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Abstract. Historian Otto Neuenschwanden studied Riemann’s library record
in Göttingen. He also consulted job position letters in Germany in the 3rd
quarter of the 19th century. These show Riemann relied on personal discussions
with Gauss (in the late 1840’s) about harmonic functions. Mathematicians
rejected that early approach after Riemann’s death (in 1866) until near the
end of the 20th century’s 1st quarter.

Using Riemann’s theta functions required generalizing Abel’s work in two
distinct ways. Abel compared functions on the universal cover of a complex
torus; everything was in one place. Riemann had to compare functions from
two different types of universal covers. We explain struggles over interpreting
modern algebraic equations from the Gauss-Riemann approach.

Abel’s work on elliptic integrals motivated approaches to algebraic equations
that we don’t easily connect to him through just his published papers. There is
still no simple route through the beginnings of the subject. A student runs quickly
into difficulties that call into question these topics.

• How may one divide the vast finite group area between those that are
nilpotent and those that are simple?

• How may one meld existence results from complex variables with ma-
nipulative needs of algebraic equations?

[Fr03] and [Vö96] have background on analytic continuation. They cover many
issues on Riemann’s Existence Theorem toward modern applications. All detailed
definitions in this discussion are in [Fr03]. We explain here subtleties in Riemann’s
approach and why there is so much modern work on problems one might have
thought solved long ago.

We used the technical equation-oriented [Fay73] as a personal encyclopedia on
what counts to theta afficianados. We also respond to a challenge from [FaK01,
Chap. 2,§8]:

. . . , partial motivation for the results discussed so far is to
better understand the multivariable case.
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2 M. FRIED

[FaK01] only considers theta functions attached to elliptic curves, or one-dimensional
thetas. That is because they consider only theta functions (and theta nulls) vary-
ing along modular curves, natural covers of the j-line that first arose in Abel’s
work (§4.2.3). Likely the term multivariable in [FaK01] means thetas attached
to Siegel modular spaces. Our examples, however, note natural systems of j-line
covers for which the corresponding thetas are multivariable. Discussions of Gauss
and Riemann to which [Ne81] refers easily motivate these examples.

Few specialized territories exceed theta functions for giving the feeling its ad-
herants must slave endlessly over intricate details. Yet, even here we suggest, one
needn’t know everything to claim knowing something significant.

1. Interpreting Abel’s Problem

My notation for the Riemann sphere is P1
z = Cz ∪ {∞}. This indicates for

different copies of C the chosen variable may change. For a finite set zzz on P1
z,

denote its complement by Uzzz. We use the fundamental group π1(Uzzz, z0) and related
fundamental groups. We start with a general problem.

1.1. Antiderivatives. Let ϕ : X → P1
z be a map between compact 2-dimensional

manifolds (the genus gX of X comes later) with all but finitely many points
zzz = {z1, . . . , zr} of P1

z having exactly n points above them. Then ϕ gives X a com-
plex structure. By that we mean, there is a unique complex manifold structure on
X so that when we pull back the local functions on Uzzz analytic in z to X \{ϕ−1(zzz)}
we get the functions we call analytic on X. That means there is a unique way to
declare the functions H(V ) analytic in a neighborhood V of x′ ∈ ϕ−1(zzz) to have
two properties:

(1.1a) Functions of H(V ) restricted to V \ {ϕ−1(zzz)} are locally the pullback
of analytic functions in z.

(1.1b) There is a (possibly smaller) neighborhood W of x′ in V to which the
functions called analytic there form a ring isomorphic to the convergent
power series in a disk about the origin on Cw.

Notice in this formulation: Pullback of z interprets z around each point as a mero-
morphic function. It is a global meromorphic function on X.

The simplest case of this situation is given by f : P1
w → P1

z by f(w) = we for
some positive integer e. Even if we don’t a’ priori declare w as the variable from
which we get our local analytic functions around 0 (convergent power series in w)
and ∞ (convergent power series in 1/w) on P1

w, it will be forced on us if we declare
f : P1

w \{0,∞} → P1
z \{0,∞} analytic according to (1.1). Since these rules produce

a local variable wx′ giving the local analytic functions around x′ ∈ X, we also have
the idea of a local analytic differential hx′(wx′) dwx′ .

Suppose ω is a global holomorphic differential on X. That means at each
x′ ∈ X we give a neighborhood Vx′ and an expression hx′(wx′) dwx′ with hx′ a
holomorphic function of wx′ subject to the following compatibility condition.

(1.2) If γ : [0, 1] → Vx′ ∩ Vx′′ is any (continuous) path then

∫
γ

hx′(wx′) dwx′
def=

∫ 1

0

hx′(wx′ ◦ γ(t))
dwx′ ◦ γ(t)

dt
dt =

∫
γ

hx′′(wx′′) dwx′′ .
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Anything contributing to adding up information along a path comes from in-
tegration of a tensor. The specific tensors that are holomorphic differentials corre-
spond to information attached to potentials, like gravity and electric charge.

It is a fundamental in the situation of ϕ : X → P1
z that in addition to the

global meromorphic function z, there is another global meromorphic function w on
X defined by ϕw : X → P1

w so as to have the following property.
Proposition 1.1 (Function half of Riemann’s Existence Theorem). We may

express any local analytic function in a neighborhood of x′ ∈ X as h(u) where u is
a rational function in z and w and h is a convergent power series.

Prop. 1.1 suggests saying that z and w together algebraically uniformize X.
We differentiate this from uniformization in the sense that there is a map from
a (simply-connected) universal covering space to X. Though the two notions of
uniformization are related, there survive to this day many mysteries about this
relation. Prop. 1.1 is obvious in Abel’s situation, because it was easy to construct
one such w since Abel started with a Galois cover of P1

z with a group that is abelian
([Fr03, Chap. 1, §8.2] calls this the abelian form of Riemann’s Existence Theorem).
The rubric when ϕ is an abelian cover constructs w from branches of logarithm.
So, it truly belongs to elementary complex variables, except that understanding
this requires mastering analytic continuation, maybe not such an elementary idea
[Fr03, Chap. 1, §7]. Deeper issues, however, about Prop. 1.1 arose from the result
we call Abel’s Theorem. Gauss discussed these things with Riemann. Especially we
call attention to the combinatorial half of Riemann’s Existence Theorem, closely
related to the topic of cuts (§4.1).

Example 1.2 (Finding where a differential is holomorphic). Consider the dif-
ferential dz/w = ω on P1

w where f : P1
w → P1

z by f(w) = we. The apparent zero
in the denominator of ω cancels with material from the numerator, so ω is holo-
morphic at w = 0. In detail: w is a uniformizing parameter in a neighborhood of
0. From z = we express ω as ewe−1 dw/w = ewe−2 dw. This expression actually
holds globally where w is a uniformizing parameter. At ∞, however, it is 1/w = u
that gives a uniformizing parameter. So dz/w = udu−e = −eu−e, du has a pole at
∞. Notice: dz/we+1 is holomorphic at ∞.

1.2. The gist of Abel’s Theorem. The word nonobvious is inadequate to
express the mystery in finding even one such w, whenever ϕ is not abelian. Abel’s
famous theorem showed how to construct all such global functions w, not just
one, in his special case. Our discussion is about how Gauss and Riemann may
have viewed Abel’s Theorem and his special case, and how this view generated in
Riemann the tools for its generalization to all ϕ : X → P1

z. Our documentation
of the conversations between Gauss and Riemann has much of heresay, and this
author is not an historian. So, to the cogent remarks of [Ne81] we have added
some observations of two types:

• That the subject is still very difficult today, even for experts.
• That the difficulty for even Gauss and Riemann sent them in directions

still inadequately understood today.
Problem 1.3 (Abel’s First Question). What is the relation between elementary

substitutions for the integration variable t in
∫

γ
ω where γ is a closed path and

algebraic manipulations of functions coming from ϕ? Similarly, how do either of
these substitutions relate to deforming the set of branch points zzz?
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Our question is much more general than Abel’s because we ask it for general
ϕ. We should understand the question had a long formulation, much more precise
than given here, starting from a specific case of Euler and considered extensively
by Legendre, long before Abel. Gauss may have already had a good sense of Abel’s
Theorem by the time he met Abel.

Abel investigated this fundamental problem in the example where X is a com-
pactification of the algebraic set {(z, w) | w2 = z3 + cz + d} and ϕ : (z, w) �→ z
is the standard projection. His formulation allowed the following operations as ac-
ceptable. Including iterated compositions of rational functions in z, multiplication
by constants, selecting from elementary functions regarded as known, and

(1.3) the conceptual addition of functional inverse.
The problem of what we allow for elementary functions in t is handled by a

key conceptual idea from complex variables. There really are but two elementary
analytic functions using (1.3): z and log(z).

Example 1.4. cos(z) = (eiz + e−iz)/2. Example: z1/k = elog(z)/k.
We profitably consider integrals locally as an antiderivative in z. The problem

is to investigate how far integration removes us from elementary functions.

1.3. Details on Abel’s integral. Let g(u) be a local right inverse to f(z):
f(g(u)) ≡ u. Apply the chain rule:

(1.4)
df

dz |z=g(u)

dg

du
= 1.

Therefore, dg
du = 1/ df

dz |z=g(u)
. This is the complex variable variant of how first year

calculus computes an antiderivative of inverse trigonometric functions. Abel applied
this to a (right) inverse of a branch of primitive from the following integral

(1.5)
∫

γ

dz

(z3 + cz + d)
1
2

with c, d ∈ C.
If g(z) is a branch of log(z) near z0, so eg(z) = z, then eg(f(z))/k is a branch of

f(z)1/k on any disk (or on any simply connnected set) avoiding the zeros and poles
of f [Fr03, Chap. 1, §6]. Related to this, there is a branch of f(z)1/k along any
path in Uzzz (zzz containing the zeros and poles of f).

Consider h(z) dz = dz

(z3+cz+d)
1
2

around some base point z0: h(z) = hc,d(z) is a

branch of (z3 + cz + d)−
1
2 . Let f(z) = fc,d(z) be a primitive for h(z) dz. Apply

(1.4) to f(g(u)) = u:
(1.6) dg(u)

du = (g(u)3 + cg(u) + d)
1
2 , a parametrization of the algebraic curve

from the equation w2 = z3 + cz + d.
Let zzz = zzzc,d = {z1, z2, z3,∞}, the three (assumed distinct) zeros of z3 + cz + d

and ∞. Denote the set of such (c, d) ∈ C2 by V 0. Denote the points on (z, w)
satisfying (1.6) that are over Uzzz by X0

c,d. It has a unique complex manifold com-
pactification Xc,d.

Lemma 1.5. We may integrate hc,d dz = ωc,d along any path in Xc,d (the point
of it being a holomorphic integral).

Proof. Since there are places where the denominator of hc,d dz is 0, it be-
hooves us to explain why the differential has no poles on Xc,d. For this, use the
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argument of Ex. 1.2 to express hc,d dz locally in a uniformizing parameter. Only
the points in zzz cause any problems, and the point is that for each we should use
w =

√
z − zi, i = 1, 2, 3 (at ∞, use

√
1/z). �

The notation ωc,d for hc,d dz is especially fitting when we emphasize that we
are restricting hc,d dz to paths in Xc,d.

1.4. Applying analytic continuation to the lattice from hc,d(z) dz. An-
alytically continuing a primitive fc,d(z) of (z3 + cz + d)−

1
2 along any closed γ ∈

π1(Uzzz, z0) produces a new analytic function Int(hc,d(z) dz)γ around z0. This gives
a collection of functions Af (Uzzz, z0) = {Int(hc,d(z) dz)γ}γ∈π1(Uzzz,z0) around z0.

1.4.1. Analytically continuing Int(hc,d(z) dz) everywhere in Xc,d. The related
subset is Af (X0

c,d, x0): Analytic continuations along closed paths from X0
c,d. Then,

(1.7) u ∈ Cu �→ ψ(u) def= (gc,d(u),
dgc,d

du
(u))

is one-one up to translation by elements of

Lc,d = {sγ =
∫

γ

hc,d(z) dz, γ ∈ π1(Xc,d, x0)}.

A primitive for hc,d dz analytically continues along every closed path in Xc,d

(§1.3). Since hc,d dz is a global holomorphic differential, the set Af (X0
c,d, x0) de-

pends only on the image of a path in H1(Xc,d, Z). There is no canonical way to
choose representing paths γ1, γ2 ∈ π1(Uzzz, z0) that lift to generators of H1(Xc,d, Z).
Still, it helps to know the double of any γ ∈ π1(Uzzz, z0) lifts to π1(X0

c,d, x0). Inte-
grate hc,d(z) dz around such generating γ1, γ2 to get s1 and s2, so s1, s2 generate
Lc,d. The following says Lc,d is a lattice in Cu.

Proposition 1.6. The elements s1 and s2 are linearly independent over the
reals. So, ψ(u) in (1.7) gives an analytic isomorphism between Xc,d and Cu/Lc,d.

Proof. If both s1 and s2 are 0, then the holomorphic differential hc,d dz is the
differential of an analytic function f on Xc,d. This f would therefore have no poles
on Xc,d. So, it would be an analytic function on a compact Riemann surface, and
from the maximum principle, such a function is constant.

Now we know one of s1 and s2 is not 0. Assume that is s1. Replace hc,d dz
by 1

s1
hc,d dz to assume s1 is 1. We have only to show s2 cannot be real. Suppose

it is. Break hc,d dz into its real and imaginary parts. Then, the imaginary part
has 0 periods. So, again, it is the differential of a harmonic function on a compact
surface, defying the maximum principle for harmonic functions. �

1.4.2. Local exactness implies exactness on the universal covering space. First
year calculus: The inverse g1(u) of a primitive of h1(z) = (z2 + cz + d)−

1
2 is a

function of sin(u). This has a unique analytic continuation everywhere in C. We
have just expressed Abel’s discovery the same is true for the inverse g(u) = gc,d(u)
of fc,d(z); it extends everywhere in Cu meromorphically.

Even to seasoned Riemann surface enthusiasts it must be a little puzzling as to
which to emphasize first, differentials or functions. We suggest Gauss and Riemann
discussed this, and came to the conclusion that there were ways they could be put on
the par. The log-differential equivalent (Prop.2.5) of the next argument expresses
the defining properties of θ functions.
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Proposition 1.7. For ϕ̃ : X̃ → X the universal cover of X, pullback of any
holomorphic differential ω on X is an exact differential on X̃.

Interpreting exactness. The definitions give this interpretation to the dif-
ferential ω using a coordinate chart {(Uα, ψα)}α∈I for the complex structure on
X. As usual, ψα : Uα → Czα has analytic transition functions ψβ ◦ ψ−1

alpha :
ψα(Uα∩Uβ) → ψβ(Uα∩Uβ). This has the following properties [Fr03, §5.2 Chap. 3].

(1.8a) ω retricted to Uα is given by pullback from dFα(zα) with on Fα(zα)
analytic on ψ(Uα), α ∈ I.

(1.8b) Restricting ϕ̃ to ϕ̃−1(Uα) is one-one to Uα on each component, α ∈ I.

Consider any (piecewise differentiable) path γ : [0, 1] → X with γ(0) ∈ Uα0 .
A primitive for ω with initial value Fα0(ψ(γ(t)) along the path is a continuous
F : [0, 1] → C so for any t0 ∈ [0, 1] the following holds. If γ(t) ∈ Uβ for t close to
t0, then F (t) = Fβ(ψβ(γ(t))) + cβ with cβ constant (in t). This assures for t close
to 1, F (t) is the restriction of an analytic function in a neighborhood of γ(1). We
have analytic continuations of a meromorphic function along every path. So, the
Monodromy Theorem [Fr03, Chap. 3 Prop. 6.11] gives an analytic F̃ on X̃ with

(1.9) F̃ (x̃) − Fα(ψα(ϕ̃(x̃))) constant on any component of ϕ̃−1(Uα).
Then, the differential of F̃ is the pullback of ω to X̃. That is the meaning of

exactness in the proposition. �

2. Abel’s Theorem

Before we launch into our main points, we note the formula for the theta func-
tion on a complex torus is in [Ah79, Chap. 7]. It differs, however, in that we don’t
start with a doubly periodic function, but a holomorphic differential on a Riemann
surface. Secondly: We will see modular curves arise, Abel being the first to produce
them, and Galois one of the first to apply them. Thirdly: We will ask questions
about the nature of the functions described by Abel that influenced Gauss and
Riemann. These have no appearance in [Ah79] because they give nonabelian cov-
ers. Thoughout Riemann’s generalization, holomorphic differentials are the starting
point. Modern treatments of the topic tend just to give the σ, eschewing our dis-
cussion on properties of the sought for object. In the forty years, however, between
Abel’s work and Riemann’s generalization there was time for such contemplation.

2.1. Substitutions versus field operations. A substitution in a variable
corresponds to a composition of functions. Suppose we substitute w(z) for z to get
fa,b(w(z)) from fa,b. Consider values of w where w(z) has a local inverse, which we
express as w−1(z). Then, rewrite f ◦ g(u) = u as f ◦ w ◦ w−1 ◦ g(u) = u.

Investigating the substitution f ◦ w(z) is equivalent to considering the compo-
sition w−1 ◦ g(u). An important case is when w−1 is a rational function. The two
functions gc,d(u) and its derivative in u generate a field over C. Denote this Mc,d.
As gc,d has up to translation a unique pole of order 2 at u = 0, and no residue,
we can guarantee g(u) − g(−u) is 0 at the origin, bounded everywhere, and so is
indentically 0: g(u) is even. From (1.6) this is closed under taking derivatives in u.
Abel rephrased his investigation.

Problem 2.1. For what pairs (c, d) and (c′, d′) is gc′,d′ an element of Mc,d?
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While technically this doesn’t pin down all allowable substitutions, the answer
shows the whole story. For each (c, d), gc,d(u) is to the exponential function eu as
fc,d(z) in (1.5) is to a branch of log(z).

Abel described every element of Mc,d. So, describing elements of Mc,d is the
same as describing analytic maps ϕ : C/Lc,d → P1

w [Fr03, Chap. 4, Prop. 2.10].
Such a map has as many zeros D0(ϕ) = {a1, . . . , an} (with multiplicity) as it has
poles D∞(ϕ) = {b1, . . . , bn} [Fr03, Chap. 4, Lem. 2.1].

Further, describing the function fields Mc′,d′ ⊂ Mc, d is the same as describing
the analytic maps ψ(c,d),(c′,d′) : C/Lc,d → C/Lc′,d′ . Such a map has a degree, and
Abel described a valuable equivalence class of such maps ψ(c,d),(c′,d′) of each prime
degree p. Modern notation calls that equivalence the modular curve X0(p): It
relates the j-invariant j(zzzc,d) of zzzc,d to that of zzzc′,d′ . §4.2.3 describes this in detail.

2.2. Analytic maps P1
u → P1

z. Let ϕ : X → P1
z denote a meromorphic

function on a compact Riemann surface. Use C(X) for the complete collection of
these. They form a field, using addition and multiplication of any two functions ϕ1

and ϕ2: ϕ1 · ϕ2(x) = ϕ1(x)ϕ2(x) with the understanding you resolve the meaning
of the product when ϕ1(x) = 0 and ϕ2(x) = 0 by expressing the functions in a local
analytic parameter. Up to a multiplicative constant D0(ϕ) and D∞(ϕ) determine
ϕ. Conversely, suppose ϕ : P1

u → P1
z. Up to multiplication by C∗,

ϕ(u) =
∏n

i=1(u − ai)∏n
i=1(u − bi)

.

Replace u−ai or u−bi by 1, if either ai or bi is ∞. So, u is an odd function (exactly
one zero of multiplicity one, at u = 0) whose translations give the local behavior of
ϕ(u). From it we craft the desired function ϕ(u) having the right zeros and poles.

Given maps between P1
z and P1

u, it is to our advantage to have the expression
of functions on P1

u pulled back to P1
z be compatible with that on P1

z. The oddness
of u is a nice normalizing condition, leaving the only ambiguity in the choice of u
multiplication by an element of C∗. It is forced on us by this condition: We want a
globally defined function with exactly one zero of multiplicity one at u = 0. With
u already attached to P1

u, it is part of our naming rubric to have normalized u.

2.3. Log-differentials and Imitating the genus 0 case. Suppose there
is a nonconstant analytic map ϕ : C/Lc,d = Xc,d → P1

w with D0 = ϕ−1(0) and
D∞ = ϕ−1(∞). Denote its branch points by www = {w1, . . . , wr′}. Tricky notation:
Denote the subset of Xc,d over Uwww by Xw,0

c,d . Take a path γ from 0 to ∞ on Uwww.
2.3.1. Abel’s necessary condition. Let γi be the unique lift to Xw,0

c,d of γ starting
at ai (it will end in D∞). If 0 ∈ www or ∞ ∈ www (D0 or D∞ have points with
multiplicity), lift γ without its endpoints. Then take the closures of these paths.

Proposition 2.2 (Abel’s necessary condition). Then,
∑n

i=1

∫
γi

hc,d dz = 0.
So, existance for ϕ requires there are paths {γ′

i}∞i=1 on Xc,d with initial points D0,
end points D∞ and

n∑
i=1

∫
γ′

i

hc,d dz = 0.

Comments. Here are brief details from the argument of [Fr03, Chap. 4, §2.6.1]
(a rougher version is in [Spr57, Thm. 10-22]). Suppose ϕ : X → P1

w is a finite map
of analytic manifolds. For any differential ω (not necessarily holomorphic) on X
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there is differential t(ω) (the trace) on P1
w so that

∑n
i=1

∫
γi

ω =
∫

γ
t(ω). Further,

t(ω) is holomorphic if ω is. So, in that case, t(ω) = 0 since there are no global
holomorphic differentials on P1

w. As above we need γ to avoid the branch points
of ϕ, except at its end points. So, this does allow zeros and poles to appear with
multiplicity. To handle that case, take the lifts of γ with its endpoints, and then
just take the closures of the resulting paths on X. �

2.3.2. The log-differential property. Here and for general X replacing Xc,d, we
emulate aspects of the sphere case. Find a function σ(u) with a zero of multiplicity
one whose translates craft a given function through its zeros and poles in the sense
of expression (2.1). (Significantly, we will find we are able to normalize it to be odd.)
There is no such function on C/Lc,d: Or else that function would give a one-one onto
map of the complex torus to the sphere. Use this notation: u ∈ Cu �→ [u] ∈ C/Lc,d.
The function u on P1

u has only one zero, though it also has one pole (∞).
Definition 2.3. A meromorphic differential ω on a Riemann surface X is a

log differential if ω = dv/v for some meromorphic v on X. It is local log if locally
around each point it is a log differential.

Any local log differential ω has its poles of multiplicity 1, and its periods along
paths bounding a disc about a pole are integer multiples of 2πi. On a compact X,
the sum of the residues of ω is 0: It defines a degree 0 polar divisor Dω.

Example 2.4. On P1
u, When ϕ(u) = u the log differential has poles at 0 and

∞ with residue respectively +1 and −1 according to Ex. 1.2.
Here is the analog for local log differentials of Prop. 1.7.
Proposition 2.5. For ϕ̃ : X̃ → X the universal cover of X, the pullback of

any local log differential ω on X is a log differential on X̃.

Proof. Use notation of the proof of Prop. 1.7. For each α ∈ I, denote re-
striction of ω to Uα by ωα which by hypothesis expresses as dvα(zα)/vα(zα) on
ψα(Uα). The general principle is that this is a differential equation for vα(ψα(x),
x ∈ Uα. So, analytic continuations of vα along any path γ : [0, 1] → X are uniquely
well-defined. As a reminder of this, it comes to considering the case of continuing to
Uα ∪Uβ from its solutions vα(ψα(x)), x ∈ Uα, and vβ(ψβ(x)), x ∈ Uβ , with Uα ∩Uβ

connected. Further, on the overlap the two functions differ only by multiplication
by a constant cβ,α. To extend the solution requires only to multiply vβ(ψβ(x)) by
1/cβ,α. It now matches vα(ψα(x)) on the overlap.

Again, apply the Monodromy Theorem to conclude the existence of ṽ on X̃ so
the pullback ω̃ of ω has the form dṽ/ṽ. �

2.4. Exactness on X̃ and the θ property. The proof of Prop. 2.5 produces
from ω a 1-cocycle cω = {cβ,α}α,β∈I×I . The co-cycle property cγ,βcβ,α = cγ,α for
Uα∩Uβ∩Uγ nonempty, follows immediately from the uniqueness up to multiplicative
constant statement in the proof.

2.4.1. A locally constant sheaf from a local log differential. In modern par-
lance: The collection {vα}α∈I is a meromorphic global section of the locally con-
stant fiber bundle (sheaf) defined by cω. In turn this cocycle gives an element
of Hom(π1(X, x0), C∗). If f : X → P1

z is any meromorphic function on X, then
{fvα}α∈I is another meromorphic section of this sheaf. The local log differential
attached to this meromorphic section is ω + df/f . This has divisor of poles the
divisor of poles of ω plus the divisor of f . We summarise.
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Proposition 2.6. The divisor of poles Dω of any log differential ω on a com-
pact X defines a (degree 0) divisor class [Dω] and a locally constant sheaf Lω. Its
global meromorphic sections are {fvα}α∈I running over all f ∈ C(X).

Suppose ω′ is another local log divisor for which Dω = Dω′ . Then, the difference
ω − ω′ is a holomorphic differential on X. If ω − ω′ �= 0, Lω is holomorphically
isomorphic to Lω′ through a locally nonconstant isomorphism.

Proof. Only the last statement requires an argument. For ω (resp. ω′) the
proof of Prop. 2.5 gives functions {vα}α∈I (resp. {v′α}α∈I). The ratio vα/v′α = wα

expresses the local exactness of ω − ω′ as the differential of a branch of log of wα

(which has no zeros or poles). Then, the collection of maps OUα

mult bywα−−−−−−−→OUα

twines between Lω and Lω′ . �

Remark 2.7 (Unitary bundle). Consider the compact Riemann surface X and
ω as in Prop. 2.5. Periods for any paths around disks bounding the poles of ω
are imaginary since locally the differential is mdz/z for some integer m. So, it
makes sense to ask about differentials ω with polar divisor D for which

∫
γ

ω is pure
imaginary. Suppose there is a holomorphic differential µ with ω−µ = ω′ having all
its periods pure imaginary. Then, Lω′ corresponds to a representation of π1(X) into
the circle group of absolute value 1 imaginary numbers (a unitary representation).

Proposition 2.8. Suppose ω is a local log differential on Xc,d with divisor of
poles not on γ1 or γ2. Then, there is a unique a1 (resp. a2) so

∫
γ1

ω − a1ωc,d = 0
(resp.

∫
γi

ω − a2ωc,d is pure imaginary for i = 1, 2).
So any degree 0 divisor D on Xc,d gives a unique locally constant unitary bundle.

Also, we can analytically continue a primitive WD for ω − a2ωc,d along any path
avoiding the support of D. Then, RD(x;x0) = �(WD(x) − WD(x0)) (x0, x �∈ D), a
harmonic function of x, is independent of the path between x0 and x.

Proof. Multiply ωc,d by a nonzero element of C to assume (as in Prop. 3.4)
s1 = 2πi and s2 = τ ′ with �(τ ′) < 0. So, pick a1 so 2πia1 =

∫
γ1

ω. Subtract
�(

∫
γ1

ω) ωc,d to go from ω with a 0 period along γ1 to a differential with the same
polar divisor and pure imaginary periods. �

Remark 2.9 (Green’s functions). The harmonic expression for existence of
local log differents is the existance of Green’s functions RD(x, x0). Its uniqueness
is from the maximum modulus principle on the compact surface, and it having local
log behavior at the support of D.

2.4.2. Universally constructing all local log differentials. Legendre had written
a whole book on the topic of differentials on Xc,d (though not expressed in that
language). To whit: One algebraically commands the nature of all meromorphic dif-
ferentials on Xc,d (from his perspective, of rational functions in z and

√
z3 + cz + d)

from a primitive fc,d(z). For Xc,d, by the early 1800s, it was clear there are local
log differentials with any degree 0 polar divisor.

The hypothesis of Prop. 2.10 that we can construct all log differentials on Cu

from the desired σ(u) gives the rubric for generalizing the case P1
z. Refer to this as

σ(u) has the log-differential property.

Proposition 2.10. Suppose σ(u) is holomorphic on Cu with zeros of multiplic-
ity one at each element of Lc,d. Assume also, for any n and a1, . . . , an, b1, . . . , bn ∈
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Cu, translates by elements of Lc,d leave invariant the log differential of

(2.1) ϕ(u) =
∏n

i=1 σ(u − ai)∏n
i=1 σ(u − bi)

(2.2) Then, σ(u + s) = eksu+lsσ(u) for each s ∈ Lc,d: Exactly the log-
differential property.

For σ(u) with these properties, every degree 0 divisor D on Xc,d has a local
log differential with D as polar divisor, and with eauσ(u), running over a ∈ C,
substituting for σ, log differentials of ϕ(u) give all log differentials on Xc,d.

Translations from Lc,d leave (2.1) invariant (giving a meromorphic function on
Xc,d) if and only if

∑n
i=1[ai]−

∑n
i=1[bi] ∈ C/Lc,d is 0. Equivalently, dϕ(u)

du /ϕ(u) du
is a logarithmic differential on Xc,d.

There exist k, l ∈ C with eku+lσ(u) an odd function of u. It, too, has the
log-differential property. This determines k, and it determines l modulo πiZ.

Proof. Assume σ(u) is holomorphic in Cu, and it has a zero of multiplicity
one at each period, σ(u + s)/σ(u) has no zeros or poles. So, there is a well- defined
branch hs(u) of log on all of Cu. Conclude the ratio has the form ehs(u). The differ-
ence between the log differential of ϕ(u) and ϕ(u + s) in (2.1) is

∑n
i=1

dhs(u−ai)
du −∑n

i=1
dhs(u−bi)

du . Our hypothesis is that this is 0 for all aaa,bbb. So, dhs(u)
du is constant

and hs(u) = ksu + ls for constants ks and ls. Clearly this produces a local log
differential for any [a1], . . . , [an], [b1], . . . , [bn] ∈ Cu/Lc,d.

Now consider when the dϕ(u)/ϕ(u) is a logarithmic differential dv/v on Xc,d.
From Abel’s necessary condition, with no loss assume

∑n
i=1 ai−

∑n
i=1 bi = 0. Check

translation of s ∈ Lc,d leaves (2.1) invariant:

ϕ(u + s)/ϕ(u) = eks(
∑n

i=1 ai−
∑n

i=1 bi) = 1, j = 1, 2.

Multiplication by -1 on Cu induces a corresponding automorphism on Cu/Lc,d,
which in turn induces an isomorphism on all meromorphic differentials. Therefore,
σ(−u) has the defining property of the paragraph above. As σ(−u) has the same
zeros (with multiplicity 1) as does σ(u), conclude that σ(−u) = eh(u)σ(u) for some
h(u) holomorphic on Cu. Taking the log differential of (2.1) with σ(−u) replacing
σ(u), conclude from the above computation:

n∑
i=1

dh(u − ai)
du

−
n∑

i=1

dh(u − bi)
du

is 0 for all aaa,bbb.

Again, the conclusion is h(u) = k′u+ l′ for some k′, l′ ∈ C. It is automatic that
ek∗u+l∗σ(u) has the log-differential property for any k∗, l∗ ∈ C. Iterate applying
the automorphism induced by −1 on Cu. Then, σ(u) = eh(−u)eh(u)σ(u), and so
e−h(−u) = eh(u). Conclude: 2l′ ∈ 2πiZ. Let σ∗(u) = ek′u/2σ(u). Compute:

σ∗(−u) = e−k′u/2σ(−u) = ek′u+l′−k′u/2σ(u) = el′σ∗(u).

Since σ∗ has a zero of multiplicity one at 0, from local behavior around 0 conclude
el′ is −1 (l′ can be taken as πi). �

3. Implications from an odd σ with the log-differential property

The rubric of §2.3.2 goes far toward generalizing Abel’s Theorem. We see that
from natural puzzles likely occurring in Gauss and Riemann discussions (§3.2).
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3.1. The unique odd θ with zero at the origin. In the last step, we
actually find this odd σ(u). When we do, we have what practioners often call the
dimension one (or genus one) odd θ (it is a θ function, though tradition calls this
Weierstrass version σ). Yet, there is unfinished business even then (§6.4).

Proposition 3.1. Up to multiplication by a constant, there is a unique odd
homolomorphic function σc,d(u) on Cu with a unique multiplicity one zero (modulo
Lc,d) at u = 0, for which

(3.1) σc,d(u + s) = eksu+lsσc,d(u) = σ(u)

for some ks ∈ C∗ and ls ∈ πiZ, s ∈ Lc,d. The derivative in u of dσ(u)
du is a translate

of the even function gc,d(u).

Comments on finding σ. We know from Prop. 2.10, the log-differential prop-
erty forces the conditions (3.1). Given (3.1), remove the cocycle factor eksu+ls by
forming the logarithmic derivative

(3.2)
d(dσ

du )
σ

(u + s) = ks +
d(dσ

du )
σ

(u).

One more derivative in u gives g(u) invariant under translations by Lc,d.
Since σ(u) has (modulo Lc,d) but one zero of multiplicity one (at 0), we know

g(u) has (modulo Lc,d) precisely one pole of multiplicy two (at 0). Such a function
is gc,d; u = 0 corresponds to the point on Xc,d lying over ∞ ∈ P1

z. That the sum of
the residues is 0 determines gc,d up to a change z �→ az + b, with a, b ∈ C. Inverting
the process of taking the derivative of the log derivative gives σ. Consequently, from
§1.4, ks is

∫
γs

gc,d dz. For the two generating periods si, i = 1, 2, it is traditional
to use ηi for ksi , i = 1, 2. We have only to figure what is els to conclude the
uniqueness of σ up to constant multiple. For that, the oddness of σ is crucial.
For si, σ(u − si)u=si/2 = −σ(si/2) and it also equals e−ηisi/2−liσ(si/2). That
determines eli , i = 1, 2.

Apply (3.1) to σ(u + s + s′) to see ks+s′ = ks + ks′ .
The main point left is to consider for a1, . . . , an, b1, . . . , bn ∈ Cu, what happens

if dϕ(u)
du /ϕ(u) du = dv/v for some meromorphic function v on Xc,d. Pull v back

to Cu, and conclude from the differential equation that meyu+nv = ϕ(u) for some
m, y, n ∈ C. From this equation, v has the divisor

∑n
i=1[ai] −

∑n
i=1[bi], and so by

the above, ϕ(u) defines a function on Xc,d. �

Denote La,b \ {0} by L∗
a,b:

(3.3) σc,d(u) = σ(u) = u
∏

s∈L∗
a,b

(
1 − u

s

)
eu/s+ 1

2 (u/s)2 .

Clearly, σ(u) is an odd function. Also, σ(u+s1) = −σ(u)eη1(u+s1/2), etc. As in the
proof Prop. 3.1, the oddness of σ(u) gives a special role to the u = si/2 , i = 1, 2.
The construction of σ = σc,d gives a holomorphic function (as in §1.3):

(3.4) σ : ((c, d), u) ∈ V 0 × Cu �→ σc,d(u).

Proposition 3.2. We may craft all local log differentials (and so all meromor-
phic functions) on all complex 1-dimensional torii and all compact curves of form
Xc,d from (3.4).
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3.2. Puzzles from Abel’s Theorem. Here are puzzles Riemann handled to
describe all functions on a compact Riemann surface.

(3.5a) For a general ϕ : C/Lc,d → P1
w, there is no branch of log description of

ϕ (Galois’ discovery). So, how to picture such a cover?
(3.5b) How to relate the beginning and end points of allowable paths lifting γ

from D0 to D∞ in Abel’s Prop. 2.2 condition (from describing ϕ)?
(3.5c) For any odd n, how to describe equivalence classes V 0

n from correspond-
ing (c, d) and (c′, d′) if there is a degree n analytic map Xc,d → Xc′,d′?

(3.5d) What conditions govern normalization of the function σc,d in Prop. 2.10?
If n is composite, several different types of maps have degree n in (3.5c), though

the question still takes a good shape. When n = 1, the phrasing would be to
describe V 0

1 , equivalence classes of the many pairs (c, d) ∈ V 0 corresponding to the
same isomorphism class of complex torus.

The function σc,d in Prop. 2.10 is actually Weierstrass’ version of a θ func-
tion, not Riemann’s. The likely Gauss-Riemann conversation helps considerably in
figuring the different possibilities for normalization.

3.3. Normalizing the θ s. We have already put one condition into our nor-
malization that we must relax to appreciate the long history of θ functions: We’ve
kept the origin in Cu as a zero (of the function σc,d(u)).

3.3.1. Even and odd thetas. Any translation u + u0 of the variable u also gives
a θ function σc,d(u + u0) according to Prop. 2.10: Use the functional equation
σ(u + s) = eksu+lsσ(u) for each s ∈ Lc,d. Further, a necessary condition that σ(u)
be either even or odd is that multiplication by -1 preserves its zero set.

Lemma 3.3. Among the functions eauσc,d(u + u0), those that are either odd
or even correspond to values of u0 for which 2u0 ∈ Lc,d. For these there is a
unique a = au0 for which it is odd or even. More precisely, σc,d(u) is odd, and
eau0 σc,d(u + u0) with u0 = s1 + s2 or u0 = si/2, i = 1, 2, is even.

Proof. Except for the precise values for evenness and oddness, this is in
Prop. 2.10. Since σc,d(u) has exactly one zero (mod Lc,d), for u0 a nontrivial 2-
division point, σc,d(u+u0) is not zero, and so it is §3.1 for the precise changes. �

Riemann’s choice of the fundamental θ function is that with u0 = s1 + s2. The
other three complete the list of θ s with half- integer characteristics. Denote any one
of the functions eauσ(u+u0) by θ(u). An equivalent condition to it satisfying (2.2)
appears in the proof of Prop. 2.10. For each s ∈ Lc,d, dθ(u+s)/θ(u+s)−dθ(u)/θ(u)
is a constant ks times du, the holomorphic differential on Cu/Lc,d.

The following properties are explicit from σc,d. Still, they restate the general
technique given in Prop. 2.8.

Proposition 3.4 (A-period normalization). Replace u by cu, c ∈ C∗, so s1 =
2πi. Denote s2 = τ ′. With no loss �(τ ′) < 0. So, with τ

def= τ ′/2πi, �(τ) > 0.
Given any θ, multiplying it by eau for some a produces a θ with θ(u + 2πi) = θ(u).
Such a θ has a Fourier series expansion in the variable u.

3.3.2. The Fourier expansion and θ-characteristics. There is no aspect of θ
functions more used than this Fourier expansion. Euler, Jacobi and many others
used it (as explained and generalized in [Sie29, Chap. 1-2] and [FaK01, Chap. 3]
titled Function theory for modular group and its subgroups). Once we see the sig-
nificance of using τ ′ (or τ) as an essential parameter for the complex torii Cu/Lc,d, a
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whole subject takes off. Yet, §6.3 shows there are problems applying this to natural
equations not officially from the study of theta functions.

Suppose θ(u) is odd and has a Fourier expansion. Evaluate θ(−u+2πi) = −θ(u)
at u = πi to conclude θ(πi) = 0. This is contrary to our assumption of only one
zero mod Lc,d. So, we can’t get the Fourier expansion and oddness simultaneously.
Having, however, the Fourier expansion was so valuable, Riemann followed Jacobi
to choose an even function to express it [Fay73, p. 1]:

(3.6) θ(u, τc,d) = θ
[
000
000

]
(u, τc,d) =

∑
m∈Z

emπiτc,dm+mu =
∑
m∈Z

eπiτc,dm2+mu.

§3.3.3 suggests why we expect such an expression for all τc,d. Of course, τc,d is
an entirely mysterious function of (c, d), almost the whole point of Abel’s investiga-
tions. Further, it depends on a choice: The basis of Lc,d. The other three even and
odd thetas get a similar look from this. Following Fay, use ε and δ to indicate real
multiples of the periods: Each point of Cu has the form eee = 2πi(ε + δτc,d). For an
integer n, the n-division points Cu/Lc,d have representatives by taking δ, ε ∈ 1

nZ.
The theta with characteristics (δ, ε):

(3.7)
θ
[
δ
ε

]
(u, τc,d) = eδπiτc,dδ+(u+2πiε)δ θ

[
000
000

]
(u + eee, τc,d)

=
∑

m∈Z
e(m+δ)πiτc,d(m+δ)+(u+2πiε)(m+δ)).

Lemma 3.5. With ε, δ ∈ 1
2Z, (3.7) gives even and odd functions. The one odd

function goes with ε = δ = 1
2 .

For (δ, ε) ∈ 1
k Z, the θ s have 1

k -characteristics. The notational difference be-
tween [Fay73] and [FaK01] appears in changing eu in the former to e2πiu in the
latter. This has a slight effect on the expression for the heat equation given by
comparing the effect of ∂2

∂u2 with ∂
∂τ on (3.6). As theta function topics go, this

equation is reasonably memorable.
(3.8a) (3.6) is invariant under 2πiτ �→ 2πiτ +2·2πi: A Fourier series in 2 · τ .

(3.8b) The odd θ, θ
[ 1

2
1
2

]
(u, τc,d) is invariant under z �→ z + 2 · 2πi, close to a

Fourier series in z.
(3.8c) (3.6) makes sense in g complex variables: u �→ uuu ∈ C(u1,...,ug)

def= Cuuu;
replace τ by any symmetric g × g matrix Π.

(3.8d) For k ∈ N+, the collection {θ
[ m

k
m′

k

]
(u, τ)}{ m,m′∈Z|

(m,k)=(m′,k)=1}
evaluated at 0

(or use derivatives in u) are analytic functions on τ -space.
Reality check on (3.8c): Convergence in z for a particular Π requires its real part
be negative definite. Also, replace (m+δ)πiτc,d(m+δ) by (mmm+δδδ)πiΠ(mmm+δδδ)t with
mmm ∈ Zg and δδδ ∈ Rg.

3.3.3. The jump to τ -space. Consider why we expect in (3.6) a function with
a natural analytic continuation in τ = τc,d. Given a set of branch points zzz, and
a choice of γ1, γ2 (as in §1.4), you may fix γ1, γ2 even as you wiggle the zzz a little,
and therefore continue τ = τzzz uniquely. Further, in a continuous wiggle of zzz, you
uniquely determine 2πi+τ ′

2 the place of the zero mod L of the θ function, among
the discrete set of points of order 2 on C/Lzzz. So, now we know θ(u, τzzz) uniquely
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from C/Lzzz, under this small wiggle hypothesis, up to multiplication by a (nonzero)
constant. With no loss assume for each τzzz the constant coefficient of the Fourier
series expansion in eu is 1. Then, this function is extensible over the whole τ plane.

That (3.6) is a theta function is now an elementary check. Example: u �→ 2πiτ

has the effect eπiτm2+mu �→ e−u−πiτeπiτ(m+1)2+(m+1)u for each m.
Suppose Φ : T → H is a connected family of genus 1 curves. A section µ : H →

T to Φ allows us to regard Φ as a family of complex torii: The point µ(ppp) gives a
canonical isomorphism: x ∈ Tppp �→ x − µ(ppp) ∈ Pic(0)

ppp from Tppp to divisor classes of
degree 0. We assume known that Pic(0)

ppp has a structure of complex torus through
a holomorphic differential on Tppp (§6.3).

Subtly different is considering on each fiber Tppp the set of divisor classes of de-
gree 0 whose squares are the trivial divisor class. Denote this D0

ppp. The subtlety is
that we won’t easily recognize such divisor classes without an explicit torus struc-
ture. Unless there are special conditions, there won’t usually be specific divisors
representating them, varying analytically with ppp. This is a 1

2 -canonical divisor class.
The definition works for general genus. In (4.7),

∑r
i=1 ind(Ci)−2n is the degree

of the differential dϕ of ϕ : X → P1
z. This defines g(X) (independent of ϕ) because

all differentials on X have the same degree. So 1
2 -canonical divisor classes have

degree g(X) − 1.
Definition 3.6. Suppose (dϕ) = 2Dϕ for some divisor Dϕ. Call Dϕ an exact

1
2 -canonical divisor.

We use a technical lemma later [BFr02, §B.1].
Lemma 3.7. Such a Dϕ exists if and only if all elements of C have odd order.

For any α ∈ PGL2(C), Dα◦ϕ is linearly equivalent to Dϕ.

The explicit linear equivalence. With no loss represent α by az+b
cz+d with

ad − bc = 1. Then,

dα ◦ ϕ =
dα(w)

dw |w=ϕ(z)
dϕ(z) =

1
(cϕ(z) + d)2

dϕ(z).

So Dα◦ϕ = Dϕ − (cϕ(z) + d). �

It would be wonderful if one could summarize Riemann’s work by saying (3.8c)
works for general compact Riemann surfaces, and it’s a great memory device, so
done. It isn’t quite that easy.

Still, we profit by turning to questions that arose from cuts have a modern cast
and many modern applications. The unique odd theta function when the genus
is 1 is in (3.4): One function works simultaneously to describe all functions on
all compact Riemann surfaces appearing as complex torii. That is very useful, if
solving a problem about functions depends only on zeros and poles, rather than on
the branch points and if the coordinates given by the variable τ are appropriate for
the problem. We can phrase why that isn’t so by looking at (3.5a) and analyzing
the signficance of finding out that all analytic maps ϕ don’t come from (3.5c). The
conversations between Gauss and Riemann, on whose outcome the rest of this paper
concentrates, are appropriate for seeing this even through the case g = 1.

Abel’s Theorem is perfect for forming abelian covers of a complex torus similar
to using branches of log to describe abelian covers of P1

u. Knowing only the gen-
erators of a function field like Mc,d gives surprisingly little help in understanding
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properties of elements in the field. Abel’s Theorem is valuable for many questions,
and yet it too leaves us powerless against those in Ex. 6.5.

4. Compact surfaces from cuts and the puzzle (3.5a)

To this point we interpreted the compact Riemann surface Xc,d as coming from
a branch of

√
z3 + cz + d. The value was that the differential hc,d(z) dz interprets

as a holomorphic differential on Xc,d. Its integrals around all closed paths on Xc,d

produce a lattice Lc,d. The goal (as in (3.5c)) is to glean how this integral changes
as (c, d) varies. The phrasing of that goal was how to put order in relating (c, d)
and (c′, d′) when gc′,d′ ∈ Mc,d. The production, however, of all functions on the
compact Riemann surface Xc,d raises the question of how objects on Xc,d appear
from the view of P1

w given by ϕ : Xc,d → P1
w.

For example, is a general ϕ really given by one of those gc′,d′ s? If not, how
would holomorphic (and meromorphic) differentials appear as a function of w? Our
discussion documents that the negative answer to the former and how to consider
the latter must have occurred in discussions between Gauss and Riemann.

4.1. Data for cuts and Nielsen classes. The treatment of [Fr03, Chap. 4,
§2.4] emphasizes unramified covers as locally constant structures (and has complete
details). We here go for the simplier goal of clarifying one look at Riemann’s
Existence Theorem. Here is the starting data for connected degree n covers.

(4.1a) r + 1 distinct points z0 and zzz = {z1, . . . , zr} on the sphere.
(4.1b) Semi-simplicial paths γ̄i, (with range) from z0 to zi, i = 1, . . . , r, meet-

ing only at their beginning points, that emanate clockwise from z0.
(4.1c) a collection of elements g1, . . . , gr ∈ Sn satisfying two conditions:

• Generation: The group G(ggg) they generate is transitive.
• Product-one: The product g1 · · · gr

def= Π(ggg) (in that order) is 1.

4.1.1. Covers from cut data. We show how the data C = C(γ̄γγ,ggg) (4.1) canoni-
cally produces a new compact Riemann surface cover ϕC : XC → P1

z. Equivalences
between two such covers are important, though we suppress that here. Given that
there are cuts as in (4.1b), call the elements ggg from (4.1c) a branch-cycle description.

Let P1
i , i = 1, . . . , r, be copies of P1

z, and on each remove the points labeled
z0, z1, . . . , zr. Call the result Pj . Form a pre-manifold P±

j (not Hausdorff) from Pj

by replacing each point z along any one of the γi s by two points: z+ and z−. We
form a manifold from an equivalence on the union of the P±

j , j = 1, . . . , n, using
the expected neighborhoods of all points except z+ and z−. For neighborhoods of
these, we use the following sets. Let Di,z be a disk around z. Write this as as a
union of two sets: D+

i,z (resp. D−
i,z), all points on and to the left (resp. right) of γi.

Proposition 4.1. Form a manifold from an equivalence relation (in the proof)
on ∪n

i=1P±
j based on using the r-tuple ggg. Running over all n and product-one r-

tuples ggg (even with the cuts fixed), forming the compactification gives all possible
compact Riemann surfaces mapping to P1

z ramified over zzz.

Proof. If gi maps k to l, then identify z− ∈ P±
k in the gi cut with z+ ∈ P±

l .
In the resulting set, put on a topology where the neighborhood of such a z− is
D+

l,z ∪ D−
k,z identified along the part of γi running through z. �
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4.1.2. Changing the cuts and s-equivalences. There are many ways to consider
the cuts changing. Eventually one must consider that in great generality. The
simplest change, however is just to change the γ̄1, . . . , γ̄r, noting this canonically
changes the ggg if we keep the analytic map ϕC : XC → P1

z fixed [Fr03, §2.4.3].

Lemma 4.2. Suppose we fix zzz, but change the cuts (leaving z0 fixed) and pos-
sibly changing the order of (z1, . . . , zr) to correspond to condition (4.1b), the cuts
emanate clockwise from z0. Then, the corresponding cover ϕC : XC → P1

z has a new
(canonical) branch cycle description ggg′ = (g′1, . . . , g

′
r) satisfying these conditions.

(4.2a) G(ggg) = G(ggg′) (and Π(ggg′) = 1).
(4.2b) For π ∈ Sr corresponding to the change in order of zzz (zi �→ z(i)π,

i = 1, . . . , r), g′i is conjugate in G(ggg) to g(i)π.

Record the set of conjugacy classes in G = G(ggg), repeating them with multi-
plicity though without regard to order, as C = Cggg. We say ggg,ggg′ ∈ C.

Definition 4.3. We call the collection Ni(G,C) of ggg′ satisfying (4.2) the
Nielsen class of (G,C).

There are many possible further equivalences on Nielsen classes. All come from
modding out by the action of certain groups on Ni(G,C). Describing the cuts starts
with a permutation representation of G(ggg). Let NSn

(C) denote the subgroup of
Sn that normalizes G and permutes the conjugacy classes C. It makes sense to
conjugate any r-tuple ggg ∈ Ni(G,C) by elements of NSn(C). Two equivalences
apply for all values of r:

(4.3a) Inner Nielsen classes: This is the set Ni(G,C)/G
def= Ni(G,C)in.

(4.3b) Absolute Nielsen classes: Ni(G,C)/NSn(C) def= Ni(G,C)abs with an
understanding this requires giving a permutation representation.

We say an element ggg ∈ Ni(G,C) represents the Nielsen class. It also represents
an (absolute or inner) s-equivalence class, so giving an element of Niabs or Niin.

A natural set of operators, which we designate as q1, . . . , qr−1, acts on any
of the s-equivalence classes of a Nielsen class. For ggg ∈ Niin (or Niabs), qi sends
(g1, . . . , gr) = ggg (in order) to the new r-tuple of G(ggg) generators

(4.4) (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr), i = 1, . . . , r − 1.

There is an actual group, the Hurwitz monodromy group Hr that these operators
generate. It has a presentation by generators and relations. We list these.

(4.5a) Braid relations: qiqj = qjqi, 1 ≤ i ≤ j ≤ r − 1; j �= i − 1 or i + 1, and
qiqi+1qi = qi+1qiqi+1, i = 1, . . . , r − 2.

(4.5b) Hurwitz relation: q(r) = q1q2 · · · qr−1qr−1 · · · q2q1.

Let Ur = Pr \ Dr be the space of r distinct unordered points in P1, the image of
(P1)r \∆r = Ur. Thus, Ψr : Ur → Ur is an unramified Galois cover with group Sr.
[BFr02, §2.1] reminds how giving a set of cuts identifies Hr with π1(Ur, zzz).

It has great value to be precise about what happens as we change the cuts.
While this was not apparantly explicit in the discussions of Gauss and Riemann, it
will be a tool for our discussion.

Proposition 4.4. The Hurwitz relation q(r) acts as ggg �→ g1(ggg)q−1
1 on Nielsen

class elements, so it acts on inner (or absolute) Nielsen classes [Fr03, §3.1.2]. The
action of Hr commutes with the action of NSn(C).
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Keep the hypotheses on the cuts as in Lem. 4.2 (like fix zzz, etc.). Then, the
action of Hr on s-equivalence classes gives all the possible changes in the branch
cycles from changing the cuts.

Relating to the fundamental group of Ur. . Suppose γ : [0, 1] → Ur is
any closed path with beginning and endpoint zzz ∈ Ur. Since Ψr : Ur → Ur is un-
ramified, any such path lifts uniquely to γ∗ : [0, 1] → Ur starting at (z1, . . . , zr) and
ending at some (z(1)π, . . . , z(r)π). So, each coordinate γ∗

i , gives a path on P1
z. Then,

given γ̄1, . . . , γ̄r giving cuts, we may form a new r-tuple of paths (γ̄1 ·γ∗
1 , . . . , γ̄r ·γ∗

r ).
These can serve as the basis for a new set of cuts, so long as the hypotheses for cuts
hold. [Fr03, Chap. 5] (or [Fri77, §4]) lists γ s by which we calculate explicitly the
effect of the q1, . . . , qr−1. It shows for allowable such paths, the result only depends
on the homotopy class of γ, and that the effect of the q1, . . . , qr−1 generate all
such changes. The proof comes to computing representatives of π1(Ur, zzz) modulo
providing such representatives satisfying a few constraints. �

4.1.3. Cuts and r-equivalences. There are no new equivalences for r ≥ 5. We
tend to ignore r = 2, whenever we can, and the other equivalences apply to r = 3
and r = 4. For r = 4 these come from the action of a group Q′′ that acts through
a Klein 4-group (Z/2 × Z/2) on any Nielsen classes. First consider the shift sh =
q1q2q3: (g1, . . . , g4) ∈ Ni(G,C) �→ (g2, g3, g4, g1). Then, consider q1q

−1
3 which acts

as (g1, . . . , g4) ∈ Ni(G,C) �→ (g1g2g
−1
1 , g2, g3, g

−1
3 g4g

−1
3 ).

Two new equivalences for r = 4 [BFr02, §2]:

(4.6a) Reduced inner Nielsen classes: Ni(G,C)/〈G,Q′′〉 def= Ni(G,C)in,rd.
(4.6b) Reduced absolute Nielsen classes: Ni(G,C)/NSn

(C) def= Ni(G,C)abs,rd.
Reduced equivalence classes for r = 3 replace the group Q′′, by the group 〈q1q2, q1〉.
This comes from setting q3 = 1 in Q′′, though that is misleading, for this group acts
through S3, and is not a quotient of Q′′. The operators q1, . . . , qr−1 are specific to
a particular value of r. We simplify in dropping that notation, though we must be
careful for there is no natural homomorphism from Hr to Hr−1.

4.2. Source of the cuts and modular curves. B. Riemann (1826–1866)
from his thesis 1851 and his 1857 articles on abelian functions, used the Cauchy-
Riemann equations exclusively. He based many of his proofs on potential theory.

4.2.1. Where the cuts came from and a map through the rest of the presentation.
[Ne81, p. 89]: It was Gauss’ (1777–1855) writings the young Riemann studied wth
special zeal. From these he drew significant inspirations for his [doctoral] thesis.
He wrote his father how he found these papers. What he especially appreciated was
Gauss’ contributions to conformal mapping using essentially a Dirichlet principle.

According to Betti, Riemann said he got the idea of cuts from conversations
with Gauss [Ne81, p. 90]. Letters of Klein and Schering attest to Gauss’ influence
on Riemann’s theory of hypergeometric series. Though this influence came partly
from Gauss’ papers, it is striking to consider, possibly in 1849, the over 70 year old
Gauss sketching plans for such an etherial construction to the very young Riemann.

We show how modular curves arise from the cuts. Then, we give examples
parallel to modular curves that show what Gauss and Riemann might have been
considering. The group generated by the product-one ggg is the (monodromy) group
G(ggg) of the Galois closure of the cut map ϕ : X → P1

z. §4.2.3 uses this group to
characterize the answer to (3.5c). Euler’s classification of compact 2-dimensional
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manifolds raises the question of finding which complex manifolds have given pre-
sentations (§6.3.1).

4.2.2. Appearance of the j-line. Linear fractional transformations, z �→ az+b
cz+d

with
(

a b
c d

)
∈ GL2(C) form a group acting on P1

z. Identify the elements of pro-

jective r-space, Pr as nonzero monic polynomials in a variable z of degree at most
r. For example, if (a0, a1, . . . , ar) represents a point of Pr, and z0 �= 0, by scaling
it by 1

z0
assume with no loss z0 = 1. Then, take the polynomial associated to this

point as zr +
∑r−1

i=0 (−i)r−iar−iz
i. There is a natural permutation action of π ∈ Sr

on the entries of (P1
z)

r: π : (z1, . . . , zr) �→ (z((1)π, . . . , z(r)π).
If ϕ : X → P1

z represents an s-equivalence class of covers in a given Nielsen class
Ni, then the collection {α◦ϕ : X → P1

z}α∈PGL2(C) gives the set of covers r-equivalent
to ϕ. The cover α ◦ ϕ has as branch points, α applied to the branch points of ϕ.
Denote the equivalence classes for the action of PGL2(C) on Ur (resp. Ur; §4.1.2)
by Jr (resp. Λr).

As a quotient of an affine space by a reductive group, Jr is also an affine space.
Then, Λ4 identifies with P1

λ \ {0, 1∞} = U0,1,∞:

(z1, z2, z3, z4) �→ λzzz =
(z2 − z3)
(z2 − z1)

(z4 − z1)
(z4 − z3)

∈ Λ4,

where z4 goes under the fractional transformation taking (z1, z2, z3) to (0, 1,∞).
Notice: Cycling the order to (z2, z3, z4, z1) has the effect λzzz �→ 1/λzzz, so the square
of the cycle fixes λzzz. This is true for all conjugates in S4 of the cycle. So, S4 acts
through S3 = S4/K4, with K4 a Klein 4-group on the collection of (z1, z2, z3, z4)
over a given {z1, z2, z3, z4}. Let C2 and C3 be the respective conjugacy classes of
order 2 and 3 in S3. Let F : P1

λ → P1
z by the Galois cover with group S3 ramified

at 0, 1,∞ (we normalize F to use 1 rather than the number theorists’ 1728) with
conjugacy classes Cλ = (C3, C2, C2) in order, and having {0, 1,∞} lying over ∞.
This identifies J4 with [Ah79, p. 282]:

{z1, . . . , z4} �→ jzzz = F (λzzz) ∈ J4.

It is a worthy exercise — to those new to Nielsen classes — to show Ni(S3,Cλ)in

has but three elements. So, with the normalizations above this determines F .
4.2.3. Modular curves. We first consider how to describe the situation of (3.5c)

as coming from cuts. Covers from which we may recover everything in (3.5c) come
from covers ϕ : X → P1

w with r = 4 and monodromy group G(ggg) a dihedral
group when the elements of ggg are involutions. These are dihedral involution covers.
Following that, we ask if Xc,d is a cover of P1

w in an entirely different way than
given by Abel’s situation (3.5c).

The field C(gc,d(u)) = Rc,d identifies as the fixed field of even functions in
C(gc,d(u), dgc,d

du ) = R̂c,d of the automorphism induced by u �→ −u. The inclusion
of gc′,d′ in C(gc,d(u), dgc,d

du ) induces a field extension C(gc,d)/C(gc′,d′) = Rc,d/Rc′,d′ .
Let H2 be the group {±1}. Below, if A is an abelian group we regard H2 acting on
it by multiplications by ±1. For a positive integer m, we consider the semidirect
product action Z/m × Z/m ×sH2 and various of its subgroups. If V is a subgroup
of Z/m×Z/m, then there is an induced group Z/m×Z/m/V ×sH2. If the quotient
Z/m×Z/m/V is cyclic of order n, then Z/m×Z/m/V ×sH2 is the dihedral group
Dn (having order 2n; of degree n).
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Proposition 4.5. An extension Rc,d/Rc′,d′ (degree m) corresponds to a cover

ϕ = ϕ(c,d),(c′,d′) : P1
w → P1

z : for u ∈ Cu, w = gc,d(u) �→ z = gc′,d′(u).

The Galois closure of this cover corresponds to the extension R̂c,d → Rc′d′ . Its
group Gϕ is a quotient of Z/m×Z/m×sH2. If Gϕ is Dn with n odd, then there is
a branch cycle description for ϕ in the Nielsen class Ni(Dn,C24)abs and conversely.

The collection of absolute reduced (resp. inner reduced) equivalence classes of
covers in the Nielsen class Ni(Dn,C24) identifies with the open subset of the modular
curve X0(n) (resp. X1(n)) over P1

j \ {∞}.

Constructing modular curve equations. Assume m is odd to simplify.
On any complex torus, Xc′,d′ , we may multiply by an integer m. Denote this
map m∗. The Galois closure Xc,d → P1

gc′,d′ factors through Xc′,d′ , also degree
m. All such covers fit between m∗ : Xc′,d′ → Xc′,d′ , which is Galois with group
Z/m × /bZ/m, so identifying m∗ : Xc′,d′ → P1

gc′,d′ with Z/m × Z/m ×s H2, and
the group of Xc,d → P1

gc′,d′ with a quotient by the subgroup of the Galois cover
Xc′,d′ → Xc,d. For m odd, the generator of H2 gives a unique conjugacy class of
involutions in Z/m × Z/m ×sH2. This is the only conjugacy class fixing points on
Xc′,d′ . The fixed points of H2 are exactly the 2-division points on Xc,d.

So, ϕ = ϕ(c,d),(c′,d′) : P1
w → P1

z has precisely four branch points z1, . . . , z4, and
above each zi precisely one point wi does not ramify, and the cover is in the Nielsen
class Ni(Dn,C24). In the other direction, suppose given jzzz and a cover ϕ : X → P1

z

with branch points zzz and in the Nielsen class Ni(Dn,C24). This relates jwww and jzzz

(notation from §4.2.2).
We can see jwww is an algebraic function of jzzz by using analytic continuation.

Avoid j ∈ {0, 1,∞}. For any particular zzz lying over jzzz, consider all the covers
Dn covers of P1

gc′,d′ that factor through Xc′,d′
n∗
−→Xc′,d′ → P1

gc′,d′ . The case with n

general comes by taking fiber products from the case n is prime-power (as in §5.1).
So, if n = pe (p odd), there are as many such Dpe covers as there Z/pe quotients of
Z/pe × Z/pe. A sh-incidence argument in §5.2.4 illustrates a quick way to see this
count is correct for the Nielsen classes for Ni(Dn,C24). This assures there is no
cover ϕ : X → P1

z in the Nielsen class not included (up to equivalence) by Abel’s
considerations.

A different argument brings up a key point for the Gauss-Riemann discussion.
Elements h in a conjugacy class C of Sn have an index ind(C) given by n minus
the number of orbits of h. The genus gNi = g(X) of X from a cover ϕ in a Nielsen
class Ni come from the Riemann-Hurwitz formula:

(4.7) 2(n + gNi − 1) =
r∑

i=1

ind(Ci).

(Fig. 1 shows how cuts produce a triangulation from which we compute the genus
of the covering curve as an Euler characteristic.) So, without the count argument
we need that ϕ : X → P1

z in Ni(Dn,C24), with X having genus 0, identifies with
P1

w. This then associates values w1, . . . , w4 to z1, . . . , z4. �

The proof of Prop. 4.5 required knowing a cover X → P1
z with g(X) = 0 assures

X is analytically isomorphic to P1
w. It used the j-invariant attached to four points

on P1
w to give coordinates to modular curves. We have a respectable argument

for that built from the cuts. Still, we are about to come upon genus 1 surfaces
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where it is difficult to find such an argument. The Riemann-Roch Theorem shows
all genus 0 Riemann surfaces are analytically isomorphic, though we are relating
this to a discussion before that theorem. If we knew this about X, then we could
construct the degree two genus 1 cover from the www set, and from §1.3 to have a
complex torus on it. Conversely, given a genus 1 compact surface Y , a nontrivial
holomorphic differential ωX identifies the universal covering space of X with Cu

and gives Abel’s situation.

5. Modular curve generalizations

Let any finite group H act on any lattice L or on any finitely generated free
group F . We include the case L or F is trivial. We may replace Z by L or F and H2

by H in the discussion of modular curves. Also, let C be some generating conjugacy
classes for H. In the next discussion avoid all primes p dividing the order of any
element in C. For the most serious results we add that the finite quotient groups
are p-perfect: Have no Z/p quotient. This is the setup for Modular Towers (as in
[BFr02]). Here we illustrate possibilities for the Gauss-Riemann discussion, which
have modern counterparts (say, in the Inverse Galois Problem and cryptology).

5.1. Universal p-Frattini cover. For any prime p, consider the pro-p com-
pletion pF of F (or L if that is the case). A pro-p group P̃ has a Frattini subgroup
Φ(P̃ ) generated by its pth powers and commutators. For p not dividing |H|, the H
action extends to pF , and gives pF ×sH ([BFr02, Rem. 5.2] or [FJ86, Chap. 21]).
This is the universal p-Frattini extension of pF/Φ(pF )×sH = G (this is G0 below).

For any finite group G and each prime p, p | |G|, there is a universal p-Frattini
cover ψp : pG̃ → G with these properties [Fr95a, Part II].

(5.1a) G̃ is the fiber product of pG̃ (over G) over p primes dividing |G|.
(5.1b) Both ker(ψp) and a p-Sylow of pG̃ are pro-free pro-p groups, and pG̃ is

the minimal profinite cover of G with this property.
(5.1c) pG̃ has a characteristic sequence of finite quotients {Gk}∞k=0.
(5.1d) Each p′-conjugacy class of G lifts uniquely to a p′ class of pG̃.
(5.1e) If G∗ ≤ Gk has image in G all of G, then G∗ = Gk.

Denote ker(ψp) by ker0. For any pro-p group, the Frattini subgroup is the closed
subgroup that commutators and pth powers generate. Let ker1 be the Frattini
subgroup of ker0. Continue inductively to form kerk as the Frattini subgroup of
kerk−1. Then, Gk = pG̃/ kerk. To simplify notation, suppress the appearance of
p in forming the characteristic sequence {Gk}∞k=0. Use of modular representation

theory throughout this paper is from the action of Gk on kerk / kerk+1
def= Mk, a

natural Z/p[Gk] module.
Suppose p does not divide H, but P is a p-group, and P̃ is minimal pro-free

pro-p cover of P . Then, the universal p- Frattini cover of P ×sH is P̃ ×sH from the
H action extending to P̃ . Applications must consider the general case where p||H|.
Then, [Fr02, Prop. 2.8] gives the rank of the p-Frattini kernel. The key information
comes from a two step process going from the normalizer N of a p-Sylow of G0,
which is a split case from which we compute ker0 / ker1, which is an N module. The
correct rank is that of a natural indecomposable module in the G0 module induced
from N . We give one case of it here, for contrast with our main example.
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Example 5.1 (G0 = A5). F is trivial, and H = G0 is A5. We use the prime
p = 2 and C = C34 , four conjugacy classes of elements of order 3. For absolute
equivalence for Ni(G0,C34) use the cosets of A4. Call this permutation representa-
tion TA4 . For larger values of k, [BFr02] uses several different coset representations
extending the standard one, for good reason as we will see.

5.2. Using D∞ = Z ×sH2 as a model. We give an analog of the modular
curve situation based on using four 3-cycles.

5.2.1. Finite quotients of the group F2 ×sH3. Let H = H3 = Z/3 act on a free
group F2 with two generators vvv1, vvv2: 〈µ〉 def= Z/3 acts as (vvv1, bv2) �→ (vvv−1

2 , vvv1vvv
−1
2 ).

We use the conjugacy classes C±32 : Four conjugacy classes of elements of order 3,
two mapping to µ ∈ Z/3 and two mapping to −µ. That is As in (5.1d), regard
C±32 as conjugacy classes in all quotients of pF

2 ×sH3 = pG̃. So, we avoid only
the prime 3 (akin to 2 for the modular curve case). For any other prime p, Gk in
our notation above is Gk((Z/p)2) ×sH3. Use a copy of H3 in Gk((Z/p)2) ×sH3 for
each k (p �= 3) to define absolute classes, denoting the corresponding permutation
representation by TH3 . As in Ex. 5.1, this may not always be the best choice.

The following statements are done in great generality in [FV91]. The collec-
tion of conjugacy classes in both examples is a rational union. In our illustrating
examples we use that all spaces formed from a Nielsen class Ni(G,C) where C is a
rational union have equations over Q. They, may, however, have components not
defined over Q. Further, we use that inner spaces have unique total families over
Q if there is also no center, and the same holds for absolute spaces if the image of
G under the permutation representation T : G → SN has no centralizer in SN .

Proposition 5.2. The Nielsen class Ni(Gk((Z/p)2) ×s H3,C±32) = Ni is
nonempty. Covers in the inner classes form a space analogous to X1(pk+1); in
the absolute classes analogous to X0(pk+1).

Forming nonempty spaces. For each k we show there are Harbater- Mum-
ford (H-M) reps.: (g1g

−1
1 , g2, g

−1
2 ). Since Gk is a Frattini cover of G0, we can lift any

elements g1, g2 having order 3 to Gk. The Frattini property says they automatically
generated Gk, and so produce an H-M rep. at level k. So, it suffices to find two
order 3 generating elements g1, g2 ∈ (Z/p)2)×sH3 mapping to µ. For the action of
H on (Z/p)2 there are no invariant subspaces. Take g1 = µ and g2 = (vµ − v, µ)
for any v not commuting with µ. When r = 4,

(5.2) γ0 = q1q2, γ1 = q1q2q1, γ∞ = q2

acting on Ni(G,C)rd give a branch cycle description of this space as a cover of the
j-line. Just apply this to Ni(Gk,C±32)rd. This is a major point: [BFr02, Prop. 4.4]
or [DF99, Prop. 6.5]. �

5.2.2. Family from Ex. 5.1. Each ppp ∈ H(G0,C34)abs,rd corresponds to a cover
ϕppp : Xppp → P1

z up to reduced equivalence. If zzz(ppp) are the four unordered branch
points of the cover, we see the following.

(5.3) From R-H: g(Xppp) = 0 and the unique point xi ∈ Xppp over zi ∈ zzz cor-
responding to the 3-cycle ramification ramification, gives an unordered
4-tuple xxx on Xppp associated to ppp.

Proposition 5.3. The map ppp ∈ H(G0,C34)abs,rd �→ (jzzz(ppp), jxxx(ppp)) = ψ(ppp) is
generically one-one. The projection ψ(ppp) �→ jzzz(ppp) has degree 9 and monodromy
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group A9. So, this presentation of H(G0,C34)abs,rd resembles the description of
modular curves given by Prop. 4.5, yet it is not a modular curve.

Using the sh-incidence matrix. This is a brief review of [BFr02, §2.9].
For a general reduced Nielsen class, list γ∞ orbits as O1, . . . , On. The sh-incidence
matrix A(G,C) has (i, j) term |(Oi)sh ∩ Oj |. Since sh has order two on reduced
Nielsen classes, this is a symmetric matrix when r = 4. Equivalence n×n matrices
A and TAtT running over permutation matrices T (tT is its transpose) associated
to elements of Sn. List γ∞ orbits as

O1,1 , . . . , O1,t1 , O2,1 , . . . , O2,t2 , . . . , Ou,1 , . . . , Ou,tu

corresponding to M̄4 orbits. Choose T to assume A(G,C) is arranged in blocks
along the diagonal. The blocks correspond to connnected components of H(G,C)rd.

5.2.3. sh-incidence matrix of Ni(A5,C34)in,rd = Niin,rd
0 . Denote γ∞ orbits of

ggg1 = ((1 2 3), (1 3 2), (1 4 5), (1 5 4)) and ggg2 = ((1 2 3), (1 3 2), (1 5 4), (1 4 5))

by O(5, 5; 1) and O(5, 5; 2); γ∞ orbits of

((5 1 3), (2 4 5), (1 5 4), (1 2 3)) and ((3 2 4), (5 1 3), (1 5 4), (1 2 3))

by O(3, 3; 1) and O(3, 3; 2); and of (ggg1)sh by O(1, 2). Add conjugation by a 2-cycle

Table 1. sh-Incidence Matrix for Ni0

Orbit O(5, 5; 1) O(5, 5; 2) O(3, 3; 1) O(3, 3; 2) O(1, 2)
O(5, 5; 1) 0 2 1 1 1
O(5, 5; 2) 2 0 1 1 1
O(3, 3; 1) 1 1 0 1 0
O(3, 3; 2) 1 1 1 0 0
O(1, 2) 1 1 0 0 0

to get this for Niabs,rd
0 , which gives exactly 3 γ∞ orbits of respective widths 5, 3

and 1. So the monodromy group is a primitive subgroup of A9 containing a 3-cycle,
and so it is A9. �

5.2.4. Modular Curve example. How sh-incidence matrix shows there is one
component. Here p is odd.

Describe Nielsen classes Ni(Dp,C24)in as 4-tuples (b1, b2, b3, b4) with b1, . . . , b4 ∈
Z/pk+1, where the differences bj − bj+1, j = 1, 2, 3, generate, b1 − b2 + b3 − b4 = 0,
modulo translation by elements of Z/pk+1 and (b1, b2, b3, b4) �→ −(b1, b2, b3, b4).

For absolute Nielsen classes Ni(Dpk+1 ,C24)abs, allow all affine actions, including
(b1, b2, b3, b4) �→ a(b1, b2, b3, b4), a ∈ (Z/pk+1)∗. Further, a γ∞ orbit consists of the
set (b1, b2 + k, b3 + k, b4) with 0 ≤ k ≤ ord(b2 − b3).

The length one orbits for γ∞ have representatives (0, b, b, 0) (b �= 0), so there is
just one absolute width one absolute orbit, and p−1

2 such inner orbits. In all other
cases the orbits have width p, and so there is just absolute orbit (with representative
(0, 0, 1, 1), an H-M representative) and p−1

2 such inner orbits. Let Tn be the n × n
matrix with 1’s in each position.
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Proposition 5.4. Assume k = 0. Reduced Nielsen classes are the same as
Nielsen classes because the action of Q′′ is trivial. The sh-incidence matrix for

Ni(Dp,C24)abs,rd is
(

0 1
1 0

)
. That for Ni(Dp,C24)in,rd is

(
0n In

In Tn

)
.

Proof. Label the inner γ∞ width one orbits as O1,b, as given by the represen-
tatives (0, b, b, 0), b = 1, . . . , p − 1. Similarly, Label the inner γ∞ width p orbits as
Op,b, as given by γ∞ orbit representatives (0, 0, b, b), b = 1, . . . , p − 1.

Now check |O1,b ∩ (Op,b′)sh| = 1: The one element of intersection is (0, b, b, 0)
occurring if and only if b = b′. Further |O1,b ∩ (O1,b′)sh| = δb,b′ . That leaves us tto
show |Op,b ∩ (Op,b′)sh| = 1 for each pair of nonzero entries b, b′ ∈ (Z/p)∗.

Inner representatives of Op,b are the elements {(0, a, a + b, b}a∈Z/p. Applying
sh to these gives these as inner representatives: {(0, b, b − a,−a)}a∈Z/p. This has
exactly one representative in {(0, a′, a′ + b′, b′}a′∈Z/p, when b = a′ and −a = b′. �

The proposition of §5.2 is not really far from a Gauss-Riemann discussion. We’ll
do the first case to see that. Take k = 0, p = 2 and absolute classes. We are looking
at H(G0((Z/2)2) ×s H3,C±3)abs,rd = Habs,rd

0,2 . Each ppp ∈ Habs,rd
0,2 corresponds to a

cover ϕppp : Xppp → P1
z with the genus of g(Xppp) = 1.

The end of §4.2.3 discusses the symbiotic relation between genus 0 and genus
1, and identifies the practical point of recognizing genus 1 surfaces as complex
torii. It poses if the genus 1 curves in this space relate to those given by modular
curves. This relates to (3.5a): Do the functions and differentials described by Abel’s
Theorem relate to these Xppp s. If we could answer yes to this, then the nature of the
cut construction guarantees there is a map from Habs,rd

0,2 to the j-line by mapping ppp
to the j-invariant of Xppp. Then we would know which of the Xc,d are appearing in
this family? Even it you already know about elliptic curves, isn’t it possible that
only one is?

Proposition 5.5. The space Habs,rd
0,2 has two components.

6. Riemann’s formulation of the generalization

A collection of results about the complex 1-dimensional torus case that require
generalization. We start with a compact Riemann surface cover ϕ : X → P1

z. We
understand others might choose a different starting point, for example not having
ϕ at all, just X. Our points are around this ϕ. Use the notation X0

ϕ = X \ϕ−1(zzz).

(6.1a) Some algebraic function ϕ : X → P1
w separates points of Xz0 , z0 �∈ zzz.

(6.1b) Any degree 0 divisor on X is the polar divisor of a local log differential.
(6.1c) The universal covers of X̃ and X̃0

ϕ are analytic open sets in P1
w.

These properties have subtle relations, exposed from different approaches to filling
in Riemann’s legacy. We get back to the Gauss-Riemann conversation with some of
these. Example: If any unitary line bundle gives a divisor and associated Green’s
function, that would invert the relation between local log differentials and such
bundles, answering (6.1b). It is an alternate way to say existence of a theta function.

6.1. Using the existence theorem to uniformize compact surface mi-
nus points. We start by showing topologically what is the universal covering space
of a compact surface minus a finite set of points.
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Lemma 6.1. For a fixed g ≥ 0, there are ∞-ly many n with 3 branch point
ϕ : X → P1, g(X) = g and monodromy group Sn. In both cases in (6.1c), the
universal covering space is topologically a subset of the plane. Further, any genus
g compact Riemann surface with r punctures (r ≥ 3 if g = 0, r ≥ 1, if g = 1), has
the disk as a universal cover.

Proof. We do just the compact case using the cuts and the function λ(τ).
Fix g and consider the following branch cycle descriptions giving 3 branch point
ϕ : X → P1, g(X) = g, monodromy Sn.

Take n = m1+ · · ·+ms. Modify Sn,0 covers:

g1 = (1 . . . m1) · · · (m1+ · · · + ms−1+1 . . . n).

Genus 0: Take
g2 = (m1−1 . . . 1)(m1+m2−1 . . . m1+1) · · ·

(n − 1 . . . n − ms+1)(m1 m1+m2 . . . n).

Then, ind(g1) = n − s and ind(g2) = n − s − 1. Compute g1g2 = g3:

(m1 m1 − 1 m1+m2 m1+m2 − 1 . . . n n−1).

So, ind(g3) = 2s − 1. RET gives genus 0 cover. For Sn, select m1, . . . , ms accord-
ingly.

For g = 1 covers, switch 1 and 2 in g1, but not in g2. Changes nothing from
conclusions, except adding 2 to index of g3:

(m1 2 1 m1−1 m1+m2 m1+m2 − 1 . . . n n−1).

�
6.1.1. Complex spaces, topologically a subspace of P1

z. What we want to know
is that the universal covering spaces are analytically a subset of the plane. From
there we have the Riemann mapping Theorem, which shows that we have a disk
or the complex plane analytically. All we need is a one-one analytic map to P1

z.
[Ah79, p. 248–251] The dirichlet problem on a disk or something conformal to a
disk, extended by using Perron’s method of exhaustion. [Ah79, p. 257–259] Green’s
functions: g(z, z0) = G(z, z0) − log |z − z0|, G is symmetric and harmonic in each
variable, with boundary values log |z − z0|, so g has boundary values 0.

It is interesting to consider [H49] because it comes long after the topic of
Riemann’s resurrection and an initial concern about algebra versus function theory,
and long before modern decisions about that significance. Starts by referring to the
modern treatment of the Dirichlet Problem by Perron and Carathéodory, subject
of a treatment by Ahlfors and Beurling. Our case is one — as explained — where
we already know the space is topologically a simply-connected subset of the plane,
but we do not know if its complex structure comes from the plane. All we need is
a one-one analytic map to the plane, and then the Riemann mapping theorem in
the plane tells us what we want. It is really quite simple to conclude the existence
of a Green’s function gn(·, q), with a pole at q ∈ Tn, for p ∈ Tn on a set Tn with
compact closure, so the sets Tn are increasing, have compact closure and exhaust
the open surface X̃.

It is well-known {gn(p, q)} is monotone non-decreasing for each p, and its limit
g(p, q) is either +∞ on X̃ (parabolic case) or harmonic and nonnegative on X
save at q where it has a logarithmic singularity (hyperbolic case). That is, g(p, q) ≡
− log(rz)+hz(p) were z is a local parameter in a neighborhood of q, rz = |z(p)−z(q)|
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and hz(p) is harmonic at q. The two cases don’t depend on the sequence or the
exhaustion.

The monodromy principle says there is f(p, q) analytic on X̃ with log |f(p, q)| ≡
−g(p, q), determining f up to constant factor of modulus 1, and f has a simple zero
at q and modulus less than one on X̃.

If we knew (for q fixed) that g tends to zero as p goes to the ideal boundary of
X̃, then |f | would tend to one as p goes to the ideal boundary and so each point
|w| < 1 would be covered equally often and the origin precisely once. The rest is a
detour around this information not being available.

Let q1 �= q2 ∈ X, and consider f(p, q1) and f(p, q2) for comparison. Let

ϕ(p) =
f(p, q1) − f(q2, q1)
1 − f̄(q2, q1)f(p, q1)

.

This is analytic, modulus less than 1 on X̃ and vanishes at q2. By the maximum
principle, for large n, log |ϕ(p)| ≤ −gn(p, q2), p ∈ Tn. So, log |ϕ(p)| ≤ −g(p, q2) =
log |f(p, q2)|, p ∈ X̃.

For p = q1, these imply |f(q2, q1)| ≤ |f(q1, q2)| and by symmetry equality.
By the maximum principle this implies ϕ(p) is identically a constant of modulus 1
times f(p, q2). So, ϕ(p) vanishes only at q2 and just once. Thus, f(p, q1) = f(q2, q1)
implies p = q2 and since q2 is arbitrary in X̃, f(p, q1) is one-one in p. He then does
the parabolic case.

6.2. Comparing with modular curves. Suppose Φrd : Hrd → P1
j is the

compactification of H/Γ with Γ ≤ SL2(Z). Let NΓ be the least common multiple of
the cusp widths. Equivalently: NΓ is the least common multiple of the ramification
orders of points of Hrd over j = ∞; or the order of γ∞ on reduced Nielsen classes.
Wohlfahrt’s Theorem [Wo64] says Γ is congruence if and only if Γ contains Γ(NΓ).
We are most interested in considering situations that have a modular curve-like
aspect, though they are not modular curves. So, a necessary numerical check for
Φrd to be modular, starts by computing γ∞ orbits on Nird, and then checking their
distribution among M̄4 = 〈γ∞, sh〉 orbits, which correspond to Hrd components.
For each component H′ of Hrd check separately the lcm of length of γ∞ orbits to
compute N ′. Then, there is a final check if there is a permutation representation
of Γ(N ′) that could produce the cover Φ′ : H′ → P1

j , and the type of cusps now
computed.

6.2.1. A nonmodular family of elliptic curves. We can select an example to
illustrate all aspects of this prescription. It is a family of genus 1 curves. Take
as Nielsen classes in A4, C±3: Two pairs of 3-cycles in each of the two conjugacy
classes having order 3. The total Nielsen class Ni(A3, C±32) contains exactly six
elements corresponding to the six possible arrangements of the conjugacy classes.
Since A3 is abelian, the inner classes are the same. Also, the outer automorphism of
An (n = 3 or 4) from conjugation by (1 2) ∈ Sn restricts to A3 to send a conjugacy
class arrangement to its complement. Here is a convenient list of the arrangements,
and their complements:

[1] + − + − [2] + + − − [3] + − − +
[4] − + − + [5] − − + + [6] − + + −.

The group Q′′ = 〈q1q
−1
3 , sh2〉 equates elements in this list and their complements.

So, absolute and inner reduced classes are the same. Conclude: H(A3,C±32)in,rd →
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P1
j is a degree three cover with branch cycles (γ∗

0 , γ∗
1 , γ∗

∞) = ((1 3 2), (2 3), (1 2)). It
is an easy check that if (g1, . . . , g4) maps to [1], and (with no loss) g1 = (1 2 3), then
either this is ggg1,1 or g1g2 has order 2. Listing the four elements of order 2 gives a
total of five elements in the reduced Nielsen class Ni(A4,C±32)in,rd lying over [1].

6.2.2. Effect of γ∞ on the Nielsen class. Start with an H-M rep over [1] in A3:

ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3)) ∈ Ni(A4,C±32).

The middle twist squared on this conjugates the middle two by (1 4)(2 3) to give

ggg1,2 = ((1 2 3), (4 2 3), (4 2 1), (1 4 3)).

The result is a γ∞ orbit of length 4. The middle twist squared on

ggg1,3 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2))

leaves it fixed, giving a γ∞ orbit of length 2. Similarly, the square of the middle twist
on ggg1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4)) conjugates the middle pair by (1 3)(2 4)
producing ggg1,5 = ((1 2 3), (1 2 4), (2 4 3), (1 4 3)). Again the middle twist gives an
element of order 4 on reduced Nielsen classes.

Let ggg3,1 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4)) ∈ Ni(A4,C±32). This maps to [3] in
A3 and it is an H-M rep. Applying γ∞ gives ggg3,2 = ((1 2 3), (1 2 4), (1 3 2), (1 3 4)),
which is the same as conjugating on the middle two by (2 4 3). The result is a γ∞
orbit of length 3.

On Nielsen class representatives over [3], γ∞ has one orbit of length 3 and two
of length one. See this by listing the second and third positions (leaving (1 2 3) as
the first). Label these as

1′ = ((1 3 2), (1 4 3)), 2′ = ((1 2 4), (1 3 2)), 3′ = ((1 2 4), (2 3 4)),
4′ = ((1 2 4), (1 2 4)), 5′ = ((1 2 4), (1 4 3)).

Proposition 6.2. Then, γ∞ fixes 4′ and 5′ and cycles 1′ → 2′ → 3′. So there
are two M̄4 orbits on Ni(A4,C±32)in,rd, Ni+0 and Ni−0 , having respective degrees 9
and 6 and respective lifting invariants to Â4 of +1 and −1. The first, containing
all H-M reps., has orbit widths 2,4 and 3. The second has orbit widths 1,1 and 4.
Neither defines a modular curve cover of P1

j .
Denote the corresponding H4 orbits on Ni(A4,C±32)in by Niin,+

0 and Niin,−
0 .

The Q′′ orbits on both have length 2.

Proof. As γ∞ fixes 4′ and it maps 5′ to ((1 2 3), (2 3 4), (1 2 4), (3 1 2)) (conju-
gate by (1 2 3) to 5′), these computations establish the orbit lengths:

(g1,1)γ∞ = ((1 2 3), (1 4 2), (1 3 2), (1 4 3)) = (3′)sh,
(g1,3)γ∞ = ((1 2 3), (1 4 2), (1 2 4), (1 3 2)) = (1′)sh.

They put the H-M rep. in the M̄4 orbit with γ∞ orbits of length 2,3 and 4 (in the
orbit of the 1′ → 2′ → 3′ cycle). Use Ni+0 for the Nielsen reps. in this M̄4 orbit.

Apply sh to 4′ to see g1,4, g1,5, 4′, 5′ all lie in one M̄4 orbit. Any H-M rep. has
lifting invariant +1, and since it is a M̄4 invariant, all elements in Ni+0 have lifting
invariant +1. For the other orbit, we have only to check the lifting invariant on 4′,
with its full expression given by ((1 2 3), ((1 2 4), (1 2 4), (4 3 2)) = (g1, . . . , g4). Com-
pute the lifting invariant as ĝ1ĝ2ĝ3ĝ4). Since g2 = g3 (and their lifts are the same),
the invariant is ĝ1ĝ

2
2 ĝ4. Apply Serre’s formula (not necessary, though illuminating).

The hypotheses of genus zero for a degree 4 cover hold for ((1 2 3), (1 4 2), (4 3 2))
and the lifting invariant is (−1)3·(3

2−1)/8 = −1.
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From Wohlfahrt’s Theorem [Wo64], if the degree nine orbit is modular, the
group is a quotient of PSL2(12). If the degree 6 orbit is modular, the group is a
quotient of PSL2(4). Since PSL2(Z/4) has the λ-line as a quotient, with 2,2,2 as
the cusp lengths, these cusp lengths are wrong for the second orbit to correspond
to the λ-line. Similarly, for the longer orbit, as PSL2(Z/12) has both PSL2(Z/4)
and PSL2(Z/3) as a quotient, and so the cusp lengths are wrong.

We can check the length of a Q′′ orbit on Niin,+
0 and Niin,−

0 by checking the
length of the orbit of any particular element. If an orbit has an H-M rep. like
ggg1,1 it is always convenient to check that: (ggg1,1)sh

2 = (1 3)(2 4)ggg1,1(1 3)(2 4) and
(ggg1,1)q1q

−1
3 = (1 3)ggg1,1(1 3). So, in Niin,+

0 , sh2 fixes ggg1,1, but q1q
−1
3 does not. For

Niin,−
0 , ggg1,4 is transparently fixed by sh2, and (ggg1,4)q1q

−1
3 = (3 4)ggg1,4(3 4). Conclude

the orbit length of Q′′ on both Niin,+
0 and Niin,−

0 is 2. �

The sh-incidence matrix of Ni+0 comes from the following data. Elements
ggg1,1, ggg1,2, ggg1,3 over [1] map by γ∞ respectively to ggg2,1, ggg2,2, ggg2,3 over [2], and these
map respectively to ggg1,2, ggg1,1, ggg1,3, while ggg3,1, ggg3,2, ggg3,3 cycle among each other un-
der γ∞. So, there are three γ∞ orbits, O1,1, O1,3 and O3,1 on Ni+0 named for the
subscripts of a representing element.

The data in the proof of the proposition shows

|O1,1 ∩ (O3,1)sh| = 2, |O1,3 ∩ (O3,1)sh| = 1.

Compute: sh applied to ggg1,3 is g1,1 so |O1,1∩(O1,3)sh| = 1. The rest are determined
by symmetry and having elements in a row or column add up to the total number
elements in the set labeling that row or column.

Table 2. sh-Incidence Matrix for Ni+0

Orbit O1,1 O1,3 O3,1

O1,1 1 1 2
O1,3 1 0 1
O3,1 2 1 0

Similarly, the sh-incidence matrix of Ni−0 comes from the following data. El-
ements ggg1,4, ggg1,5 over [1] map by γ∞ respectively to ggg2,4, ggg2,5 over [2], and these
map respectively to ggg1,5, ggg1,4, while γ∞ fixes both ggg3,4, ggg3,5. So, there are three γ∞
orbits, O1,4, O3,4 and O3,5 on Ni−0 .

Table 3. sh-Incidence Matrix for Ni−0

Orbit O1,4 O3,4 O3,5

O1,4 2 1 1
O3,4 1 0 0
O3,5 1 0 0

6.3. From whence the genus one covers.
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6.3.1. Genus greater than one and the universal cover. Cuts gave Riemann
clues the universal covering space of X is analytically a disk if gX > 1.

Can get gX = 1 (from Riemann Hurwitz; say by taking n 3-cycles), though we
can’t assure such a map will go with a specific (c, d).

Gauss’ approach to the hypergeometric equation (known to us through the
Schwarz-Cristoffel transformation; see §7.2) gave many examples in imitation of
the complex torus case. That is, by integration and forming an inverse of an anti-
derivative, they gave a clear simply connected fundamental domain on the upper
half plane for the Riemann surface. This gave examples showing the universal
covering space is analytically a disk. This must have given Riemann confidence in
the result that was eventually in contention.

Proposition 6.3. The universal covering space for a compact Riemann surface
X, when gX > 1, would always be a disk ([Spr57, p. 219–225], proof adapted from
[Wey55], though due to Koebe).

6.4. Completing the genus one case. For some — especially complex ge-
ometers — it is reassuring to see the particular θ (σ(u) in §3.1) function on Cu.
For others — especially algebraists — enhancing characterizations of it is more im-
portant. The two views come at loggerheads over places where curves meet abelian
varieties. The now very old problem of characterizing (the Jacobian variety of)
curves among all Abelian varieties is one such topic. The topic of those moduli
spaces called Shimura varieties is close to pure abelian variety territory. Other
moduli spaces use algebraic varieties characterized as families of curves that do not
include all curves of a given genus. Here the look of expressions for θ functions
helps much less.

6.5. Other uses of the cuts. Any holomorphic differential ω on X from a cut
construction ϕ : X → P1

z has a description around z0 ∈ Uzzz as h(z) dz. We can then
integrate it along any γ ∈ π1(Uzzz, z0) or in π1(X, x0). The generalization of Abel’s
condition comes by taking a basis B = (ω1, . . . , ωg) of holomorphic differentials (g
is the genus, though that isn’t obvious) and integrals along paths on X. Define LX

to be {
∫

γ
B | γ ∈ H1(X, Z)}.

Proposition 6.4. If D0 = ϕ−1(0) and D∞ = ϕ−1(∞), for an n-tuple of lifts
γ1, . . . , γn of γ ∈ π1(Uzzz, z0),

(6.2) (
n∑

i=1

∫
γi

ω1, . . . ,

n∑
i=1

∫
γi

ωg) =
∫

γγγ

B = 000.

First part of Riemann’s Theorem: Having paths γ1, . . . , γn starting at D0 and ending
at D∞ satisfying (6.2) is sufficient for existence of ϕ.

Example 6.5 (Illustrate (3.5a)). Suppose (c, d) in (3.5) is general. In what
ways are there ϕ : Xc,d → P1

w so the cut description of ϕ has branch cycles ggg con-
sisting of 3-cycles? For every degree n ≥ 4 there are two distinct such presentations
for general (c, d). The generalization of this special case for a general curve of genus
g is an active research topic right now.

The relation of this one case with Riemann’s use of half canonical classes ap-
pears in [Fr95a], [Ser90a] and [Ser90b]. [Fr96] shows there are exactly two
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Figure 1. Cuts for a triangulation of Xc when r = 3

z0

z1

z2

z3

µ1↘

µ′
1
→ µ2

↗

µ′
2

↗

µ3↘

µ′
3↘

δ̄1
↗

δ̄2
↗ ←δ̄3

continuous families of such covers separated by the evenness and oddness of char-
acteristics attached to the covers. [AP03], [FMV03] and [SS02] have different
versions of showing the general genus g surface has such 3-cycle covers.

Further, for other types of branch cycle — a Nielsen class given by specifying
the conjugacy classes of entries of ggg in G(ggg) — there is no general method. When
r = 4 and the genus is 1, the investigation of this question appears repeatedly in
explicit versions of the abc-conjecture.

6.6. Higher genus θ s. As in the genus one case, we may take the logarith-
mic differential of the function ϕ, dϕ/ϕ we have a meromorphic differential on X
with residue 1

2πi at the ai s and residue - 1
2πi at the bi s, and no other residues.

Riemann’s uniformization by a disk showed we don’t actually need ϕ to construct
such a differential: It always exists, manifesting that the sum of the residues is 0.
Coordinates on Cg come from integrating B along paths going from an x0 ∈ X
to some general points x1, . . . , xg, though to express a function on X we would
integrate along from some point to x.

This is what we expect of ϕ where we imitate what happened in Abel’s case. We
want an odd function θ on Cg whose translates allow us to craft any ϕ : X → P1

w.
That would be tantamount to an expression like this:

(6.3) ϕ(x) =
n∏

i=1

θ(
∫ x

ai

B)/
n∏

i=1

θ(
∫ x

bi

B).

In θ you see g coordinates; the ith entry is
∫ x

ai
ωi. Each holds an integral over one

basis element from B. It is totally well-defined if the integrations are on a space
that is to X as C was to C/Lc,d in Abel’s problem.

Here you see the differential equation defining θ functions. In the expression
for ϕ, replace the integrand in each

∫ x

ai
B and

∫ x

bi
B by a vector www in Cg. Form the

logarithmic differential of it: dθ(www)/θ(www). Translations by periods will change it
by addition of a constant. With ∇ the gradient in www, ∇(∇θ(www)/θ(www)) is invariant
under the lattice of periods.
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7. Competition between the algebraic and analytic approaches

Many of these comments are from [Ne81]. Many who use Riemann’s theory
haveopinions on what Riemann might have been thinking. For one, many nontrivial
issues going back a long way still arise. Galois has been the biggest victim of this
kind of surmising. It is good to have a historian investigate the record.

Though there are other sources, too. For example, Alexander von Humboldt
was good friend of Gauss’. His natural history volumes from his South American
expeditions are rife with isothermal coordinates laid out on mountains and level
curves of magnetic flow lines. Gauss was his consultant in the early 1800’s, and so
probably influenced natural history profoundly.

7.1. Riemann’s early education. During his time in Berlin (1847–1849)
P.G. Dirichlet (1805–1859), G. Eisenstein (1823–1852) and C.G.J. Jacobi (1804–
1851) especially influenced Riemann. He attended Dirichlet’s lectures on partial
differential equations, and Eisenstein and Jacobi lectures on elliptic integrals. Rie-
mann read Cauchy and Legendre on elliptic functions. [Ne81, p. 91]:

Riemann was suitable, as no other German mathematician
then was, to effect the first synthesis of the “French” and
“German” approaches in general complex function theory.

His introductory lectures started with these topics: the Cauchy integral formulae;
operations on infinite series; the Laurent series; and analytic continuation by power
series. [Ne81, p. 92] includes a photocopy of a famous picture on analytic continu-
ation from Riemann’s own hand. Picard and Lefschetz both used this picture (from
Riemann’s collected works) in autobiographies of what influenced critical theorems
of theirs. Riemann also lectured on the argument principle, the product repre-
sention of an entire fuction with arbitrarily prescribed zeros and the evaluation of
definite integrals by residues. His most advanced lectures were from his published
papers solving the Jacobi inversion problem.

7.2. Competition between Riemann and Weierstrass. [Ne81, p. 93]:
K. Weierstrass (1815–1897) himself stressed above all the great influence of N.H. Abel
(1802–1829) on him. At first Weierstrass was an unknown. Only after his 1856 pa-
per on abelian functions did he get his position in Berlin. It was in 1856 that the
competition between Riemann and Weierstrass became intense, around the solution
of the Jacobi Inversion problem.

[Ne81, p. 93]: May 18 and July 2, 1857, Riemann submitted his two part
solution to Jacobi’s general inversion problem with these carefully measured words:

Jacobi’s inversion problem, which is settled here, has al-
ready been solved for the hyperelliptic integrals in several
ways through the persistent and regally successful work
of Weierstrass, of which a survey has been communicated
in Vol. 47 of the Journ für Math. (p. 289). Until now,
however, only a part of these investigations has been fully
worked out and published (vol. 52, p. 285), namely the
part that was outlined in §1 and §2 of the earlier paper and
in the first half of §3, pertaining to elliptic functions. Only
after the full publication of the promised paper shall we be
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able to tell to what extent the later parts of the presenta-
tion agree with my article not only in results but also in
the methods leading to them.

Weierstrass consequently withdrew the 3rd installment of his investigations,
which he had in the meantime finished and submitted to the Berlin Academy. He
explained this (much later) in his collected works as follows.

I withdrew [the 1857 manuscript] for, a few weeks later,
Riemann published an article on the same topic, [. . . ] on
entirely different foundations from mine and did not make
immediately clear that it agreed completely with mine in
its results. The proof for it entailed some investigations
of chiefly an algebraic nature, whose execution was not al-
totether easy for me ... But after this difficulty was over-
come . . . a thorough going overhaul of my paper was nec-
essary. ... I could only toward the end of 1869 give to the
solution of the general inversion problem that form in which
I have treated it from then on in my lectures.

7.3. Soon after Riemann died. Publicly they seemed to have gotten along
[Ne81, p. 95]. Professionally the mutual influence was unquestionably great. It
would be entirely conceivable that the general systematic construction of the Weier-
strassian function theory, achieved around 1860, could have been inspired by the
works of Riemann perstaining to the same set of ideas.

[Ne81, p. 96]: After Riemann’s death, Weierstrass attacked his methods quite
often and even openly. July 14, 1870 was when he read his now famous critique
on the Dirichlet Principle before the Royal Academy in Berlin. Weierstrass showed
there did not always exist a function among those admitted [in variation problems]
whose expression in question attained the lower bound, as Riemann had assumed.
A letter to H. A. Schwarz on Oct. 3, 1875 says:

The more I think about the principles of function theory,
the firmer becomes my conviction this must be based on
the foundation of algebraic truths, and that, consequently,
it is not the right way if instead of building on simple and
fundamental algebraic theorems, one appeals to the “tran-
scendental” [by which Riemann has discovered so many of
the most important properties of aglebraic functions].

During its heydey (1870–1890), the Weierstrassian school took over nearly every
position in Germany. For instance, Schwarz was at Göttingen.

[Ne81, p. 98] asserts it was the Goursat part of Cauchy’s theorem that reno-
vated Riemann’s approach, starting around 1900. [Ah79, p. 111] with no precise
citation, refers to Goursat’s contribution as,

This beautiful proof, which could hardly be simpler is due
to É. Goursat, who discovered that the classical hypothesis
of a continuous f ′(z) is redundant.

Curiously, there is exactly one reference in all of [Ah79], a footnote:
Without use of integration R. L. Plunkett proved the conti-
nuity of the derivative (BAMS 65, 1959). E. H. Connell and
P. Porcelli proved the existence of all derivatives (BAMS
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67, 1961). Both proofs lean on a topological theorem due
to G. T. Whyburn [Ah79, p. 121].

That unique quote suggests Ahlfors supports the significance of Goursat to
Riemann’s renovation. Yet, there is a complication in analyzing Neuenschwanden’s
thesis. How would one document that this event turned mathematicians to the
geometric/analytic view of Riemann? Historically it seems sensible to investigate
the span from [AG1895] to [Wey55] as a shift from genus 1 to higher genus. Yet,
that period is clearly insufficient to deal with an aspect of the true shift, from
moduli of genus 1 curves (including modular curves) to general moduli. Theories
toward the latter include Teichmüller theory (analytic) and geometric invariant
theory (algebraic) or expedient precursors of the Hurwitz space approach like the
Schiffer-Spencer deformation theories of varying the complex structure around a
single point of a Riemann surface.

I suspect Goursat’s theorem is a simple explanation that first year graduate
students can follow. Likely, however, serious applications and resonant questions
required understanding the variation of structures on a Riemann surfaces with the
variation of the surface itself. My experiences are that not only do these issues con-
found graduate students, often specialists in complex variables struggle with these.
Both technically and conceptually handling the hidden monodromy considerations
(see [Fr03, Chap. 5]) is a tough topic. The only tool flexible enough to handle
the complexity of the structure was that of Riemann. If that is right, then it is
the documentation of these applications and questions that would illuminate on
the story of the resurrection of Riemann’s work. This makes it all look like slow
continual progress. When, however, we come to Galois, the story has a different
nature. We see it through modular curves which still to this day herald those works
that accrue the most prestige.

8. Using Riemann to vary algebraic equations algebraically

8.1. The Picard components. There are three geometric ingredients in Rie-
mann’s theory: J(X̄f ), X̄f and the zero (Θ) divisor of the function θ = θX̄f

(§8.3).
The first identifies with divisor classes Pic0(X̄f ) = Pic0

f of degree 0 on X̄f . The
second embeds naturally (algebraically) in Pic1

f , divisor classes of degree 1 on X̄f .
Then, Θf is the dimension g − 1 variety of positive divisor classes in Picg−1

f .
Further, Picg

f interprets the Riemann-Roch Theorem and the Jacobi Inversion
Problem geometrically. It takes its group structure from adding two positive divi-
sors of degree g together modulo linear equivalence. Weil used this for an algebraic
construction of Pic0

f years after his thesis. His principle: The nearly well defined
addition on positive divisors produced a unique complete algebraic group on the
homogeneous space of divisor classes. Therefore Pic0

f is almost the symmetric prod-
uct of X̄f taken g times. Riemann’s theory was an inspiration to Weil’s 1928 thesis
(§9.1). Still, Weil was not certain until later that Pic0(X) and X have the same
field of definition. This reminds that what now looks obvious is the result of many
mathematical stories.

8.2. Half-canonical classes. All Picard components Pick
f are pair wise an-

alytically isomorphic. Yet, finding an isomorphism analytic in the Hurwitz space
coordinates may require moving to a cover of the Hurwitz space.
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Applying Riemann’s theory directly requires having X and the ΘX divisor on
Pic0

X . For example, suppose there is an analytic assignment of a divisor class of
degree g − 1 on each curve X̄f in the Hurwitz family. Then, translation of ΘX

by this divisor class puts it in Pic0
X . Here it would be available to construct the

θ function. Convenient for this might be a half-canonical class: two times gives
divisors for meromorphic differentials.

Riemann was even less algebraic in relating X and its Jacobian.

8.3. Relating X̃ and Cg. The analytic isomorphism class of X̃ depends on
the genus g of X. If g = 0 it is the sphere, if g = 1 it is C and it is the upper half
plane H (or disk) if g ≥ 2. As with Uzzz, suppose we accept that X̃ is an analytic
subspace of the Riemann sphere. Then, this comes from the Riemann mapping
theorem. Still, it is not the uniformizing space we would expect. That would be
X̃ab, the quotient of X̃ by the subgroup of π1(X) generated by commutators. This
is the maximal quotient of X̃ that is an abelian cover of X.

Mathematics rarely looks directly at X̃ab. It embeds in Cg. It is on Cg that θX

lives with its zeros, the Θ divisor, meeting X̃ab transversally. Periods of differentials
on X translate X̃ab into itself. Yet, it is sufficiently complicated there seems to be
no device for picturing it.

There are two models for picturing this. A standard picture shows the complex
structure on a complex torus (like the Jacobian). It is of a fundamental domain
(parallelpiped) in Cg. Then, 2g vectors representing generators of the lattice defin-
ing the complex torus give the sides of the parallelpiped. Inside this sits the pullback
of X. The geometry for this picture uses geodesics (straight lines) from the flat
(Euclidean) metric defining distances on the complex torus.

Assume the genus of X is at least 2. Then, the universal covering X̃ of X is the
upper half plane X̃. A standard picture for X appears by grace of this having the
structure of a negatively curved space. Geodesics here provide a polygonal outline
of a set representing points of X. Since X̃ → X̃ab is unramified, X̃ab inherits a
metric tensor with constant negative curvature. Yet, it sits snuggly in a flat space.
Every finite abelian (unramified) cover Y of X̄f is a quotient of X̃ab; it is a minimal
cover of X̃ with that property.

9. The impact of Riemann’s Theorem

I list two big theorems that used theta functions in imaginative ways.

9.1. Siegel-Weil use of distributions. Look at (6.3) again. Weil’s thesis
constructed an analog of it: (h(x)) ≡

∏u
i=1 θw

x0
i
(x)/

∏u
i=1 θw

x∞
i

(x). Here is its mean-
ing. Both sides are fractional ideals in the ring of integers OK of a number field
K. The ≡ sign means the left and right are equal up to a bounded fractional ideal.
The left side is the principal fractional ideal that h(x) generates. Most important,
of course, are the functions θw

x′ : x �→ θx′(x) maps K points x into integral ideals.
This function is defined only up to ≡. Weil’s distribution theorem allowed him (and
Siegel [Sie29]) to perform diophantine magic.

[Sie29] starts with a crude set of reductions by going to a finite extension of
K. Doing this point-by-point along a Hurwitz space would be a disaster. Canonical
heights avoid this. Here is a related allusion to the odd half-canonical classes.

9.2. Mumford’s coordinates on families of abelian varieties.
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10. Final anecdote

Not long ago I was at Max Planck Institute to give talks on my favorite inven-
tion: Modular Towers. My wife and I have a German friend who lives in Bonn,
who we knew in the US, a literature scholar. She is a very bright woman, full of
energy. Yewt,that energy sometimes expresses a humanities approach to science
that confounds scientists. Martina loves discussions on black holes, quantum me-
chanics, relativity theory, string theory. I’m sufficiently versed on these to often
feel exasperated.

If you discuss the model for energy interchange in quantum mechanics, state
spaces, spectra, such words will set Martina off with visions of other models she
finds equally compelling. I tried to explain to her and her friend what this approach
signals to physical scientists.

By not understooding the constraints, you have diminished
the significance of the one hard fought model that supports
the evidence.

Often, and definitely at this place, she raised her vision of Einstein who in
modern parlance “thought out of the box.”

“Martina,” I exhorted, “You see Einstein as totally without precedent. You
suggest, we should follow humanities people out of our dull intellectual ruts.” I
explained that Einstein was far from without precedent; that we mathematicians
had geniuses with at least his imaginative. My example was Riemann: I called him
the man who formed the equation that gave Einstein his scalar curvature criterion
gravity. “Mike,” she said, “You’re just making that up! Who is Riemann?”

In the land that has a Zehn Deutsche Mark with Gauss’ picture on it, a woman
of intellectual energy and eclectic temperament, who hadn’t heard of Riemann! I
made her an offer.

Would she change her mind in future discussions if I could convince her Rie-
mann was at least the ilk of Einstein? “How can you do that?”was her retort. My
response: “The evidence is in this room.”

Books lined her walls. I was certain I could find something among the philos-
ophy books – though they were in German – that would serve my purpose. She
took the challenge, and I, expecting a long haul, went about my work. To start
I took the R book in her encyclopedia series. Opening to Riemann, I found this
in the first paragraph: Bernhard Riemann was one of the most profound geniuses
of modern times. Notable among his discoveries were the equations that Einstein
later applied to general relativity theory.

Consider the context: Riemann spent very little of his life on Riemannian
geometry and much of his life on theta functions and their consequences. This paper
attempts to explain that his efforts inspired many and have still yet to completely
fulfill their significance. We mathematicians write equations revealing what our
senses might never directly feel. That our senses feel it indirectly is our constraint.

Riemann’s based his subject on harmonic functions, deriving from the distri-
bution of electronic charge along a capacitor. You couldn’t see electrons then.
You can’t see them too well now. Only with quantum mechanics had we a serious
model that produced electrons. Yet, we believe they exist as surely do comput-
ers and light bulbs. Riemann produced equations based on spin long before the
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existance of half-spin comparable to that of Fermions (in electrons) long before
Stern-Gerlach experiment.

Many of us love what Riemann did, and we wish more of the world knew of his
ineffable contributions.
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[DF99] P. Dèbes and M. Fried, Integral specialization of families of rational functions, PJM
190 (1999) 45–85 (typos corrected at www.math.uci/˜mfried/#math).

[FaK01] H. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group,
AMS graduate text series 37, 2001.

[Fay73] J. Fay, Theta Functions on Riemann Surfaces, Lecture notes in Mathematics 352,
Springer Verlag, Heidelberg, 1973.

[FMV03] G. Frey, K. Maagard and H. Völklein, The monodromy group of a function on a general
curve, preprint as of 10/24/02.

[Fri77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as
Galois groups, Communications in Algebra 5 (1977), 17–82.

[Fri78] M. Fried, Galois groups and Complex Multiplication, Trans.A.M.S. 235 (1978) 141–
162.

[FJ86] M. Fried and M. Jarden, Field arithmetic, Ergebnisse der Mathematik III, vol. 11,
Springer Verlag, Heidelberg, 1986.

[FV91] M. Fried and H. Völklein, The inverse Galois problem and rational points on moduli
spaces , Math. Annalen 290 (1991), 771–800.

[FKK01] M. Fried, E. Klassen, Y. Kopeliovic, Realizing alternating groups as monodromy groups
of genus one covers, PAMS 129 (2000), 111–119.

[Fr96] M. Fried, Alternating groups and lifting invariants, Preprint 07/01/96 (1996), 1–34.
[Fr95a] M. Fried, Introduction to Modular Towers: Generalizing the relation between dihedral

groups and modular curves, Proceedings AMS-NSF Summer Conf., 186, 1995, Cont.
Math series, Recent Developments in the Inverse Galois Problem, pp. 111–171.

[Fr02] M. Fried, Moduli of relatively nilpotent extensions, Institute of Mathematical Science
Analysis 1267, June 2002, Comm. in Arithmetic Fundamental Groups, 70–94.

[Fr03] M. Fried, Riemann’s Existence Theorem: Elementary approach to moduli,
www.math.uci.edu/ mfried/#ret, especially Chaps. 2 and 4. Chap. 1 is an overview of
the whole five chapters.

[H49] M. Heins, The conformal mapping of simply-connected Riemann surfaces, Annals of
Math. 50 (1949), 686–690.

[Ne81] E. Neuenschwanden, Studies in the history of complex function theory II: Interactions
among the French school, Riemann and Weierstrass, BAMS 5 (1981), 87–105.
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