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Let K be a field, with K* a fixed algebraic closure of K. Let
Y 5 PY(E*) be a connected finite (branched) covering of algebraic curves
where P1(K*) denotes projective 1-space over K*. Suppose that ¥ and
@ are defined over K, and that K (Y)is the field of functions on ¥ defined
over K. Thus, K(Y) = K(PY\(y) = K(x,y) where H(P!) = K(x) with
z transcendental over K and y is a primitive generator of K (Y) over
K (PY. We denote the conjugates of y over K(2) DY ¥, =¥, Ysy cey Yn-

N
The Galois closure of K(Y)/K(x), denoted K(Y) (or £, in the text) is
K(xy Y4y ...y ¥,). The arithmetic monodromy group of (Y, ¢), denoted

N
Mon(Y, ¢, K), is the Galois group G (K (Y)/K (P1)) equipped with a permu-

N
tation representation class T obtained by the action of G (K (Y)/K(PY)
on the set {y,, ..., ¥,}. The general motivating problem for this paper is:

EXTENSION OF CONSTANTS PROBLEM. Let K denote the algebraic closure
PN ~
of K in K(Y). Describe K.

Obviously, as stated, the extension of constants problem is too im-
precise to generate a research plan (see, however, Section 5). Therefore
we describe an illustrative special case of the general problem.

N ~

GENERALIZED SCHUR PROBLEM. The group G|K(Y)/K(PY) is con-

VAN a
tained in G(K(Y)/K(PY)) as a subgroup of index [K : K]. Assume that:

(0.) Kz, vy, is a regular extension of K (x) (i.e.

A

(K (2,9, : K(%,9,)] = [K: K));
and also that

N\
(0.2)  each orbit of G(K(Y)/K (x, Y1) on Yy, ..., Y, breaks up into strictly

N ~
smaller (shorter length) orbits under the action of G(K (Y) /K (x, yl)).
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We say that (Y, ¢) is a virtually-one-one cover over K if (0.1) and
(0.2) hold. Describe the virtually one-one covers over K.

We mention an arithmetic (and diophantine) application of the
notion of virtual-one-one-ness. Suppose that (¥, ¢) has an affine model
given by the zeros of a polynomial g(z, y)eK[x,y] (where projection
onto the z variable corresponds to the morphism ¢). Condition (0.1),
in this case, is that g(x, y) is absolutely irreducible over K. Assume also
that K = L is a finite field. Then (Proposition 1 of [8]) (Y, ¢) is virtually-
one-one over L if and only (Y, ¢) defines a one-one map for infinitely
many finite field extensions L' of L. That is, there exist infinitely many
finite field extensions L' of L such that:

(0.3) for each zyel’ U{occ}, there exists a unique y,eL’ U{oco} such
that g(xq, yo) = 0.

We come closer to the state of the literature with further speciali-
zation of the generalized Schur problem to:

GENERALIZED SCHUR PROBLEM FOR RATIONAL FUNCTTIONS. Let fe K (y)
be a rational function in one variable. We say that f is virtually-one-one
(called exceptional in [15]; we find the term virtually-one-one more
suggestive) if
fy)—f2)

Yy—=z
(Definition 5). Classify wvirtually one-one rational functions.

(0.2a) has no absolutely drreducible factors over K

In {3] (the paper preceding this one) we considered a general class
of problems about value sets of polynomials. In this paper we focus our
attention almost entirely (except for Section 4, where we finish some
loose ends from [3]) on the generalized Schur problem for rational functions.
For the relation between the generalized Schur problem for rational
functions and the work of Wells and Lidl, see the introduction of [8].
For previous literature consult the excellent bibliography prepared by
Charles Wells (with the aid of W. Nébauer [15]).

Eventually these problems should be treated as part of a generalized
Riemann existence theorem. We are being heuristic here, but roughly:
suppose we are given a set of elements oy, ..., ¢, in the symmetric group

on n letters with [ [ o; = Id. We might hope to have a combinatorial pro-
i=1

cedure where we could find out if there exists a field K and a cover
Y % PYK*) (as above) with a description of its branch cycles given
by o4, ..., ¢, such that (¥, ¢) is virtually-one-one over K. The important
thing is that this desired procedure should involve only finite computa-
tions with the elements oy, ..., o,. The problems, theorems, and. examples
of this paper give empirical data toward a formulation of such a generalized

=



Arithmetical properties of function fields (II) 227

Riemann existence theorem. In Section 5 we give a formulation (con-
jectural) of such an existence theorem, and then, assuming its truth,
show how the generalized Schur problem would be reduced to group
theory (albeit, very hard group theory).

Continuing the results of [4], we show in Theorem 1 that if f(y) is
a tame (Definition 4) virtually-one-one polynomial, then f is a composition
of cyclic and Chebychev polynomials (expressions (1.16) and (1.17)).
Since it is possible to decide which compositions of ¢yclic and Chebychev
polynomials are virtually-one-one over a given finite field, the generalized
Schur problem can be considered solved if we restrict ourselves to tame
polynomials.

Preceding Proposition 1 is a discussion of a procedure for computing
the nature of the ramification over the place x = oo on the curve
fly)—2 = 0 for feL[y] (f is no longer assumed tame). See [7] and Section

VIII of [16]. Suppose feL(y) is a virtually-one-one rational function
with

(0.4) f = ~—— where p and ¢ are relatively prime polynomials,

and we define % (f) = deg p —deg ¢q. Proposition 1 shows that ¢ has no
L-rational zeros and if (@(f), char L} =1 then L can contain no non-
trivial 7 (f)th roots of 1 (in particular, since —1eL, 7 (f) must be odd).
Also, if f is a virtually-one-one polynomial, we have the following partie-
ular consequence of Proposition 1. Suppose that

fly) = yf’”“’)'d(")—{-yd(”—i— lower terms where char L = p,
and

(0.5) (d(0),p) =(dQ),p) =1 and p"@-d(0)>d(1).
Then,
(@(0)—d(1), p"®—1) > 1.

In Theorem 2 we consider f(y)eL(y) (as in (0.4)) such that f is a vir-
tually-one-one, tame function (actually the proof needs ounly that the
curve defined by f(y)—« = 0 is tame over & = oo). As a particular
consequence (Corollary 1) we obtain: for 1 < deg ¢ <9 there exist only
finitely many integers 7 (the bound on 7 is independent of L) such that
there exists feL(y) as above with %(f) = 7.

Let L* be a fixed algebraic closure of L. It is possible that f(y)eL(y)
is indecomposable over L, but decomposable over L*. Thus, unlike the
case where f(y) is a tame polynomial, in general we are not able to reduce
to the case where f is virtually-one-one and indecomposable over L.
In Section 2 we consider this situation under the additional assumption
that f(y) is tame. The work of this section is continued in [6] and is mainly



228 M. D. Fried

a contribution to the computation of the lattice of fields between L*(y)
and L*(f(y)) in our situation using Riemann surface techniques.

In Section 3 we give a list of tame rational functions (over C) of
prime degree (following some computations implicit in [12], we give
an unusual characterization of these functions via modular funetions)
which must contain the tame virtually-one-one rational funetions of
prime degree. See Section VII of [16] for the conclusion.

Section 4 contains problems and counterexamples related to the
“Polynomial conjecture” discussed in [3]. A good portion of the significant
work in this paper is contained in the problems and examples placed
at the end of each section.

Most of the results presented here were known to the author over
four years ago, and this paper is an updated version of a paper written
at that time. A word of warning is in order. This is a very down-to-earth
paper (say, in relation to [7] or [16]). However, it is not a simple paper,
as I have been willing to use difficult combinatorial arguments where
general arguments seemed not to work. The idea of the paper is to bridge
the present literature with the extension of constants problem by giving
some solid results and problems from which research direction might
be indicated. The reader, I hope, will come to appreciate the task, and
bear with me whatever meager success results.

. We thank Don Lewis for suggesting the title virtually-one-one cover
as in. (0.2). Also, Roger Howe gave us the p-group counterexample of
Example 9.

1. Generalization of Schur’s conjecture. Let L be an arbitrary perfect
field, and L* a fixed algebraic closure of L. Unless otherwise stated, all
function field extensions and polynomials will be assumed to be separable.
Let f(y)eL(y) where f(y) = p(¥)/q(y) and p, geL[y] are relatively prime
polynomials. ’

DerrntTION 1. If f(¥)eL(y) is of form p(y)/g(y) where p, g are rel-
atively prime polynomials, then degree f is by definition the maximum
of degree p and degree g. This notion of degree is multiplicative with
respect to composition of functions.

DEFINITION 2. A rational function f(y)eL(y) is said to be decom-
posable over L if we can write f(y) = fl(fz(y)) where f; and f, are rational
functions over L of degree greater than 1. Then f, and f, are called com-
-position factors of f over L. :

 DEFiNiTION 3. Let h(x, y)eL(x, y) (where x# and y are algebraically
‘independent indeterminants). Then deg,k is by definition the degree of
k as an element of M (y) where M = L(w). If the algebraic curve described
by setting h equal to zero is irreducible, we say that h is an irreducible
yational function in two variables.
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Let f(y)eL(y) be of degree n. We denote by y,, ..., y, the zeros of
f(y)—=. As in [4] we let 2 , = L(y1, ..., Yn). Then G(2;_,/L(z)) denotes
the Galois group of 2 ,/L(z).

DEFINITION 4. We say that a rational function f(y)eL(y) is tame
over L if either '

(1.1) The characteristic of L is zero,
or

(1.2) The abstract Riemann surface of f(y)—z is tamely ramified
over the ax-sphere.

Condition (1.1) automatically implies condition (1.2). Let % = deg p —
—deg g = ®(f). For the problems that concern us we may replace f by

af (y)+b
1.3 — b deL
(1:3) fy)ta o BIote
such that ad—be 5 0. By suitable choice of a, b, ¢, d we may assume
that 7[ L) > 1.
cf+d

DerINITION 5. We say that f(y)eL(y) is wvirtually-one-one (called
exceptional in [15]) over L if
(1.4) f(y;—];@ = @(¥, #) has no absolutely irreducible factors over L.

Let R be either the ring of integers of a number field K or a finite
field. We denote by Res(R) the collection of finite field extensions of
residue class fields of B. We say that f(y)eK (y) (where K is the quotient
field of R) is virtually-one-one over Res(R) if (1.4) holds for infinitely many
LeRes(R). Let C > 0 be a constant. We say that f(y) is virtually-one-one
over Res(R, () if f is virtually-one-one for infinitely many ZLeRes(R)
with char L > C.

LemyaA 1. Let h(y, 2)eL(y, 2) (rational function field in two indeter-
minates y and z) be irreducible over L. Then h(y, z) is absolutely irreducible
over L iff

(1.5) MnL* =1

where M is the function field of the curve h(y,z) = 0.
Also, we obtain equalily in the expression

(1.6) G(M|L(y) 2 G(L*-M[L*(y))
where M is the Galois closure of M|L(y), iff
(1.7) M NI =1.
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Remark 1. Since the elements of £, , are all rational functions in
Y1y +--y Y, With coefficients in I, the absolute constants L of 2, , lie in
any field obtained by adjoining to L the coefficients of Puiseux expansions
for ¥, ..., 9, over any rational tamely ramified place of the z-sphere.
If ael O {oo} corresponds to a place of the x-sphere, call the field just
described L,. In particular, if @ = oo and fis a polynomial tamely ramified
over oo, then L, = L({,) where {, is primitive nth root of 1. From
Hilbert’s irreducibility theorem, in the case where L = K is a number

field we have (K, =L (see Section VII of [16]).

aeK
We introduce some notation to be retained throughout this paper.
Let 8, be the symmetric group on n letters. An clement ¢eS, can be
written as a product of disjoint cycles

r
(1.8) o =[]y, where length of y; is s(i),i =1,...,.
i=1
We will sometimes abuse standard notation and write

(1.9) a:]j (s(d) or (s(L)){s(2)}...{s(r).

Then we have, order of ¢ = [s(1),...,s8(r)] (l.em. of s(1),...,s(r)) and

7

(1.10) ind o = }'(s(i)—1).

t=1

LemmA 2. Let f(y)eL[y] (f is a polynomial), with (deg f, char L) = 1.
Then the lattice of fields between L(y) and L{f(y)) is isomorphic (as a lattice)
to the lattice of fields between L*(y) and L*(f (%)) (Lemma 1 of [9]).

THEOREM 1. With the notation of Definition 5, let K be the quotient
field of R. Let LeRes(R) and f(y)eL(y). Suppose

(112) f =Ffi(fol(f@)...))  where fieL(y) for i =1,...,1.
Then there exists an index 1 such that

(1.13) f: is not virtually-one-one over L, iff
(1.14) I is not virtually-one-one over L.

Also, (1.13) holds if

(L.15) f; is indecomposable over L* and G(L*-8;_,/L*(x)) is doubly-
transitive on Y,(1), ..., Y (4) (the zeros of f;—wm).

Suppose f(y)eL[y] is a tame polynomial over L. Then (1.14) holds
wnless f is a composition of polynomials of the following type:

(1.16) ay”+b  (cyclic polynomials)
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and
(1.17) To(y) = 27"y + @+ 9P +{y — (0" + 0
(Chebychev polynomials).

Now assume feK(y), and (1.12) and (1.13) hold (see Problem 1)
with L replaced by K. Then there exists a constant C >0 (dependent on f)
such that f is not virtually-one-one over Res(R, C).

Proof. There are many ways to proceed. We have chosen the most
expedient, not the most elementary. From the generalization of MacCluer’s
theorem (Proposition 1 of [8] or [18]) f describes a one-one map on
L, 0o = L, U co for infinitely many field extensions IL,eRes(L) iff
f is virtually-one-one. However, f is one-one (and therefore onto, since
L is a finite field) on L, U oo iff f; is one-one on L, U ocofor ¢ =1,...,1
(as in {1.12)). Thus (1.13) is equivalent to (1.14). Note that (1.15) implies

. —f.(z
that o1(y, 2) — ﬁ(yy)_f( )
of @,(y1(4), 2) are 2 = Y5(4) , -o+y Ynw (i) I f(y) e L[y] is a tame polynomial
then Lemma 2 implies that f can be decomposed (over L) into polynomials
which are indecomposable over L*. Then Lemma 9 of [4] shows that these
composition factors of f must be linear changes of polynomials of type
(1.16) or (1.17).

If feK(y), and (1.12) and (1.13) hold with L replaced by K, then
Noether’s lemma, applies a8 in Theorem 1 of [4]. m

Let L be a finite field; L{{l /w}} the ring of formal power series in
1/ with coefficients in L; M = L{(1/x)) the quotient ficld of L{{1/x}}.
We have the following exact sequence

(1.18) 1 @seom._, Garith._> G(L*/L)—>1
where G = G(M*/M), and G=™ = G(M*/L ((1/x))}. Let GZ: pe

tame

the Galois group of the maximal tamely ramified subfield M, of M*.
Then

is absolutely irreducible, because the zeros

M, = L>J L¥({(1fm)")).
(=1

Let o(F)eG(L*/L) be the Frobenius generator of = o(#)(a) for aeL*
(where ¢ is the order of L). We define o(F)eGE™: to be the element
obtained by operating on the coefficients of Puiseux expansions (elements
of M;) by o(F). We fix, once and for all, a compatible system of primitive
roots of 1; that is, a collection {{,},», Where

(r,p)=1
(1.19) ¢, is a primitive nth root of 1,
and

(1.20) (Cpm)™ = ¢, for all m, m such that (n-m,p) =1.
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We define o(Br)eG(Mp/L*((1/x) ))
(1.21) o(Br)(1jz)'" = (&,)7 A Jx)H".

Then ¢(F) and o(Br) are topological generators of GZiL- with. the
single relation
(1.22) (0(Br))io(F) = o(F)o(Br).

Let f(y)eL[y]. We introduce some concepts for the computation
of the Galois closure of L((1/%))(y) over L{(1/x)) where f(y) = . These

computations are carried on extensively in [7], which contains a general
treatment of wild ramification. Suppose deg f(y) = d = d(0)p"® where

(@(0), p) = 1. Write Zl(f,c(y))p”"" where
=0

(1.23) deg fy = d(k), (d(k), p) =1,
and '
(1.24) p"® is a strictly decreasing function of %, with p*® = 1.
Such an expression for f is not unique.
Let ¢(0) be the ordered two-tuple of integers, (d(0)p"®; p"®) and

define ¢(¢) inductively by
def

(1.25) e(i) = (d(ki)pv(ki); pv(ki))
where k; is the least integer such that
. 4
k>R and d(k)p" =deg( Y (ful)™).

k=k;_ lJ-l
DEFINITION 6. We call the collection {e(?)};_, (with its ordering by
size of coordinates) the ramification data (over oo) for the polynomial
fW)eL[y]. Sec [7] or [16] for other interpretations of {e(%)}i_, (which
in particular show that {e(i)}j_, is an invariant of the valuated fields
L{(1/2)) (9) | L((1/2)). Let 7y (e(i)) (vespectively m,(e(i))) be the first (res-
pectively the second) coordinate of e(7).
Consider the lineg

(1.26) L Y =me(k)) —(X+1)p"®, &k =0,...,s.
Denote the
Y_ax?(—nn,(e(k)))
(-1, (e(k+1))

X =-1 w X-axis
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X-coordinate of the intersection of I; and I; by I(e(fi), e(j)). Let £(0) = ¢(0)
and define E (i) inductively by

(1.27) E(@) &' the minimum of e(k) < E(i—1) such that the minimum
value of I{E(i—1), e(k)) is achieved.
Then the ordered two-tuples
(1B, Bipa)s o (By) — (L4 1(Byy Byyy)) - ma(B@)S

are the ‘corners’ of the outer concave hull of the lines {I,};_,. The collection
{E(i)}._, generalizes the notion of higher ramification indices. The fol-
lowing computation shows, in particular, that if L((l/w)) (y) is Galois
over L((l/w)), then the quantities I(#;, E;,,) are higher ramification
indices (8o in this case, they are integers).
Let o: L*((1/y))— U L*((1/y)"") be a field embedding, fixed on
nzzl

. (n,p)=1
L*((1/2)) such that for some integer » >1

(1.28) oly) =y+ D ay
: f=—(n—1)
- From the equation

(1.29) flo) =f(y)

we inductively solve for the coefficients {a;}2 ., ;. From (1.26) and
(1.27) if

I{E(m), E(m+1)) <j/n < I{E(m+1), E(m+2)) for m<it-—1,

then a; appears in the term where y has coefficient g(a;) and exponent
J
(1.30) 7y (B (m)) — (; +1) 7o (B (m))

in the left side of (1.29) (and a; does not appear in the coefficient of a term
of higher degree). In addition
(1.31) g(a5) = h(a7t=en )

and h is a universal separable polynomial (dependent only on f) with
coefficients in L*[a_g_yyy ..., @j_,]. Also & has the property that

WZ(E(m)} . R .
(1.32)  degh = | o, (B(m 1 1)] it jn = I(B(m), B(m+1)),
1, otherwise.
. r(y) ,
ProrositIoN 1. Let f(y) =-—— eL(y) be virtually-one-one over L,

q{y)
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where p, q are relatively prime polynomials, and (as in (1.3))

n(f) = degp—degg=>1.
Suppose
(1.33) (@(f),p) = 1.
Then

(1.34) L contains no non-trivial n(f)-th root of 1, and q(y) has no zeros
in L., ‘
In particular, since —1eL, n(f)y is odd.
Assume now that f(y)eL[y] is virtually-one-one. Then (in the notation
above)
(1.35) the g.c.d. of m(B(t—1))—m (E(t)) and a,(E(t—1))—1 (where
7y (B (1)) = 1) is greater than 1.
In particular, let f(y) = y?" %0 4 py®V 4 lower terms, where (d(0), p)
=(d(1),p) =1, b # 0, and v(0) # 0.
Then, if f is virtually-one-one over L,

(1.36) (d(0)—d@), p"®—1) > 1.

Proof. From MacCluer’s theorem (Theorem 1 of [8]) if f(y) is vir-
tually-one-one, then there is at most one L-rational place of L(y) over
the place 2 = oo (where f(y) = ). Since #(f)>1, ¥ = oo is one such
L-rational place. If ¢(y) has a zero in L, then we would obtain an L-rational
place by setting ¥ equal to this zero. Thus, ¢(y) has no zero in L.

Again, since ¥y = oo in an L-rational place, one of the Puiscux ex-
pansions y,, for f(y) = 2 about this place, is an element of L(((l/aw)”?‘(f)))
for some aeL. If I contains & non-trivial % (f)th root of 1, then some
conjugate of y, (say y,) over L{(1/z)) is also in L(((l/am)””(f))). From
Lemma 1, f virtually-one-one implies that

(1.37) L(y,,9s) 0 L* # L.
But this contradicts the fact that

L(((1/ax) ")) A L* = L.

Thus we have demostrated (1.34).

Now suppose that f(y) is a virtually-one-one polynomial. We use

the notation preceding Proposition 1. In (1.28), let a; =0 for ¢ <
def

= I(E(t—1), E(t)). We set m,(B(t—1))—m,(E(t) =7, for u =1,2. We
r

have I(E(t—1), E(t)) =71 —1. From the procedure described in ex-
2

pressions (1.28) through (1.32), there are nZ(E(t—l)) distinet solutions

for a,, and inductively we solve uniquely for a; for ¢ > w. If (r,, ry) =1,

then some mon-zero solution for a, corresponds to an element y, # ¥,
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‘where

{(1.38) yzeL(((l/ay)”’z)) for some constant aeL.
From Lemma 1, f virtually-one-one implies that

{1.39) | Ly, y,) NL* # L.

But this contradicts the fact that

(1.40) Ly, y,)0L* < L(((l /ay)”’i)) NnIL* =L.

Thus we have demonstrated that (1.35) holds. m

LmvumA 3. Let r > 1 be any fived integer. Then there exist only finitely
many (dependent on r) integers n such that: n = degree f for some rational

fumetion feL(y); and deg g = r where f = i;’(;lj); and F) —f=)

irreducible factor of degree 1 or 2. (¥) y—=

Proof. Suppose f(y) = fi(fz(y)). The quantity #(f) is the rami-
fication index of the place ¥y = oo (of the function field L*(y)) over the
place ¢ = co (where f(y) = «). By linear fractional change of z = f,(y),
we can guarantee that the place y = oo lies over the place 2z = o in
the funection field L*(f,(y)). From the multiplicative properties of rami-
fication indices, we obtain 7n(f,) -%(f.) = % (f). Since »—7(f) = 0y N, —
—n(f1) %(fs) =, both n, and n, must be bounded. Thus, we may
restrict our attention to indecomposable rational functions f(y).

has an

The case where w has an irreducible factor of degree 1
is easily disposed of by noting that f(y) must be linearly related
to a ecyclic polynomial. Now suppose M)— has an irreducible

factor of degree 2 (in both variables from the symmetry in y and 2), say
@1 (Y, 2). Let f(y,) = « and ¢;(¥y,, ?,) = 0. Then the function field L*(y,, 2,)
is of genus zero. Thus there exists te L*(y,, #,) such that L*(t) = L*(y,, 2,).
From [L*(t):L*(y.)] =2 and [L*(¢):L"(2)] =2, there exist auto-
morphisms o, T of L*(t) such that the fixed field of ¢ is L*(y,) and the
fixed field of 7 is L*(2;). From Luroth’s theorem composition factors
of f(y) correspond to the subfields of L*(y,) containing L*(z). Thus,
if L*(y,) NnL*(2) # L*(«), then f would be decomposable, contrary to
assumption. Thus, we have shown that the fixed field in L*(¢) of the
group gencrated by o and 7 is L*(2). So L*(t) is the Galois closure of
L*(y,)/L* (x). However, this implies that G(Q, ,/L*(x)) is a finite group
of linear fractional transformations. From the characterization of such
groups (see [2], Theorem 3, p. 133), excluding the case where f is a cyelic
or Chebychev polynomial, there are only finitely many such groups. m
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THEOREM 2. Let L be a finite field. Assume that f(y)eL(y) and that
fly) = ) with (p, q) =1 is tame (Definition 4). In addition, assume

q(y)

that f is virtually-one-one over L. Then
(1.41) (IL|—1,m(f)) =1, and q(y) has no zeros in L.

Let oy, = (W)(s(2)) ... (s(r)) be the branch cycle over oo for the curve
fly)—ax = 0 over the x-sphere. Then either

(1.42) n(f) < deggq,
or
(1.43) @(f),s@))>1 for i=2,...,7r.
COROLLARY 1. With the same assumptions as Theorem 2, for
(1.44) 1< degree q << 9

there exist only finitely many values (independent of |L|) of 7 such that
there exists feL(y) satisfying the above conditions with 7 (f) = 7.

Proof. We have (|L|——1,ﬁ(f)) =1 if and owly if L contains no
7 (f)th roots of 1 (other than 1). Thus (1.41) follows from Proposition 1.
Now suppose neither (1.42) nor (1.43) holds. The numbers s(2), ..., s(r)
are the multiplicities of the zeros of ¢(y). Then there exists 7 (say 7 = 2)
such that (o.,)*® is fixed on one of the zeros of f(y)—a, and has a cycle
of order # on 7 of the zeros of f(y)—x. Thus, one of the absolutely irre-
ducible factors of ¢(y, 2) (expression (1.41)) has degree at least 7. However,
since f iz virtually-one-one, there are at least two absolutely irreducible
factors of ¢(y,#2) of degree at least #. By assumption 7z(f)> deg g so
27 (f) = deg f. However, deg,(¢(y, z)) = deg f—1 which contradicts our
deduction that deg(p(y, 2)) = 27(f).

Now we prove the corollary. We exclude the finite number of values
of 7 such that 7 < q. We know from Proposition 1 that #(f) can never
be even. Since we assume that

(1.45) n(f) > deg g,

then (1.43) holds. Also, since ¢(y) can have no zeros over L, for each
value of 2 <<iLr

(1.46) there must exist j £ ¢ such that s(i) = s(j).

By simple combinatories we can inspect the possible values of s(2), ...
.., 8(r) for degree ¢ =1,2,3,4,5,7,8 to see that there do not exist
corresponding rational functions f. Also, if

(1.47) deg ¢ = 6, then s(2) = s(3) =3,

and if

(1.48) deg g = 9, then s(2) =s(3) = s(4) = 3.
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From Lemma 3 we see that there are only finitely many rational
functions with deg q prescribed, such that ¢(y, 2) has a factor of degree
1 or 2; and, in fact, these are easily delineated. The case (1.47) and (1.48)
are similar, so we assume (1.48) holds. Then # = 3-k for some integer k.
The permutation (o,)? has transitivity classes of length

(1.49) k,k,k1,1,...,1

9 times

on the zeros of f(y)— . Let y, be a zero of f(y) —=. Then these 12 transi-
tivity classes are subsets of the transitivity classes of G(Qf_x/L* (yl)) on
the zeros of f(y)— . Again we use that ¢(y, 2) has at least two absolutely
irreducible factors of degree ¢, if it has one of degree ¢t (and ¢ > 3).

Thus, for k large, we know that there are no transitivity classes
of length 2 among ¥,,...,¥, under the action of G(Qf_z/L* (yl)), and
there must be as least two classes of a given length, if there is one class
of that length. From this information we combinatorially see that the
only possibility is that G(2,_,/L*(y;)) has transitivity classes of length
kyk,k,4,40n9y,,...,9,. Let y,, ..., y; be zeros of f(y) — 2 whose Puiseux
expansions about the place # = oo start with /. One of these (say ¥,)
is actually a Laurent series in =™ with coefficients in L (versus in L*).
Then, as in (1.18) through (1.22), the action of the Frobenius symbol
o(F) is obtained by operating on the coefficients of the Puiseux expansions,
and o (F) represents an element of G(2;_./L(y,)). If k > 4, ¢(F) is transi-
tive on the three transitivity classes of length k; transitive on the two
transitivity classes of length 4; and maps the collection ¥,, ..., ¥; into
itself. Suppose one of the transitivity classes of length % (under the action
of G(Q,_./L*(y,))) contains k—t members of the set {ys,...,¥s}. Then
80 does each of the other transitivity classes of length k. Also, each of
the transitivity classes of length 4 contains 3¢/2 members of the set
{Y2, ..., y5}. Thus t is even, and ¢t = 0 or 2. However, among the remaining
nine zeros of f(y) —«, an odd number must appear among the three transi-
tivity classes of length k. This is a contradiction to ¢ even; and finishes
the case degg = 9. m

Examprr 1. In Section VIII of [16] we describe all virtually-one-
one prime degree polynomials over L. For now, we give one example
where f is not a composition of cyclic and Chebychev polynomials, but
is virtually-one-one over L. Take L = Z/(5). Then L

does not contain V2. Let f) =¥’ —v*+2y*+y. We obtain

1-V2
2

oy, 2) = [(y—22+V2(y+2)+

121/5)

)((y—z)2—V§<y +2)+

In the next set of problems K denotes an algebraic number field.
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PrOBLEM 1. From Theorem 1, if f(y)eK[y] is virtually-one-one over
Res (0, C) for all ¢ >0 (where O is the ring of integers of K), then
f is a composition of polynomials of type (1.16) and (1.17). Does the
same conclusion follow if f(y)eK [y] is virtually-one-one over K?

“PROBLEM 2. Let r = 1 be any integer. Can Theorem 2 be strengthened
to: there exist only finitely many integers 7 (dependent on 7) such that

there exist tame rational virtually-one-one funetions f(y) = M—e L{y)

q(y)

with deggq =r, @ = n(f). The reader will note that the combinatorial
arguments used in the proof of Theorem 2 are applicable to the case
deg ¢ > 10. But they do not suffice to demonstrate Theorem 2. The case
deg ¢ = 10 itself is tractable by making some arithmetic observations.
However, we have not yet found the proper abstract setup (for general
function fields) whereby these computations become a simple special case.

2. Decomposability of rational functions. In this section we consider
rational functions f(y)eL(y) where

(2.1) f is indecomposable over L, but f is decomposable over L*.

For most of this section L could be any perfect field. From Lemma 2,
either

(2.2) f is not a polynomial,
or
(2.3) (Char L, deg f) # 1.

For a general function field K(Y)/K () (as in the introduction),
the condition of indecomposability corresponds to the condition that

N
G(K'(Y )/K (2)) is a primitive permutation group when represented on
the letters ¥,,...,%, (Lemma 2 of [4]).

The general treatment of condition (2.1) is difficult, and is a source
of arithmetic problems (versus purely group theoretic or Riemann surface
type problems). We shall in order: normalize the problem, indicate im-
portant special cases and related problems, and then give some results
related to some of the special cases. The purely combinatorial aspects.
of thege problems are left here and taken up again in [6].

Suppose f = f,(f,) eL(y) where fy, f,eL*(y). By replacing f by a linear
fractional transformation of f we may assume that #(f) > 0. Similarly,
there is 2 linear fractional transformation « (f,) (of f5) such that 7 (u(f,)) > 0.
So, by replacing f, by u(f,) and f, by fl(u‘l(y)) we may assume

(2.4) a(f) >0, @(fy) >0.

For questions about value sets of rational functions these are assumptions.
we may make with no loss.
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The proof of Lemma 2 shows that if f(y)eL [y] and (deg f, char L) =1,
then

(2.5) there exist a, beL* such that af,(y)+beL[y].

DErFINITION 7. We say that feL(y) is decomposably stable if there
is a one-one correspondence between the lattice of fields between L(x)
and L(f(#)) and those between L*(x) and L*(f()).

Our next examples are not decomposably stable, but they do not
satisty (2.1).

ExAMPLE 2. In this example f(y) = y (¥ —1)* e L[y] where L=Z/(p)
(p a rational prime). Then f(y) = f,(fa(¥)) with fi(y) =y—y2+...+9",
fay) =y+9y2+...+y?. But, for @ any (p+1)th root of 1, we also have

1 1
= —(f (ay ) Thus, f = 91(92 ) where ¢, =—f1 ), and g»(y) = f2(ay).

ExAvpLE 3. Here L-is any field not conta,lnlng a prlmltlve 3rd root
of 1, which we call a. Let

1/(y2—4 : afy?+2
fot(Eh), g

y—1 ay+1
S0
W
fita =1 =v(55).
As in Example 2 we also have
, y*—4 y*+2
= h = = L .
@) = 0:(92(y)) where g, g1 92 = g7 <L)

We now consider
(2.6) Classes of Pairs of Rational Functions

f1 ¢ such that: f, ge L*(9), f(y1) = @, g(2)) = @ and L*(y,, 2,) is of genus
zero; and either

fm) f(y) —g(?) is irreducible as a rational function in y and 2 (so the
genus of L* (yl, zl) does not depend on the choice of z;);

b) Given a choice of y, the genus of L*(y,,2,) may depend on the
choice of the zero z, of g(2) = »; or

¢) f, g rational functions such that there exists oe¢@(L*/L) with
) =g

Remark 2. Certain sub-clagses of the problem (2.6) b) have been
treated in the literature ([12], for example). However, the very prolifer-
ation of examples seems to demand a method of keeping frack, of the
information obtained by computation, which does not exist. Assumption
(2.6) a) is more tractable, especially if f and g are polynomials (see [6]
and also Example 5)). Let f,, foeL*(y) satisty fi(f.) = f(y)eL(y), where
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f is indecomposable over L. Then there exists oeG(L*/L) such that
FUf@) =fly) and f #fo. Let @ =f(y,), so that we have L*(y,)
> L* (fg(yl)7f2(y1)) > L*(«). By Luroth’s theorem L* (f5(y1), falyy)) is of
genus zero. Since f; (,) is a zero of f} (y) —, and f,(y,) is a zero of f,(y) —w,
we have the situation of (2.6) c¢).

Let f, geL(y) with f(y,) = « and g(z;) = «. Let 4, ..., 4,, 4, be the
branch points of L*(y,, 2;) over L*(x). Assume that f, g are tame, as in
Definition 4. We denote by oy, ..., 0,, 6, the corresponding branch cycles
viewed as elements of G(2;_, 2, ,/L*(x)). It is desirable to view the
action of the branch cycles on £, , and £, , separately. We let o;(y)
(respectively o;(2)) denote the restriction of o; to £;_, (respectively 2,_,)
and by abuse of notation we let

2.7 o(y) = (s(d, 1)) ... (G K}y 05(2) = (¢4, 1)) ... (204, 1)),
j=1,...,r, 0,

DEFINITION 8. We say f, g have the same branching if o;(y) is similar
to o;(2) for j =1,...,7, co.
ProOPOSITION 2. Let f, ge L(y) and assume that

(2.8) fy)—g(2) is absolutely irreducible.

Then (in the above notation), the genus of L(y,, 2,) is given by p where
r 4 l

D md(of () + Y ind (o= (y).

)
i=1 17 j=1

(2.9) 2(deg f+p—1) =
In particular, if f, geL[y], then

r l‘t
(2.10) 2(deg f+p—1) = D Y ind(e*(y)) +n—(n, m)

i=1 j=1
where m = degyg.

Suppose f satisfies

fy)—ft=)
Y—=

(2.11) 18 absolutely irreducible.

Then, if ¥y, y, are zeros of f(y) —x, the genus of L(yq, ¥,) 28 given by p where

L Il

Zind.[as(i’j)(y)) + Zind (af,f,w’j)(?/)) .

r
t=1 j=1
Proof. From (2.8), [L(y4, 21) : L(2,)] = deg f. The Riemann—-Hurwitz
formula gives the genus of L(y,, 2;) as p where

(2-13) 2(deg f+p—1) = D (e(p)—1)

(212) 2(degf+p —2) =



Avrithmetical properties of function fields (II) 241

where the summation is over places of L*(y,, 2;) and e(p) is the ramifica- .
tion index of such a place over L(2,). Let p be a place of L*(y,, 2,). If
p is ramified over L* (), then p lies above one of the branch points (say 4,)
of L(y,,#,) over L(z). Let p (respectively p) be the restriction of p to
L(y,) (respectively L(z,)). Then p (respectively p) has ramification index
8(1,u) for some 1< u<k (respectively #(1,v) for some 1<v<1).
We compute
[s(1, ), t(1, v)]

(2.14) e(p)—1 = o) —1.

I
The sum over places lying over 4, is easily seen to be D ind !¢ (y).
i=1
Formula (2.9) is obtained by summing over all places L*(x) and substi-
tuting in (2.13).

If f,geL[y], then o,(y) = n-cycle, and o, (2) = m-cycle. Thus,

loo
(2.15) gind(afg’"”') () = ( (nj@m) —1) (n, m).

This proves (2.10).
Suppose f satisfies (2.11). Then [L(y,, ¥,) : L(y,)] is n —1. The argu-
ment above applies almost without change to L(y,, v,) to give (2.12). m
The following corollary (expression (2.27)) shows that under the
conditions of problem (2.6) a) there is a great deal of ramification over
just one place on the z-sphere for the covers given by f(y)—« and ¢(2) — .

COROLLARY 2. Let f, geL(y) satisfy (2.8). Suppose also that:
(2.16) neither f nor g are cyclic or Chebychev polynomials, nor is f or ¢

a polynomial of degree n where n << 8 (see Hrample 4),
and
(2.17) L*(yy, 2,) s of genus zero.
For reZ let
. r if r>1,

Y =
0 otherwise.

Then, there exists a finite index ¢ and a finite index j (possibly 1 = j) such
that:

=

3 i
(2.18) n— Y §(,u)=0o0r 1, and m—Zi(j,v) =0 or 1.

1 v=1

e
1l

Suppose f satisfies (2.11), and
(2.19) L* (Y1, ¥s) is of genus zero.

2 — Acta Arithmetica XXV.3
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Then, for any geL*(y) with the same branching as f (see Definition 8) we
must have

(2.20) f(y); g(z) is reducible as a rational function in two variables.
Suppose f satisfies (2.11), and

(2.21) L¥ (Y4, ¥s) is of genus 1.

Then, for any geL* (y) with the same branching as f, either l(2.20) holds, or

(2.22) L*(yy, 21) is of genus zero where g(z,) = x.

Y.
Proof. Suppose m— D#(j, u) > 2 for all j. Since p = 0 is the genus
u=1 r

of L*(yy,2), we have 2(degf—1)> } 2ind(o;(y)] with equality iff
‘ i=1

Y
(2.23) m— Y't(j,u) =2 for all j such that o;(y) # 1;
u=1

(2.24) a) ind(o,(y)) = deg f—1
(from 2(deg f—1) = Z ind ¢;(y) +ind o (y)), and

b) o™ (y) =1 for w = 1,...,1; and all j such that o;(y) # 1 (this
includes j = oo, where we may replace t(j, w) by #(j, ) in
this expression).

However, we must have equality in the above because
T
D 'ind(0;(y)) > (deg f —1)
i=1

with equality if and only if ind(am(y)) = deg f—1 (or, equivalently, f is
a polynomial).
For any j such that o;(y) # 1, we easily compute from (2.23) that
m—2
T

(2.25) ind (0;(2)) >

We will now show that f has at most 2 finite branch points, and that
s(i,u) = 1 or 2 for all 4 and » unless f or g yield one of the cases of
Example 4. From Lemma 9 of [4], excluding this latter possiblity, f is
a cyclic or Chebychev polynomial (this includes the case when f is a pol-
ynomial with two finite branch points whose corresponding cycles are
of type (1)(1)(2)...(2) and (2)(2) ... (2)). This will conclude the demon-
stration of (2.18).
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With the roles of f and g switched in the above discussion, we obtain
kj

(2.26) 2(degg—1) > Z(n — DV5(j, w))(ind (o;(2) + ind (o2 ().
From (2.25) we see that
r k;j

(2.27) Z”(n——;§(g’,u))<4(z:z)

=1

where > indicates that the sum is over all j such that o;(y) # Id.
i=1
Let tr (;J'(y) be the number of fixed points of o; acting on ¥, ..., ¥
/ :
Then (n— >'§(j, u)) = tr o;(y). From (2.27) we have

u=1

n-e

m—2

(2.28) Zr‘tr(a,.(y)) < 4( m_l).

From (2.16) we may exclude m with m < 6 to obtain

(2.29) Ztr(aj(y)) <4.

Also, by the Riemann—-Hurwitz formula applied to L(y,)/L(x) we obtain

r K

(2.30) 2 M (s(i, ) —1)+n—1 = 2(n—1).
i=1 u=1

In particular,

2 n——i‘;r(ai(y)_)< w1

- 2

with equality iff » = 2 and o;(y) is of order 2 for ¢ =1, 2. This latter

is the Chebychev polynomial case (excluded by (2.16)). In either case

we easily deduce r = 2. Assume tr(oy(y)) < tr(o,(y)) (with no loss).
We have 3 cases: 7

a) tr{oy(y)) = 0, tr{oy(y)) < 4;

b) tr(oy(y)) =1, tr(oy(y)] < 3; and

¢) troy(y)) = 2, tr(o(y)) = 2.

In all cases, if two of the values s(i, u) are different from 1 or 2,
these values must be 3. However, if just one value is distinet from 1 or
2, this value must be 4. All cases are much the same (but time consuming).
We illustrate one case, leaving the remainder to the reader.

Assume, for example, case b) where o,(y) iz of order 2 and
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ao(y) = (3)(3)(2) ... (2)(1)(1)(1). Then, with the roles of ¢ and f switch-
ed in (2.10) we obtain:
i

(2.31) 2(n—1) = Y Mind (o) (y)) +n—(n, m).

2
t=1 j=1
But
n—1
2

. ) if (1,7 is odd
ind /™7 (y) ’ ’

I

if  t(1,4) is even

and
4 if (2, 4) is divisible by 2, but not 3,
"2_9 it 1(2,7) is divisible by 3, but not 2,
ind o¥*? (y) = .
5 it (62,4),6) =1,
0 otherwise.

This shows that tr(s,(2)) +tr(04(2)) < 4 and (n, m) = n. Now g is a cyclic
or Chebychev polynomial if tr(o,(2))+tr(s,(2)) < 2. Thus, from previous
computations, ¢ has the same branch cycles as does f. For n =m > 8
we compute that the right side of (2.31) is greater than the left.

Assume feL*(y) satisfies (2.11) and (2.19) and suppose there exists
¢ with the same branching as f such that f(y)—g(2) is irreducible. An
interpretation of the fact that f and g have the same branching is given
by t(i, u) = s(¢, #) for all ¢+ and . The right sides of (2.9) and (2.12) are
the same. The p in the left side of (2.9) (resp. (2.12)) is the genus of
L*(yy, 21) (vesp. L*(yy, ¥5)). However, since p = 0 in (2.12), we deduce
that L*(y, #;) has genus —1. This contradiction shows that f(y)—g(?)
is reducible. The remainder of the Corollary follows from an analogous
argument. =

We now give some examples to illustrate the non-triviality of clas-
sifying rational funections satisfying (2.6).

PRrROPOSITION 3. Let f, ge L*[y] be tame polynomials. Suppose
(2.30)  f(y)—g(2) is reducible as a polynomial in two variables,
and

(2.31) f is indecomposable over L*.
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Suppose there does mot evist h(y)eL*[y] with degh >1 such that g(y)
= ¢.(h(¥)) and f(y)—g.(2) is reducible. Then:

(2.32) g is indecomposable and £, , = 2, .,

(2.33) ¢ and f have the same branching, and either f(ay-+b) = g(y) for
the same a,bel”

or,

(2.34) f(y)—g(2) has exactly two irreducible factors of degree s amd n—s
where n—1|s(s—1).

: n (%
Since these two factors have distinct degrees (because n—1% 5(5 —1))

if fy geL[y] as above, then the irreducible factors of f(y)—g(2) are absolutely
irreducible over L (Theorem 1 of [5]).

ExampLE 4. We give two examples of polynomial pairs f, g that
satisfy (2.6) a). These examples are part of the excluded situation of
(2.16) in Corollary 2.

I) Let the Riemann surface for f(¥) —« have branch cycles

(2.35) 01(¥) = (Y1Y2YsYs) (OVEr & = Ay), 03(Y) = (y3y4) (YsYe) (over © = 4,),

and let the Riemann surface for g(2) —# have branch ecycles
(2.36) 0.(2) = (2123212) (over @ = 1)), 02(2) = (22%)(%:2,) (over @ = 1,).

If f(y) of degree 6 were decomposable, then Lemma 2 of [4] implies
that either {y1%.}, (%295} {¥s¥sr O {¥19s¥s}, {Y204ys} would be sets
of imprimitivity for ¢, and ¢,. We are using the fact that o,(y) 0. (y)
= (Y1 ...Ys) and similarly o¢,(2)-0,(2) = (21 ... %). However, o,(y) fixes
¥y, and moves ¥; to y,, s0 meither system yields sets of imprimitivity.
- Thus, we may apply Proposition 3 to deduce from (2.30) that f(y)—g(2)
is irreducible. A simple computation using (2.9) shows that the genus
of C(y,,z,) is zero.

II) Here we have degf — degg = 8. Let the Riemann surface for
fly)—a have branch cycles

(2.37)  01(¥) = (Y1Y2Ys) (¥sY5Y,) (over » = 4;) and

o2(Y) = (Y3Ys) (¥a¥s) (Ysy:) (over & = ;).
Let the Riemann surface for g(z)—« have branch cycles
(2.38) 0,(2) = (2,23%;)(%,252;) (over # = 1;) and

05(2) = (2223) (2425) (%627) (OVer @ = 1,).
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We leave to the reader the proef of the fact that f is indecomposable.
Proposition 3 ((2.30)) then implies that f(y)—g(2) is irreducible, since
718(s —1) implies that s = 7 or s = 1. Again (2.9) may be used to show
that C(y,, 2,) is of genus zero.

ExAMPLE 5. We now give an example of polynomials f, geC[y] such
that degf =degg = 7 and f(y)—g(2) is reducible where C(y,,z,) is
of genus zero for some z, such that g(z,) = x. We highlight certain rele-
vant points here. The production of polynomial pairs f, ¢ such that
f{y)—g(z) is reducible is not in general an easy task. However, if f(y)—
has branch cycles of the form

(2.39) o (¥) = (2)(2), ox(y) = (3)(3)
fy)—f(z)

then f is not a cyelic or Chebychev polynomial and —yz_ is
absolutely irreducible (Lemma 9 of [4]). From (2.11) the field C(y,, y,)
is of genus zero. By Corollary 2 (expression (2.20)) if f and g have the same
branching, then f(y)-—g¢(2) is reducible. It is not difficult to find two
(inequivalent) polynomials f and ¢ with branching of form (2.39). From
Proposition 3, if f(y) —g(z) is reducible where degf = deg g = 7, then
Q;_, = 2,_,. Therefore, the branch cycles for the Riemann surface of
f(y)—a can also be represented on 2, ...,2, (where z; is given by the
set (Wi, Y1y Yigshy ¢ =1,..., 7).
Consider the case:

(2.40) o1 = (Y1Y3) (¥2Ys5) = (2172) (Rs%5),
0y = (Y2 ¥3) (YY) = (2127)(2a2),
03 = (1Y) (Ys¥r) = (23%7)(R42;).

The group generated by oy, 05, 0; has two permutation representations.
We construct (by Riemann’s existence theorem) a polynomial f of degree 7
having o, (%), 02(¥), o3(¥) as finite branch cycles. The stabilizer of z; in
G(Qf_m/C(m)) has as its fixed field the field C{(z,) where 2, is a zero of
g{z)—z. Here g is the polynomial with the same finite branch points
as f, and g(2) —ax has branch cycles ¢,(2), 05(2), 03(2). Since the group
q(9Q;_,/C (y,)) is of order relatively prime to 7, it is intransitive on 2y, ..., 2;.
Thus f(y) —g(z) is reducible. However, neither of the curves defined by
the irreducible factors of f(y)— ¢(2) is of genus zero. We must “coalesce”
the branch points to obtain such examples. Denoting the branch points
in order by 4,, 4;, 4, we obtain two distinet examples by first coalescing
A and Az, then by coalescing 1, and 4;. These are:

01 = (Y1Y2Y3) (Ya¥Ys¥:) = (21%237) (%3%5%) ,

(2.41)
0y = (Y1%) (Y6 ¥1) = (232:)(2:%5),
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and

ar = (Y1%s) (Ya¥s) = (R122)(2525),

02 = (Y1YsYs¥:) (Y2¥s) = (2125242,) (2425)-
In all these examples,

(2.42)

G(Q,;_,/C(z)) is transitive on the set {y,, ¥, ¥a}.

The genus of C(z;,%,) is easily computed. It is found to be p = 1 in
case (2.41) and p = 0 in case (2.42). From Riemann’s existence theorem
there exist polynomials k(y) of degree 7 such that the Riemann surface
for h(y)—a has branching of form

(2.43) o, = (2)(2), o, = (4)(2), (distinet from (2.42)).
However, in this case, for I(y)<C[y] such that deg! — deg h and
(2.44) h(y) —1(2) is reducible,

then I{ay +b) = k(y) for some a, beC.
For example, we can take h(y) to be the polynomial such that the
Riemann surface for h(y)—ax (over C(x)) has branch cycles

(2.45) oy = (Ya¥2) (Ys¥s)s 02 = (Y1¥2Y3Y4) (YsY7)

where ¥,, ..., 9, are zeros of h(y)—a. I h(y)—1(2) were reducible, then
Proposition 3 implies that £,_, = £;,_, and G(.QZ_Z/C (zl)) is intransitive
on Yy, ..., ¥;. This is easily seen to be false. The genus of C(y,, 2,) is
0 by formula (2.10) if I(y) has the same branching as h(y).

Remark 3. The examples above do not exhaust the list of relevant
examples to problems (2.6) (see [6]). However, as far as the generalized
Schur conjecture is concerned, we should make a few more comments.

ExamMpPLE 6. Case (2.42) does yield polynomial pairs f, g such that
f° = g for some 6¢G(O*/0Q) and M = Q" (y,, 2,) is of genus zero (see [5],
Theorems 1 and 2). Thus we have examples of (2.6) ¢). However, it can
be shown that in this case we cannot find a field M’ > Q(x) such that
M’ is defined over the fixed field of ¢ and Q*- M’ = M. Such a field M’
would have to exist for these examples to yield rational funetions which
are indecomposable over the fixed field of o, but decomposable over Q*.
We do not know that Example 4 does yield the situation of (2.6) ¢).

3. Rational functions of prime degree. In this section we use a trick
involving the Weierstrass fp-function (first employed by Ritt in [12])
to help us delineate the rational functions f(y)eC(y) such that

(3.1) degf =p for some prime p,
and
(3.2) G(£2_,/C()) is not doubly transitive on {y;}{, the zeros of f(y) = .
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From Theorem 1, all tame virtually-one-one rational functions of prime
degree must be among these.

Lemma 4 is due to Burnside [1] and Lemma 5 is similar to Lemma 9
of [4].

LuMMA 4. If G is a group of prime degree p and @ is not doubly transitive,
then G (as a permutation group) is a subgroup of the group of linear trans-
formations of the integers modulo p. In particular |G|‘p(p —1).

LuvimA 5. Let f(y)e C(y) be such that (3.1) and (3.2) hold. Let o4, ..., o,
denote the branch cycles for the Riemann surface of f(y) —x over the x-sphere.

For this lemma we do not differentiate between the finite and infinite branch
kal

points. Thus [[ o; = 1. Let a; be the order of o; for i =1,...,r. Then,
i=1

one of the following must ocour. In some order:

3.3) r=4 and aq =ay=0a3 =a, =2

or '

34) r=3 anda)a, =ay,=0a;=3,0rb) o =2, a,=3, ay =86,
or¢) ay =2, a, =4, a5 =4, or d) o, =2, ay, = 2,
ag =P

or

353 r=2 and a, =p, a,=0p.

Proof. By Lemma 4, (3.2) implies that ¢ = G(2,_,/C()) is a sub-
group of the group of linear transformations of the integers modulo p.
From properties of this latter group we deduce that for each ¢ =1, ..., 7,
either

(3.6) o =p,

or

(3.7) o; fixes one letter and is a product of disjoint cycles of length

a; where o;|p —1.

If (3.6) occurs for any integer ¢, then A; (the branch point corresponding
to o;) is a totally ramified place of the Riemann surface of f(y)—z, and
by a linear fractional change of the variable 2 we may assume A; = oo,
Thus f may be assumed, in this case, to be a polynomial of degree p.

This is treated in Lemma 9 of [4]. So we may assume that (3.6) does
not hold. Then from (3.7) the Riemann-Hurwitz formula gives

, .
(3.8) gindai =;(-pai1

)I(ai—l) =2(p—1),
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or

(3.9) Z (a"gl) — 2.

i=1 i

Basily we deduce that 3 <r <4 with »r =4 if and only if ¢; = a, = a4
= q, = 2. As for the case r = 3, for each 7, ¢; < 6. This leaves only finitely
many cases to check, and the valid cases are exactly those described in
the Lemma. m
In Theorem 3 we exclude the case where f is a polynomial since
that case is handled in [4]. We denote by #(2; wy, w;) the Weierstrass
gp-function of a complex variable z of periods 2w,, 2w;. The basic prop-
“erties of  (and its derivative with respect to z,’) can be found in any
complex variables text.

THEOREM 3. Suppose f(y)eC(y) satisfies (3.1) and (3.2) and that f is
not a polynomial. Then there exist linear functions of y (say A(y), 2(y)) such
that with 71“1( f (A(y)}) replacing f (we say that f is normalized) f is the solution
of a certain type of functional equation. Let w,, wyseC and denote by
L2wy; 2w,) the Z-lattice generated by 2w, and 2w,. Lemma b implies that
f corresponds to one of the cases:

(3.10)  ((3.3)) there exist comstants wy, w;, @, w; such that §(2; o, w,)
= f(ga(z, o), w;)) where {207, 20} e L(2w,; 2w,);

(3.11)  ((3.4) a)) there ewist constanis w,, ws, a,b such that £’ (az-+b)
=f(9'(2)) where w3 =P w,, and {2a0;, 2004, (1 —™)b}
eL(2w;2wy);

(3.12)  ((3.4) b)) there ewist constants w,, wg, a, b such that 3(az--b)
=f(p*(2)) where w; =P, and {200, 2aw;, b(1L—"P)}
eL(2w;; 2w4);

and

(3.13)  ((3.4) c)) there exist constants wy, wg, &, b such that ?(az-b)
= f(§%(2)) where vy = iw, and {2aw;, 2aw,, (1 —1)} e L(20,; 205).

Conversely, if constants w;, wg, &, b exist satisfying one of the conditions
(3.11) through (3.13), then there exisis a rational function f(y)eC(y) such
that the Riemann surface for f(y)—a over the z-sphere has branch cycles
as described in Lemma 5.

Proof. We do these cases in order. First we look at the situation
of (3.3). Let 4,,..., 4, be the branch points of the Riemann surface of
fly)—=. Let A(y) be a linear fractional transformation such that

(3.14) ATHA) = 00y ATH(A)+ATH(A) +A7H(A) = 0.
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Let 27'(%,) = ¢;_, for ¢ = 2,3, 4. Normalize f using 2 (as in the
statement of the Theorem) to obtain a new function with corresponding
branch points e, ¢,, €5, co. Construct the elliptic function @(z) such
that @(w,) =€, 1 = 1,2, 3. Set f(y) =(2), and expand y in Puiseux
expansions about all points in the finite portion of the z-gsphere. In fact
©(2)—e; has one zero of multiplicity 2 for ¢ = 1, 2, 3 (also, oo is assumed
with multiplicity 2). Thus, the condition (3.3) implies that the zeros
Y1, -5 Y, oL F(y) —(2) are power series in (2 — o;) (rather than in (2 — w,)"?).
We easily see that y,, ..., y, are meromorphic functions periodic on some
lattice, generated by 2w}, 2w, of index p in L(2m,; 2w,). By linear change
of 4,(2) (see Section VII of [16]) we may assume

(3.13) B(2) =~ (y,(2)) is locally gingle-valued
Then '
(3.16) f@(B@) =p@).

So (B(2)) is algebraically related to (2), and therefore (8(2)} is elliptie.
By differentiating (3.16) we obtain

(3.17) 0’ (2) =1 (p(8@))(@ ()8 ().

Since @'(B(2)) is algebraically related to @(B(2)}, #'(B(2)) is an elliptic
function. Thus g'(2) is an elliptic function. However, from (3.16) we
are able to deduce that £(2) is entire. In fact, if 2, were a pole of §(z),
then 2, would be an essential singularity of f(go(ﬂ(z)}), and therefore z,
would be an essential singularity of #(2). But the only essential singularity
of p(7) is at oo. Thus, f'(z) is an entire elliptic function. Thus §'(2) is
constant, or #(z) is linear. (Added in proof. We check that

(3.18) B(2) = £z-+2,

where 2, represents a p-division point of the lattice L(2w,;2w,). The
reader will find details in [16], Section VII, where f is described as the
map from P' to P! induced from

(3.19) C/L(20,; 2w3) > C|L(20,; 2w,).

Here ¢ is the canonical map.)

The remaining cases may be attacked by reasoning similar to the
above. Therefore we indicate only the particular difficulties of the case.
For (3.11) we seek a meromorphic funetion h(2) such that:

(3.20)  there exist exactly 3 complex numbers (say J,, d;, oo) assumed
by k with multiplicity 3 at a point,
and

(3.21) all other values of h are assumed at three distinet points.
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Let w; = €™*w,;, and consider p(2; w;, w,;). Since @(2; w, P w)
=p(2; € Pw, —w) we have

(3.22) : PR = ™ Pp(e).
Consider #z,, 2, the two non-zero solutions of
(3.23) 6Pz = 2 mod L(2w,; 2w,).

By differentiating (3.22) twice we see that @'’ () =£"'(2) =0 for
i =1,2. Thus (%) is assumed with multiplicity 3 by £’'(2) at 2; for
i =1,2. Also, oo is assumed by £’ (2) at z = 0. Since £’ (2) is a function
on a curve of genus 1, the divisor of £’ (2) has degree 0 = 2(1)—2. How-
ever, £'' (#) has only one pole for a coset representative of C/L(2w,;2w;)
and that is at # = 0. Thus, the divisor of "' (2) is —4py+2p,+2p,+7
where p, is the place corresponding to 0, p, and p, are the places cor-
responding (respectively) to 2, and 2,, and r is positive. Thus, r is the
zero divisor. So £’(2) has no other multiple values, and h(2) = £’ (2) is
the meromorphic function we desired. The rest of (3.11) is handled in
the same manner as we treated (3.10).

Cases (3.12) and (3.13) can be handled by use of the functions in-
dicated. For details see [16], Section VII.

Assume, conversely, that there exist constants w,, wg, @, b satisfying
one of (3.11) through (3.13). We show there exists a rational function
f(y) such that f((2)) = @ (az-+b). Let p be a place of C{p(2)) (the rational
field generated by @(z) over C). Except for finitely many places p, p
determines exactly two values of 2 (say 2,, 2,) medulo L(2w,; 2w,) such
that the value of @(2) at p is p(2;) = £(2;). The conditions on a and b
imply that @(az,+b) = @ (az,+b), so the place p is uniquely extended
to p(az+b). By the fundamental theorem of Galois theory this implies
P (az+b) e Clp(2)) or flp(2)) = p(az+b) for some rational function f(y). m

PrOBLEM 3. Let f(y)<H (y) be one of the rational functions described
in Theorem 3. Does f define a one-one mapping modulo p for infinitely
many primes p of K? (Added in proof. Solved: Section VII of [16].)

PROBLEM 4. For every integer n we can define analogues of degree
n of the rational functions described in Theorem 3. However, the rational
functions so constructed corresponding to compogite integers n are actually
compositions of rational functions of prime degree. Let f(y)eXK (y) where
K is a number field, and suppose that f is an indecomposable rational
function. If f is also one-one modulo p for infinitely many primes p, must
f be one of the rational functions described in Theorem 3?

4. Other problems in the arithmetic of value sets of rational functions.
For this section only, we have a slight addition to our notation. Let r be
a positive integer and suppose ¢,(2)eL(z). Then we denote the zeros of
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9,(R) —2 bY 24(7); ...y 2y (r) where m(r) is the degree of ¢g,. When K
is @ number field, fe K(y) and p is a prime of O (ring of integers of K)
for which we may reduce f modulo p, we denote by V,(f) the values
assumed by f modulo p.

In [3] the author devoted his attention to:

THE POLYNOMIAL CONJECTURE. Let f, ¢, ..., q,cK[y], and assume

. i
(4.1) Volf)y = U Vilg)

=1

for all but a finite number of primes p (abbreviated a.a. p.).

Then there exists an index i, and a polynomial r(y)eK*[y], such that
) = g:(r(®)-

In some sense it was an outrageous conjecture. However, it did
turn out to be true in several interesting cases. We list three of these:

l
(4.2)  fis linear, and therefore (JV,(g;) = all cosets modulo p for
a.9. P.; !
(4.3) g4y ..., g are cyclic polynomials;
(44) 1 =1, K = Q and the hypotheses are strengthened to read
Vo(f) = Vy(g) for a.a.p.; if findecomposable.

It is easy to form a generalization of the polynomial conjecture to:

(4.5)  The rational-function conjecture,

which we won’t bother to state, except to say that the word polynomial
should be replaced by rational function. The next theorem is a slight
generalization of Theorem 2 of [3]. Let 2, = Q, ,... Q, £ ..

THEOREM 4. Let f, ¢4,y ..., g1 K (y) and assume (4.1) holds. Then
n U m(i)
(4.6) U1 G(2,/K (y,) < U1 U1 G2, /K (7(1))
i= =1 j=

where {y;}7 are the zeros of f(y) —x. In fact, (4.6) and (4.1) are “essentially”
equivalent (p. 97 of [3]).

It turns out that the rational-function conjecture is not even true
in the case analogous to (4.2). That is, there do exist rational functions
g1y +++y g; Such that

I
(4.7) U Vyo(g:) = all cosets modulo p for a.a.p.,
im1

(4.8)  ¢;(v) is not a linear fractional transformation for any ¢ =1, ..., L.
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ExAMPLE 7. Let h(y)eO*(y) be any rational function such that
0,_, is of genus zero. If Q,_. = Q¥ (1), all automorphisms of Q*(t) are given
by linear fractional transformations of 7. Thus, the Galois group of
Q,_,]0 (z) can be identified with a finite group of linear fractional trans-
formations. As a particular case, for cyclic and Chebychev polynomials
0,_, is of genus zero. For a list of possible groups we refer the reader
to p. 133, [2]. Suppose in addition that

(4.9) G(2,_,/Q" (x)) is not a cyclic group.

For each ¢eG(2,_,/Q" (x)) with o 1, let M, be the fixed field of ¢ in
Q,_.. By Luroth’s theorem M, = Q*(t,) for some element #, of M.
There exists a rational function g,¢Q*(y) such that g,({,) = z. Relabel

the ¢,’s to be g4, ..., ;. Our construction assures that
1 m(d)

(4.10) G(2,/Q* (z)) < U1 U1 G(2:/Q%(2(1)))5
i=1 j=

where 2, = £, . in this case.

Now apply Theorem 4 to see that (4.7) holds.

Actually, the polynomial conjecture is false, even in the case where
1y ---5 ¢; aTe compositions of cyclic polynomials. Using a method like
that of Example 7, the polynomial of (4.12) can be used to give a counter-
example even when g¢,,..., ¢, are compositions of cyclic polynomials.

Levma 6 (p. 27 of [13]). A primitive solvable permutation group is
of degree p™ with p prime and m = 1. Also, a primitive solvable group cannot
contain a cycle of length equal to its degree unless m =1 or p =2, m = 2.

THEOREM 5. Let ¢,, ..., ¢;¢K[y] be compositions of cyclic and Che-
!
bychev polynomials. Suppose feK[y] and V,(f) < UV,(g;) holds for
i=1
a.a.p. (condition (4.1)). Then, f is a composition f,(f,) of polynomials f,
and f, where fy is an arbitrary polynomial in K[yl and 2;_,< Q; ;... 2
!

“ee 91—z

and Vy(f1) = U Volg:) for a.ap. In addition, f, is a composite of
i=1

(4.11) eyclic and Chebychev polynomials,

or

(4.12)  polynomials b of degree 4 such that G (2;,_,/Q(x)) is the symmetric
group on 4 letters.

Proof. Theorem 4 implies that (4.6) holds. From expression (12)
of [3], we know that (4.6) implies that we may replace f by a composition
factor f; (over K) so that we may assume

(4.13) Q ,c0,,=20 o)

g1—z " g-z*
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By extending scalars to Q¥ we obtain

n T m(7)
(4.14) U6 (2,010 ) = U U G{92,,./9% (%))

From Lemma 6 a primitive solvable group must be of prime-power degree.
Let h(y)eQ*[y] be an indecomposable polynomial. If & is a eyeclic or
Chebychev polynomial, explicit computation shows that G(2,_,/0(z))
is a solvable group. Also, all groups of degree 4 are solvable groups. Con-
vergely, suppose G(Qhaz/Q*(m)} is a solvable group. If degh is prime,
we may apply the argument of Lemma 9 of [4] to the normal subgroup
of G(2, ,/0" ()} of prime order to deduce that  is type (4.11). Since
h is indecomposable, G (2, ,/Q"(x)} is primitive on the zeros of h(y)—«
(Lemma 2 of [47]), so by the argument above h is of prime-power degree.
However, Lemmsg 6 implies that if & is not of prime degree, then degree
h = 4.

Thus, the hypotheses of our theorem imply that G(Q, _,/Q7 (x)) is
a solvable group. From (4.14) G(Qf_m/Q*(w)) is 2 quotient of the group
G(2,./Q" (), which in turn is a subgroup of G(Q, ,/Q*(x))x...X
X G(82,,_,/Q"(x)). Therefore, since products, subgroups and quotient
groups of solvable groups are solvable groups, we have ascertained that
G(2,_,/Q% (@) is solvable. If f(y) = fl(f2(...(f,(y)...))) where f; is an
indecomposable polynomial, then

(4.15) G(Q,_./Q,_,_,)is solvable, where s;(y) = fl(fz(...(fi(y)...))).

Let 0, , be a zero of s;_.(y)—. Then the zeros of fi(y)— 0,_, generate
a subfield of 2, _, that is Galois over 2, _,.In a natural way the group
of this field (which must be a solvable group) is isomorphic to & (in_z 10 ()
(use the change of variable 0, ;—x). Thus, f; is a polynomial of type
(4.11) or (4.12). This concludes the proof of the Theorem. m

ExAMPLE 8. One other case where the polynomial conjecture is now
known to be wrong is the case of (4.4) (V,(f) = V,(g) for a.a.p) for some
number fields K # Q. This is discussed in great detail in Section 2 of
[17]. A reduction technique used there shows that we may assume

(4.16) Qf—:l: = Qg—ll’
and
(4.17) . f and g are indecomposable.

With these assumptions, it turns out that V,(f) = V,(g) for a.a.p. if and
only if .

4.18) f(y)—g(?) is reducible as a polynomial in two wvariables.
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Non-trivial examples of this phenomenon are now known to occur in
degrees 7, 11, 13, 15, 21 and 31, and as explained in [5], these are believed
to be the only possible degrees with f indecomposable. The example
of degree 7 is described in Example 5 of this paper.

PrOBLEM 5. Is the polynomial conjecture true for any polynomial

f, other than f linear? That is, suppose feK[y] is a given non-linear
[

polynomial. Do there exist ¢i,...,¢; such that Vi (f) < U V,(g;) for
i=1

a.a2.p. but there exists no polynomial h(y) and no index 4 such that
g:(h()) = F)?
5. Generalized Riemann existence theorem, and discussion of prob-

lems. We return to the notation of our introduction. Given ¥ % P*(K*),
with (Y, ¢) defined over K (via an embedding of Y in some projective
space), we obtain an exact sequence:

(61)  {1}>G(E(Y)/E(PY) 6 (K (Y)/E(PY )—>G (K/K)~{1},

N\
where 7 is the map obtained by restriction of elements of G{K (Y)/K (P*))
to K. This leads to the following conjecture:

CONJECTURAL FORM OF RIEMANN’S EXISTENCE THEOREM. Let G, and
G be two transitive subgroups of S, (the symmetric group on n letters) such
that

(5.2) G, 4G (G, is normal in G).
Then there exists a triple (Y, ¢, K) such that [K : Q] < oo, and

(5.3) G(K/(\Y)/K(Pl)) -G and G(K/(\Y)/K(Pl)) = @,.

In order to strengthen the conjecture, we might use the conecept
of Hurwitz schemes as in [16], Section V. Let {0;}]e@, be generators of
G, such that

r
(5.4) ” o; =1d.

i=1
Then, we may construet (over C), a Riemann surface Y covering P(C),
having branch points %, ..., u¥C, and having a description of its

branch cyeles given by {al}' As in [16], Section V, under general condi-
tions there exists a (possibly non-unique) symmetrized Hurwitz scheme
pa,ra.metrumg a natural family of Riemann surfaces covering P, of which
Y—>P! is one member of the family. If Aut(Y, @, C) consists of Id, then
the Hurwitz scheme is unique, and (by a Galois descent argument) the
field of definition K (77) of the Hurwitz scheme is the smallest possible field



256 M. D. Fried

of definition for any cover ¥->P! having a description of its branch
cycles given by {o;}7. Although it is possible that no member of the
family of the Hurwitz scheme J will actually be defined over K(J),
nevertheless the intersection of the fields of definition of members of the
family will be K (7). As Theorem 1 and Corollaries 1 and 2 of [16] show,
there are many examples where K(J) = Q.

Our next example shows that, even if the conjectured form of

Riemann’s existence theorem were true, the field K , that results from
a triple (Y, ¢, K), has a very strong dependency on the branch cycles
{0;); of the cover ¥->PL

ExAMPLE 9. Suppose that G, 4G < §, (as in the notation above),
where G, contains the n-cycle (12...n). Let {o;}] be generators of @,
satisfying (5.4) and the additional condition that:

(5.5) o, = (12 ... 7).

If Y5 P! has a description of its branch eycles given by {¢;};; (¥, @)
is defined over K; and % (the branch point corresponding to o,) is
contained in K; then:

(56) K < K(¢,), where ¢, is a primitive nth root of 1.

This follows from Remark 1 (Section 1). In fact, if we denote the
group generated by o, by {s,), and the normalizer (in @) of {o,> by N (<{s,>),
we immediately obtain (from Galois theory):

(5.7) N({o,)) /{0,y G|@, is onto,

where y is given by the natural inclusion of N (<{s,>) in G.

On the other hand: if the conjectured form of Riemann’s existence
theorem were true, and if G and &, were such that (5.7) was not satisfied;
then there would exist covers of P! such that the field K would not satisty

(5.8)  G(K/K) is a quotient of N({(12...n)>)/{(12...7)>.

We show how to obtain pairs @ and G, that do not satisty (5.7).
Let XM =¢(12...2)), and let X ¢ =1,...,% denote the distinct
subgroups of G which are conjugate to XW. Let @, be the subgroup of
G (normal in @) generated by {X@}%_ . Then, we obtain an action of
G on {X}%_| by conjugation, and the stabilizer of X®, denoted G(X®),
is N({(12...n))). The map

(5.9) G(XW))G, (X5 6)a,

is onto, iff the orders of the left and right side of (5.9) are the same. In
turn, these orders are the same iff ¢, is transitive by conjugation of
(X,

D e e —
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Roger Howe gave the following example where y is not onto. Let
n = p*® where p is any prime. Let G be the p-sylow of S,. containing
(12...p°%. It is part of the generail p-group theOI:y (see [1]) that if H, < H
are p-groups, then there exists H with H, < H ﬁIH . In particular, if we

let G, be the smallest normal subgroup of G containing (12 ... p%), then
for a = 2 (so that G does not consist entirely of ((12...p%)>) G, 4G. If
+

a >3 (so that G, does not consist entirely of ((12...p%>), then the
smallest normal subgroup of G, containing {(12...p")) is properly con-
tained in G4. In particular, @, is not transitive on {X®}%_ . This concludes
our example. m

In gpite of Example 9, we feel that the Hurwitz scheme approach
will provide a very reasonable, precise conjectural form of the Riemann
existence theorem. This is taken up in [16], Section VII. For now, we as-
sume that such an existence theorem exists, and show how it relates to
the generalized Schur conjecture.

DErINITION 8. Let H be a transitive subgroup of S,, where we denote
the stabilizer of ¢ by H(z), ¢ =1,...,n. Let 1 <<s; <8, <... <s, be
integers. If H (1) has I; orbits of length s;,< = 1, ..., w on theset {2, ...,n},
we say that H is of stabilizer type {(s1;11); (95 0a)3 -5 (Su3 L)}

If the triple (Y, ¢, K) is a solution to the generalized Schur problem,
then

o S

(5.10) G, =G{K(Y)/K(PY)

is of stabilizer type, as above, with I, >2 for ¢ = 1, ..., %, and
A~

(5.11) G, AG(E(Y)/K(PY) = @

where G (1) leaves fixed no orbit of G4(1) on {2,..., n}.

If, in addition, we are looking to solve the Schur problem for rational
functions, then (by the Riemann—-Hurwitz formula) we consider the case
there exist generators {o;}]e¢G,, of G, such that

r

(5.12) [[o: =14,
and . =t
(.13) Dlind(o;) = 2(n—1).

Section 2 of this paper, [6] and Corollary 4 of [16] are contributions to
the computations needed to find generators satisfying (5.12) and (5.13).

We feel that Problems 1 and 3, and problems related to the concept
of decomposably stable (Definition 7) are best attacked by the Hurwitz
scheme approach; and whatever the outcome, they should provide in-
teresting data toward the more complete formulation of the generalized
Riemann existence theorem.
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