify the elements of pro-

jective r-space, P" as nonzero monic polynomials in a variable z of degree at most
r. For example, if (ag,aq,...,a,) represents a point of P", and zg # 0, by scaling
it by % assume with no loss zyp = 1. Then, take the polynomial associated to this

point as 2" + E:;é(—i)’“‘iar_izi. There is a natural permutation action of m € S,
on the entries of (P1)": m: (21,...,20) = (2((1)ms - - - » Z(r)m)-

If ¢ : X — P! represents an s-equivalence class of covers in a given Nielsen class
Ni, then the collection {aop : X — PL} cpaL, (c) gives the set of covers r-equivalent
to ¢. The cover a o ¢ has as branch points, a applied to the branch points of .
Denote the equivalence classes for the action of PGL2(C) on U, (resp. UT; §4.1.2)
by J, (resp. A;).

As a quotient of an affine space by a reductive group, J, is also an affine space.
Then, A4 identifies with P4 \ {0, loo} = Up 1 00:

(22 — z3) (24 — 21)
(22 — 21) (24 — 23)

where z4 goes under the fractional transformation taking (z1, ze, 23) to (0,1, 00).
Notice: Cycling the order to (22, 23, 24, 21) has the effect A, — 1/);, so the square
of the cycle fixes A\,. This is true for all conjugates in Sy of the cycle. So, S4 acts
through S5 = S;/ K4, with K4 a Klein 4-group on the collection of (z1, 22, 23, 24)
over a given {z1, 22,23, 24}. Let Cy and C3 be the respective conjugacy classes of
order 2 and 3 in S3. Let F : P} — P by the Galois cover with group S3 ramified
at 0,1,00 (we normalize F' to use 1 rather than the number theorists’ 1728) with
conjugacy classes Cy = (C3,Cq,C5) in order, and having {0, 1,00} lying over co.
This identifies J4 with [Ah79, p. 282]:

{Zl,...,Z4}*—>jz:F()\z) €J4-

(21722723324) = )\z - S A47

It is a worthy exercise —to those new to Nielsen classes — to show Ni(S3, Cy)®
has but three elements. So, with the normalizations above this determines F'.

4.2.3. Modular curves. We first consider how to describe the situation of (3.5¢)
as coming from cuts. Covers from which we may recover everything in (3.5¢) come
from covers ¢ : X — PL with r = 4 and monodromy group G(g) a dihedral
group when the elements of g are involutions. These are dihedral involution covers.
Following that, we ask if X, 4 is a cover of P1 in an entirely different way than
given by Abel’s situation (3.5¢).

The field C(g.q(u)) = Rcq identifies as the fixed field of even functions in

C(ge,a(u), dfl;'d) = R q of the automorphism induced by u — —u. The inclusion

of ge',d! in (C(gcvd(u), d‘g‘;’d) induces a field extension C(gc,d)/c(gc’,d’) = Rc,d/Rc/,d’-
Let Hs be the group {#1}. Below, if A is an abelian group we regard Hs acting on
it by multiplications by +1. For a positive integer m, we consider the semidirect
product action Z/m x Z/m x* Hy and various of its subgroups. If V' is a subgroup
of Z/m x Z/m, then there is an induced group Z/m x Z/m/V x*H,. If the quotient
Z/m x Z/m/]V is cyclic of order n, then Z/m x Z/m/V x®Hs is the dihedral group

D,, (having order 2n; of degree n).
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PROPOSITION 4.5. An extension R q/Rc 4 (degree m) corresponds to a cover
© = Qe,d),(c'd) : PL —PL: forueC,, w= Ged(u) = z = go @ ().

The Galois closure of this cover corresponds to the extension Rc,d — Reogr. Its
group G, is a quotient of Z/m x Z/m x°Hy. If G, is D, with n odd, then there is
a branch cycle description for ¢ in the Nielsen class Ni(D,,, C91)**® and conversely.

The collection of absolute reduced (resp. inner reduced) equivalence classes of
covers in the Nielsen class Ni(D,,, Ca4) identifies with the open subset of the modular
curve Xo(n) (resp. X1(n)) over P} \ {oo}.

CONSTRUCTING MODULAR CURVE EQUATIONS. Assume m is odd to simplify.
On any complex torus, X. 4, we may multiply by an integer m. Denote this
map m*. The Galois closure X.q — IP’_}]C, v factors through X 4, also degree
m. All such covers fit between m* : Xo & — X a7, which is Galois with group
Z/m x /bZ/m, so identifying m* : Xo ¢ — ]P’;C,,d, with Z/m x Z/m x*® Hs, and
the group of X.q4 — IP’;C, , With a quotient by the subgroup of the Galois cover
X — Xeq. Form odc117 the generator of Hy gives a unique conjugacy class of
involutions in Z/m x Z/m x*® H. This is the only conjugacy class fixing points on
X . The fixed points of H, are exactly the 2-division points on X 4.

S0, ¥ = @(c,q),(e @) : Py, — PL has precisely four branch points 2z, ..., z4, and
above each z; precisely one point w; does not ramify, and the cover is in the Nielsen
class Ni(D,,, C4). In the other direction, suppose given j, and a cover ¢ : X — PL
with branch points z and in the Nielsen class Ni(D,,, Ca4). This relates j, and j,
(notation from §4.2.2).

We can see j,, is an algebraic function of j, by using analytic continuation.
Avoid j € {0,1,00}. For any particular z lying over j,, consider all the covers
D,, covers of P;C,‘d, that factor through Xczyd/n—>XC/’d/ — P;C, o The case with n
general comes by taking fiber products from the case n is primé—power (asin §5.1).
So, if n = p°® (p odd), there are as many such Dpe covers as there Z/p°® quotients of
Z/p® x Z/p°. A sh-incidence argument in §5.2.4 illustrates a quick way to see this
count is correct for the Nielsen classes for Ni(D,,, C14). This assures there is no
cover ¢ : X — Pl in the Nielsen class not included (up to equivalence) by Abel’s
considerations.

A different argument brings up a key point for the Gauss-Riemann discussion.
Elements h in a conjugacy class C of S,, have an index ind(C) given by n minus
the number of orbits of h. The genus gn; = g(X) of X from a cover ¢ in a Nielsen
class Ni come from the Riemann-Hurwitz formula:

-
(4.7) 2(n+gxi — 1) =Y _ind(Cy).
i=1
(Fig. 1 shows how cuts produce a triangulation from which we compute the genus
of the covering curve as an Euler characteristic.) So, without the count argument
we need that ¢ : X — P! in Ni(D,,, Cy4), with X having genus 0, identifies with
PL. This then associates values wi, ..., w4 to 21, ..., 2. ([l

The proof of Prop. 4.5 required knowing a cover X — P! with g(X) = 0 assures
X is analytically isomorphic to PL. It used the j-invariant attached to four points
on P. to give coordinates to modular curves. We have a respectable argument
for that built from the cuts. Still, we are about to come upon genus 1 surfaces
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where it is difficult to find such an argument. The Riemann-Roch Theorem shows
all genus 0 Riemann surfaces are analytically isomorphic, though we are relating
this to a discussion before that theorem. If we knew this about X, then we could
construct the degree two genus 1 cover from the w set, and from §1.3 to have a
complex torus on it. Conversely, given a genus 1 compact surface Y, a nontrivial
holomorphic differential wy identifies the universal covering space of X with C,
and gives Abel’s situation.

5. Modular curve generalizations

Let any finite group H act on any lattice L or on any finitely generated free
group F'. We include the case L or F'is trivial. We may replace Z by L or F' and Hs
by H in the discussion of modular curves. Also, let C be some generating conjugacy
classes for H. In the next discussion avoid all primes p dividing the order of any
element in C. For the most serious results we add that the finite quotient groups
are p-perfect: Have no Z/p quotient. This is the setup for Modular Towers (as in
[BFr02]). Here we illustrate possibilities for the Gauss-Riemann discussion, which
have modern counterparts (say, in the Inverse Galois Problem and cryptology).

5.1. Universal p-Frattini cover. For any prime p, consider the pro-p com-
pletion ,F of F' (or L if that is the case). A pro-p group P has a Frattini subgroup
@(15) generated by its pth powers and commutators. For p not dividing |H|, the H
action extends to ,F, and gives ,F x*H ([BFr02, Rem. 5.2] or [FJ86, Chap. 21]).
This is the universal p-Frattini extension of ,F'/®(,F) x*H = G (this is G below).

For any finite group G and each prime p, p||G], there is a universal p-Frattini

cover ¥y, : pé — G with these properties [Fr95a, Part II].

(5.1a) G is the fiber product of ,G (over G) over p primes dividing |G]|.

(5.1b) Both ker(¢,) and a p-Sylow of ,G are pro-free pro-p groups, and ,G is
the minimal profinite cover of G with this property.

(5.1¢) ,G has a characteristic sequence of finite quotients {G,}52 .

(5.1d) Each p’-conjugacy class of G lifts uniquely to a p’ class of pé.

(5.1e) If G* < Gy, has image in G all of G, then G* = Gy,.

Denote ker(1);,) by kerg. For any pro-p group, the Frattini subgroup is the closed
subgroup that commutators and pth powers generate. Let ker; be the Frattini
subgroup of kery. Continue inductively to form kery as the Frattini subgroup of
kery_1. Then, Gy = pé / kery. To simplify notation, suppress the appearance of
p in forming the characteristic sequence {G%}72,. Use of modular representation

theory throughout this paper is from the action of G} on kery /kery4 def My, a
natural Z/p|Gj] module.

Suppose p does not divide H, but P is a p-group, and P is minimal pro-free
pro-p cover of P. Then, the universal p- Frattini cover of P x*H is P x*H from the
H action extending to P. Applications must consider the general case where p||H]|.
Then, [Fr02, Prop. 2.8] gives the rank of the p-Frattini kernel. The key information
comes from a two step process going from the normalizer N of a p-Sylow of Gy,
which is a split case from which we compute kerq / kery, which is an N module. The
correct rank is that of a natural indecomposable module in the Gy module induced
from N. We give one case of it here, for contrast with our main example.
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EXAMPLE 5.1 (Gp = As). F is trivial, and H = Gg is A5. We use the prime
p = 2 and C = Cas4, four conjugacy classes of elements of order 3. For absolute
equivalence for Ni(Gg, C34) use the cosets of A4. Call this permutation representa-
tion Ty,. For larger values of k, [BFr02] uses several different coset representations
extending the standard one, for good reason as we will see.

5.2. Using D, = Z x° Hs as a model. We give an analog of the modular
curve situation based on using four 3-cycles.
5.2.1. Finite quotients of the group Fy x*Hs. Let H = H3 = Z/3 act on a free

group Fy with two generators vy,va: (1) Lof Z/3 acts as (vi,bvy) > (vy,v1v5h).
We use the conjugacy classes C32: Four conjugacy classes of elements of order 3,
two mapping to x4 € Z/3 and two mapping to —u. That is As in (5.1d), regard
C.32 as conjugacy classes in all quotients of ,F? x* Hy = pé. So, we avoid only
the prime 3 (akin to 2 for the modular curve case). For any other prime p, G in
our notation above is Gy ((Z/p)?) x*Hjs. Use a copy of Hz in Gy ((Z/p)?) x*Hj for
each k (p # 3) to define absolute classes, denoting the corresponding permutation
representation by Tr,. As in Ex. 5.1, this may not always be the best choice.

The following statements are done in great generality in [FV91]. The collec-
tion of conjugacy classes in both examples is a rational union. In our illustrating
examples we use that all spaces formed from a Nielsen class Ni(G, C) where C is a
rational union have equations over Q. They, may, however, have components not
defined over Q. Further, we use that inner spaces have unique total families over
Q if there is also no center, and the same holds for absolute spaces if the image of
G under the permutation representation T : G — Sy has no centralizer in Sy.

PROPOSITION 5.2. The Nielsen class Ni(Gr((Z/p)?) x* H3,C432) = Ni is
nonempty. Covers in the inner classes form a space analogous to Xi(p*t1); in
the absolute classes analogous to Xo(p*+1).

FORMING NONEMPTY SPACES. For each k we show there are Harbater- Mum-
ford (H-M) reps.: (9197 ", 92,95 ). Since Gy is a Frattini cover of Gy, we can lift any
elements g1, go having order 3 to G. The Frattini property says they automatically
generated Gy, and so produce an H-M rep. at level k. So, it suffices to find two
order 3 generating elements g1, g2 € (Z/p)?) x* Hz mapping to p. For the action of
H on (Z/p)? there are no invariant subspaces. Take g; = p and go = (v* — v, i)
for any v not commuting with . When r = 4,

(5-2) Yo = 4192, Y1 = 4149291, Yoo = 42

acting on Ni(G, C)™ give a branch cycle description of this space as a cover of the
j-line. Just apply this to Ni(G}, C132)'®. This is a major point: [BFr02, Prop. 4.4]
or [DF99, Prop. 6.5]. O

5.2.2. Family from Ex. 5.1. BEach p € H(Gy, C34)?P**® corresponds to a cover
¢p : Xp — PL up to reduced equivalence. If z(p) are the four unordered branch
points of the cover, we see the following.

(5.3) From R-H: ¢g(X,) = 0 and the unique point z; € X, over z; € z cor-
responding to the 3-cycle ramification ramification, gives an unordered
4-tuple £ on X, associated to p.

PROPOSITION 5.3. The map p € H(Go, C34)**>™ — (jp), J(p)) = ¥(p) is
generically one-one. The projection Y(p) + jyp) has degree 9 and monodromy
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group Ag. So, this presentation of H(Gy, Cs1)*P>™ resembles the description of

modular curves given by Prop. 4.5, yet it is not a modular curve.

USING THE sh-INCIDENCE MATRIX. This is a brief review of [BFr02, §2.9].
For a general reduced Nielsen class, list 4, orbits as O, ..., O, . The sh-incidence
matrix A(G, C) has (4, 7) term |[(O;)sh N Oy|. Since sh has order two on reduced
Nielsen classes, this is a symmetric matrix when r = 4. Equivalence n x n matrices
A and T A'*T running over permutation matrices T (*T is its transpose) associated
to elements of S,. List v, orbits as

0171a"'7017t170271a"'7027t27"'70u71,"'a0u7tu

corresponding to My orbits. Choose T to assume A(G,C) is arranged in blocks
along the diagonal. The blocks correspond to connnected components of H(G, C)™.
5.2.3. sh-incidence matriz of Ni(As, Cg4)™™ = Nit»™. Denote 7o, orbits of

g, = ((123),(132),(145), (154)) and g, = ((123), (132), (154), (145))
by O(5,5;1) and O(5,5;2); Yoo orbits of
((513),(245), (154),(123)) and ((324),(513), (154),(123))
by O(3,3;1) and O(3,3;2); and of (g,)sh by O(1,2). Add conjugation by a 2-cycle

TABLE 1. sh-Incidence Matrix for Nig

Orbit [0(5,51)] 0(5,52)] 03,3:;1)] 03,32 | 0(,2)
0(5,5:1) 0 2 1 1 1
0(5,5;2) 2 0 1 1 1
0(3,3;1) 1 1 0 1 0
0(3,3;2) 1 1 1 0 0
0(1,2) 1 1 0 0 0

to get this for Nia”™ which gives exactly 3 7, orbits of respective widths 5, 3
and 1. So the monodromy group is a primitive subgroup of Ag containing a 3-cycle,
and so it is Ag. O

5.2.4. Modular Curve example. How sh-incidence matrix shows there is one
component. Here p is odd.

Describe Nielsen classes Ni(D,,, Co1)™™ as 4-tuples (b1, b, bs, by) with by, ..., by €
Z/p’”‘l, where the differences b; — b1, j = 1,2, 3, generate, by — by +b3 — by =0,
modulo translation by elements of Z/p**1 and (by, by, b3, by) — — (b1, ba, b3, by).

For absolute Nielsen classes Ni(D,x+1, 024)'6"3’57 allow all affine actions, including
(b1, ba, b3, by) > a(by, by, bs,by), a € (Z/p*+1)*. Further, a ., orbit consists of the
set (bl, bg + k, bg + k, b4) with 0 S k S ord(b2 - bg)

The length one orbits for v, have representatives (0,b,b,0) (b # 0), so there is
just one absolute width one absolute orbit, and ]”2;1 such inner orbits. In all other
cases the orbits have width p, and so there is just absolute orbit (with representative
(0,0,1,1), an H-M representative) and % such inner orbits. Let T, be the n x n
matrix with 1’s in each position.
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ProroSITION 5.4. Assume k = 0. Reduced Nielsen classes are the same as
Nielsen classes because the action of Q" is trivial. The sh-incidence matriz for

Ni(Dy, Caa)™>*is (0 (). That for Ni(Dp, Coa)™™ is (9 ).

ProOF. Label the inner ., width one orbits as O 3, as given by the represen-
tatives (0,6,0,0), b=1,...,p — 1. Similarly, Label the inner -y, width p orbits as
Op.p, as given by v, orbit representatives (0,0,b,0), b=1,...,p— 1.

Now check |01, N (Oppr)sh| = 1: The one element of intersection is (0, b, b, 0)
occurring if and only if b = b'. Further |O; ;N (O1,)sh| = 6. That leaves us tto
show |Op.» N (Opp)sh| =1 for each pair of nonzero entries b,b' € (Z/p)*.

Inner representatives of O, are the elements {(0,a,a + b,b},cz/p. Applying
sh to these gives these as inner representatives: {(0,b,b — a, —a)},cz/p. This has
exactly one representative in {(0,a’,a’ +0',b'}4rcz/p, when b=a' and —a =0". O

The proposition of §5.2 is not really far from a Gauss-Riemann discussion. We'll
do the first case to see that. Take kK = 0, p = 2 and absolute classes. We are looking
at H(Go((Z/2)?) x* H3, Cy3)*Psrd = HS}DQS’rd. Each p € HS})QS’rd corresponds to a
cover p : Xp — PL with the genus of g(Xp) = 1.

The end of §4.2.3 discusses the symbiotic relation between genus 0 and genus
1, and identifies the practical point of recognizing genus 1 surfaces as complex
torii. It poses if the genus 1 curves in this space relate to those given by modular
curves. This relates to (3.5a): Do the functions and differentials described by Abel’s
Theorem relate to these Xps. If we could answer yes to this, then the nature of the
cut construction guarantees there is a map from HS})QS ™4 £ the j-line by mapping p
to the j-invariant of X,. Then we would know which of the X, 4 are appearing in
this family? Even it you already know about elliptic curves, isn’t it possible that
only one is?

PROPOSITION 5.5. The space Hggs’rd has two components.

6. Riemann’s formulation of the generalization

A collection of results about the complex 1-dimensional torus case that require
generalization. We start with a compact Riemann surface cover ¢ : X — PL. We
understand others might choose a different starting point, for example not having
@ at all, just X. Our points are around this . Use the notation Xg =X\ ¢ ().

(6.1a) Some algebraic function ¢ : X — PL separates points of X,,, 2o & 2.
(6.1b) Any degree 0 divisor on X is the polar divisor of a local log differential.
(6.1c) The universal covers of X and X g are analytic open sets in PL.

These properties have subtle relations, exposed from different approaches to filling
in Riemann’s legacy. We get back to the Gauss-Riemann conversation with some of
these. Example: If any unitary line bundle gives a divisor and associated Green’s
function, that would invert the relation between local log differentials and such
bundles, answering (6.1b). It is an alternate way to say existence of a theta function.

6.1. Using the existence theorem to uniformize compact surface mi-
nus points. We start by showing topologically what is the universal covering space
of a compact surface minus a finite set of points.
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LEMMA 6.1. For a fized g > 0, there are co-ly many n with 8 branch point
0 : X — P g(X) = g and monodromy group S,. In both cases in (6.1c), the
universal covering space is topologically a subset of the plane. Further, any genus
g compact Riemann surface with r punctures (r >3 if g=0,r>1, if g=1), has
the disk as a universal cover.

PROOF. We do just the compact case using the cuts and the function A(7).
Fix g and consider the following branch cycle descriptions giving 3 branch point
0: X — P! g(X) =g, monodromy S,.

Take n = my+---+ms. Modify S, o covers:

g=0...my) - (mi+--+mg_1+1 ... n).

Genus 0: Take

g2 = (mlfl e 1)(m1+m271 m1+1)
(n—1...n—ms+1)(mymi+ms ... n).

Th