ℓ -adic Representations and the Regular Inverse Galois Problem Oberwolfach, April 15-21, 2018: Mike Fried, Emeritus UC Irvine PART 1: Nielsen classes and Galois closures of covers over **C** 1.a. Algebraic/Geometric Galois closure of $f: W \to \mathbb{P}^1_{\tau}$.

- $\hat{f}: \hat{W} \to \mathbb{P}^1_z$ factors through f; and it is a *Galois cover*. The group of those automorphisms is G_f .
- Construction from the fiber product of f, deg(f) = n times

$$(W)_f^{(n)} \stackrel{\text{def}}{=} \{(w_1, \dots, w_n) \in (W)^n \mid f(w_1) = \dots = f(w_n)\} \text{ over } \mathbb{P}_z^{1.0}$$

• Normalize, ${}^*W_f^{\{n\}}$ (nonsingular), in its function field; remove fat diagonal $\Delta_f^{\{n\}}$. Result has transitive S_n action. Take $\tilde{f}: \tilde{W}_f \to \mathbb{P}^1$, a component.

1.b. Conjugacy classes and Nielsen classes. Denote the conjugacy class of $g \in G_f$ by C_g .

- Geometric monodromy group: $G_f = \{g \in S_n | g \text{ preserves } \tilde{W}_f \}.$ Automatically $|G_f| = \deg(\tilde{f}) \implies$ Galois.
- Each branch point z_i of f gives a conjugacy class $C_i = C_{g_i}$ in G_f , i = 1, ..., r. It doesn't pick out g_i uniquely.
- Also gives arithmetic monodromy, \hat{G}_f :

 Consider components defined over a field K.¹

Analytic Geometry: Invert $f \mapsto \mathbf{g}$

Nielsen Classes, $Ni(G, \mathbf{C})$:

- $f: W \to \mathbb{P}^1_z$, $\deg(f) = n$; r distinct branch points z; $(G = G_f \le S_n, \mathbb{C}) \Leftrightarrow g \in G^r \cap \mathbb{C}$ so the following hold.
- Generation $-\langle \mathbf{g} \rangle = G$; and Product-one $-\prod_{i=1}^r g_i = 1$.
- Nielsen classes of (G, \mathbf{C}) covers (both sides up to equivalence):

Branch cycles:
$$\mathbf{\textit{g}} \in \text{Ni}(\textit{G}, \mathbf{C}) \Leftrightarrow \textit{f}_{\mathbf{\textit{g}}} : \textit{W}_{\mathbf{\textit{g}}} \to \mathbb{P}^{1}_{z}.$$

• Genus g_g of W_g : $2(\deg(f)+g_g-1)=\sum_{i=1}^r \operatorname{ind}(g_i)^2$

- $G \le S_n$ a group, **C**, r conjugacy classes: $g \in S_n$ with t disjoint cycles, its ind(g) = n t.
- Notation: For C, r conjugacy classes may be repeated.
 g ∈ G^r ∩ C means an r-tuple g has entries in some order in C.
 Denote group the entries of g generate by ⟨g⟩.
- Basic Assumptions: G is a transitive subgroup of S_n . Conjugacy classes, $\mathbf{C} = \{C_1, \dots, C_r\}$, in G are generating.

Dragging a cover by its branch points

- r unordered $\{z\} \subset \mathbb{P}^1_z$ points, minus locus where two meet: $U_r = \text{projective } r\text{-space } \mathbb{P}^r$ minus its discriminant locus (D_r) .
- Start: ${}_0f:{}_0W \to \mathbb{P}^1_z \Leftrightarrow {}_0\mathbf{g} \in \operatorname{Ni}(G,\mathbf{C}), \text{ branch points } {}_0\mathbf{z},$ Classical generators ${}_0\mathbf{P}$ of $\pi_1(\mathbb{P}^1_z \setminus \{\mathbf{z}_0\},z_0),$ $\pi_1(U_r,{}_0\mathbf{z}) \stackrel{\mathrm{def}}{=} H_r$, the Hurwitz monodromy group.
- Drag $_0\mathbf{z}$ and $_0\mathbf{P}$ to $_1\mathbf{z}$ along any path B in U_r . Form a trail of covers $_tf: _tW \to \mathbb{P}^1_z$ using $_t\mathcal{P} \mapsto {}_0\mathbf{g}, \ t \in [0,1]$.
- For B closed, $_1f$ depends only on $[B] \in H_r$.

For
$$B$$
 closed, $[B]=q_B\in H_r$ computing ${}_1\mathcal{P} o {}_0m{g}$ as ${}_0\mathcal{P} o ({}_0m{g})q_B^{-1}$

• Normalizer of G in S_n , permutating C: $N_{S_n}(G, C)$.

$$q_i: \mathbf{g} \stackrel{\text{def}}{=} (g_1, \dots, g_r) \mapsto (g_1, \dots, g_{i-1}, g_i g_{i+1} g_i^{-1}, g_i, g_{i+2}, \dots, g_r);$$

 $\mathbf{sh}: \mathbf{g} \mapsto (g_2, g_3, \dots, g_r, g_1); \mathbf{sh} \ q_i \ \mathbf{sh}^{-1} = q_{i+1}, \ i \ \text{mod} \ r-1.$
 $R = q_1 \cdots q_{r-1} q_{r-1} \cdots q_1.$

- \star Generators of H_r : $H_r = B_r/\langle R \rangle, H_r \stackrel{\text{def}}{=} \langle q_2, \mathbf{sh} \rangle$
- Inner equivalence: R forces $Ni(G, \mathbb{C})/G = Ni(G, \mathbb{C})^{in}$. ^{4a}
- Absolute equivalence: $Ni(G, \mathbb{C})/N_{S_n}(G, \mathbb{C}) = Ni(G, \mathbb{C})^{abs}$.

1.c. Hurwitz space components: † is an equivalence Genus of reduced Hurwitz spaces when r=4: $\mathcal{Q}'' \stackrel{\mathrm{def}}{=} \langle q_1 q_3^{-1}, \mathsf{sh}^2 \rangle$. $^{4\mathrm{b}}$

Fundamental group H_r acts on $Ni(G, \mathbb{C})^{\dagger} \Leftrightarrow \mathcal{H}(G, \mathbb{C})^{\dagger} \to U_r$.

- H_r orbits: Components of $\mathcal{H}(G, \mathbb{C})^{\dagger} \Leftrightarrow H_r$ orbits on $Ni(G, \mathbb{C})^{\dagger}$.
- Reduced equivalence: $f \sim \alpha \circ f : W \to \mathbb{P}^1_z$ for $\alpha \in \mathrm{PSL}_2(\mathbb{C})$. $\mathcal{H}(G,\mathbf{C})^\dagger/\mathrm{PSL}_2 \stackrel{\mathrm{def}}{=} \mathcal{H}(G,\mathbf{C})^{\dagger,\mathrm{rd}} \to U_r/\mathrm{PSL}_2 = J_r$. Reduced classes for r = 4:

$$\mathsf{Ni}(G,\mathbf{C})^{\dagger,\mathrm{rd}} \stackrel{\mathrm{def}}{=} \mathsf{Ni}(G,\mathbf{C})^{\dagger}/\mathcal{Q}''.$$

• $\mathcal{H}(G,\mathbf{C})^{\dagger,\mathrm{rd}} o J_4 = \mathbb{P}^1_j \setminus \{\infty\}$ that completes to $\overline{\mathcal{H}}(G,\mathbf{C})^{\dagger,\mathrm{rd}} o \mathbb{P}^1_j$ ramified over 0 (order 3),1 (order 2), ∞ .

A genus formula for r=4

Thm (Riemann-Hurwitz for *j*-line covers)

Component $\overline{\mathcal{H}}'$, of $\overline{\mathcal{H}}(G,\mathbf{C})^{\dagger,\mathrm{rd}} \leftrightarrow \textit{braid orbit, O, on Ni}(G,\mathbf{C})^{\dagger,\mathrm{rd}}$. Ramification, respectively over $0,1,\infty$, of $\overline{\mathcal{H}'} \to \mathbb{P}^1_i \leftrightarrow$

disjoint cycles of
$$\gamma_0=q_1q_2, \gamma_1=q_1q_2q_1, \gamma_\infty=q_2$$
 (cusps).

Genus of $g_{\bar{\mathcal{H}}'}$, appears from the formula

$$2(|O|+g_{\bar{\mathcal{H}}'}-1)=\operatorname{ind}(\gamma_0)+\operatorname{ind}(\gamma_1)+\operatorname{ind}(\gamma_\infty).^5$$

Genus of components for $Ni_4 \stackrel{\text{def}}{=} Ni(A_4, \mathbf{C}_{\pm 3^2})^{\text{in,rd}}$

- $A_4 = (\mathbb{Z}/2)^2 \times^s \mathbb{Z}/3 \le A_5$, $\mathbf{C}_{\pm 3^2}$ is two repetitions of the two classes of 3-cycles in $\mathbb{Z}/3$
- Thus, from the BCL the classes are a rational union
 ⇔ the Hurwitz spaces are defined over ℚ.
 - $_{\mathbf{c}}O_{i,j}^{k}$ indicates a γ_{∞} orbit; k is the cusp width. sh-incidence matrix entries are $|_{\mathbf{c}}O_{i,j}^{k}\cap(_{\mathbf{c}}O_{i',j'}^{k'})\mathbf{sh}|$.
- Next a list of γ_{∞} (cusp) orbits that show this sh-incidence matrix has two blocks.

Each cusp ${}_{\mathbf{c}}O_{i,j}^k$ has \mathbf{g} with entries $\{g,g^{-1}\}$ or $\{g,g\}$ resp. \mathbf{HM} in Ni_0^+ , or $\mathbf{D}(\mathrm{ouble})$ $\mathbf{I}(\mathrm{dentity})$ in Ni_0^{-1} .

Ni ₀ ⁺ Orbit	_c O _{1,1}	$_{\mathbf{c}}O_{1,2}^{2}$	$_{\mathbf{c}}O_{1,3}^{3}$
$_{\mathbf{c}}O_{1,1}^{4}$	1	1	2
$_{\mathbf{c}}O_{1,2}^{2}$	1	0	1
c $O{1,3}^{3}$	2	1	0
Ni ₀ Orbit	_c O _{2,1}	_c $O_{2,2}^1$	$_{\mathbf{c}}O_{2,3}^{1}$
$_{\mathbf{c}}O_{2,1}^{4}$	2	1	1
_c O _{2,2}	1	0	0
cO ¹ / ₂ 3	1	0	0

•
$$_{\mathbf{c}}O_{1,1}^{4} = (g_{1,1})^{q_{2},\bullet}, \mathbf{g}_{1,1} = ((123), (132), (134), (143))$$

 $_{\mathbf{c}}O_{1,3}^{3} = (\mathbf{g}_{1,3})^{q_{2},\bullet}, \mathbf{g}_{1,3} = ((123), (132), (143), (134)).$

•
$${}_{\mathbf{c}}O_{2,1}^4 = (g_{2,1})^{q_2, \bullet}, \mathbf{g}_{2,1} = ((123), (134), (124), (124)).$$

 ${}_{\mathbf{c}}O_{2,2}^1$ and ${}_{\mathbf{c}}O_{2,3}^1$ seeded by DIs repeated in positions 2 and 3.

Read genus and reduced fine moduli⁷ from the blocks Denote $(\gamma_0, \gamma_1, \gamma_\infty)$ on Ni_0^+ (resp. Ni_0^-) orbit by $(\gamma_0^+, \gamma_1^+, \gamma_\infty^+)$ (resp. $(\gamma_0^-, \gamma_1^-, \gamma_\infty^-)$).

- Fixed points of γ_0 and γ_1 appear on the diagonal. Diagonal entries for ${}_{\mathbf{c}}O_{1,1}^4$ and ${}_{\mathbf{c}}O_{2,1}^4$ are nonzero; γ_1 (resp. γ_0) fixes 1 (resp. no) element of ${}_{\mathbf{c}}O_{1,1}$. Neither of γ_i , i=0,1, fix any element of ${}_{\mathbf{c}}O_{2,1}^4$.
- Cusp widths over ∞ add to the degree 9 (resp. 6) to give $\operatorname{ind}(\gamma_0^+)=6$, $\operatorname{ind}(\gamma_1^+)=4$, $\operatorname{ind}(\gamma_\infty^+)=6$ $\operatorname{ind}(\gamma_0^-)=4$, $\operatorname{ind}(\gamma_1^-)=3$, $\operatorname{ind}(\gamma_\infty^-)=3$.
- The genus of $\bar{\mathcal{H}}_{0,\pm}$ is $g_{\pm}=0$:

$$2(9+g_{+}-1) = 6+4+6 = 16$$
 and $2(6+g_{-}-1) = 4+3+3 = 10$.

PART 2: The $\mathbf{R}(\text{egular})\mathbf{I}(\text{nverse})\mathbf{G}(\text{alois})\mathbf{P}(\text{roblem})$ and $\mathbf{M}(\text{odular})\mathbf{T}(\text{ower})\mathbf{s}$

- Frattini cover: $\psi: H \to G$; if $H^* \leq H$ and $\psi(H^*) = G \Longrightarrow H^* = H$. ℓ -perfect: $\ell||G|$, but G has no \mathbb{Z}/ℓ quotient.
- Problem: Most groups are not like simple or solvable.
- Example: Take G, ℓ -perfect and centerless: $\exists \nu(G,\ell) > 0$ (> 1, outside supersolvable) and an extension

$$1 o (\mathbb{Z}_\ell)^{
u(G,\ell)} o _\ell ilde{\mathsf{G}}_{\mathsf{ab}} {\overset{_\ell ilde{\psi}_{\mathrm{ab}}}{\longrightarrow}} \mathsf{G} o 1: {}^8$$

 $_{\ell} \tilde{G}_{ab}$ universal for ℓ -Frattini covers of G with abelian kernel.

• Subex.: Even for $G=A_5$, and where v(G,2)=5, for no k>0 has $_2\tilde{A}_{5,ab}/2^k\ker(_\ell\tilde{\psi}_{ab})=\frac{k}{2}A_5$ been realized over $\mathbb{Q}.^9$

Which is more important/serious/...?: Cases similar to $(G,\ell)=(D_\ell,\ell=\ell)$ or to $(A_5,\ell=2)$. MT definition

- Assume r conjugacy classes, ${\bf C}$ of G; elements of order ℓ' . Schur-Zassenhaus lifts these classes uniquely to ${}_{\ell} \tilde{G}_{\! ab}.$
- Makes sense of ${}_{\ell}\mathbb{H}(G,\mathbf{C})^{\mathrm{in,rd}} \stackrel{\mathrm{def}}{=} \{\mathcal{H}({}_{\ell}^{k}G,\mathbf{C})^{\mathrm{in,rd}}\}_{k=0}^{\infty}.$ MT: Projective sequence of components on ${}_{\ell}\mathbb{H}(G,\mathbf{C})^{\mathrm{in,rd}}.^{9}$
- $_{\ell}\mathbb{H}(D_{\ell}, C_{2^4})^{\mathrm{in,rd}} = \{X_1(\ell^{k+1})\}_{k=0}^{\infty} \text{ for } \ell \text{ odd.}$
- Example: ${}_2\tilde{A}_4$ is the pullback of $A_4 \leq A_5$ to ${}_2\tilde{A}_5$. $(\mathbb{Z}_2)^5$: As A_4 (but not A_5) module has $(\mathbb{Z}_2)^2$ as a quotient. $\mathcal{H}(A_5, \mathbf{C}_{3^4})^{\mathrm{in,rd}}$ has one genus 0 component. 10

Why $\mathcal{H}(A_4,\pm \mathrm{C}_{3^2})^{\mathrm{in,rd}}$ has two components Commutator central ext. $\psi: H \to G$: $\ker(\psi) = [H,H] \cap \ker(\psi)$.

- ullet Commutator Central extension ψ is automatically Frattini. 11
- Universal central extension, \hat{A}_4 , of A_4 is pullback of $A_4 \leq A_5$ to $\{\pm 1\} \to \operatorname{SL}_2(\mathbb{Z}/5) \to \operatorname{PSL}_2(\mathbb{Z}/5) = A_5$.
- $O_{m{g}}$ braid orbit *Lift invariant*, $\hat{m{g}} \in SL_2(\mathbb{Z}/5)^4 \cap \mathbf{C}_{\pm 3^2}$ over $m{g}$:

$$s_{\psi}(O_{\mathbf{g}}) = \prod_{i=1}^{r} \hat{g}_{i} \stackrel{\text{def}}{=} \prod (\hat{\mathbf{g}}).$$

If $m{g} \in \mathsf{Ni}_0^+(A_4, \mathbf{C}_{\pm \mathbf{C}^2})$ an HM rep., then $s_{\psi}(O_{m{g}}) = +1.^{12}$

• Lift invariant correspondence: Ni(A_4 , C_{+3^3}) \Leftrightarrow Ni $^-$ (A_4 , $C_{\pm 3^2}$) $\mathbf{g}' = (g_1', g_2', g_3') \Leftrightarrow ((g_1')^{-1}, g_2', g_3', (g_1')^{-1}) \text{ (DI rep.)}$ Then, $s_{\psi}(O_{\mathbf{g}'}) = s_{\psi}(O_{1,4\mathbf{g}}) = -1$. Fried-Serre formula: Covers in Ni(A_4 , $C_{\pm 3^3}$) abs have genus 0, so lift invariant is $(-1)^3$. 13

Relation to the **RIGP** over \mathbb{Q} : Dihedral groups, ℓ odd

- If B>0 and \exists a $\mathbb Q$ regular realization of $D_{\ell^{k+1}}$ for each $k\geq 0$ with $\leq B$ branch points, then (with Pierre Dèbes):
- Thm: $\exists r \leq B$ with \mathbb{Q} points on every $\ell \mathbb{H}(D_{\ell}, \mathbb{C}_{2^r})$ MT level: $\Leftrightarrow \exists d < \frac{B-2}{2}$ and an ℓ^{k+1} cyclotomic point on a hyperelliptic jacobian (over \mathbb{Q} ; varying with k) of dimension $d, k \geq 0$.
- Torsion Conjecture: This is not possible.
- B-free Conjecture: Don't stipulate any B. For each ℓ^{k+1} there is such a point for some $d = d_{k,\ell}$.

Yet, no one has found them beyond r = 4 and $\ell = 7$.

Analog of
$$D_{\ell^{\infty}}$$
 for G , an ℓ -perfect group $(\mathbb{Z}_{\ell})^{\nu(G,\ell)} o {}_{\ell} \tilde{G}_{\mathrm{ab}} \overset{\ell^{\psi}}{\longrightarrow} G$, $\ker({}_{\ell} \tilde{\psi})$ a $\mathbb{Z}_{\ell}[G]$ module.

- If B>0 and $\exists \ \mathbb{Q}$ regular realization with $\leq B$ branch points of ${}^k_\ell G = \tilde{G}_{ab}/\ell^k \ker(\ell^{\widetilde{\psi}})$ for each k:
- Thm: $\Leftrightarrow \exists \ r < B$ conjugacy classes \mathbb{C} , ℓ' , and a \mathbb{MT} $\{\mathcal{H}_k\}_{k=0}^{\infty} \leq \ell \mathbb{H}(G, \mathbb{C})$ with $\mathcal{H}_k(\mathbb{Q}) \neq \emptyset, k \geq 0$.
- Main Conj: High MT levels have general type + no ℚ points.
- Thm: (Fried, Cadoret-Tamagawa)True for r = 4. Cadoret-Dèbes: Torsion Conj. $\Longrightarrow \mathbb{Q}$ statement of Main Conj. ¹⁴

PART 3: The O(pen) I(mage) T(heorem) and MTs 3a. Eventually ℓ -Frattini sequences and a weak OIT.

- Eventually (ℓ)-Frattini sequence of group covers, $\{H_k\}_{k=0}^{\infty}$ $\exists k_0$ with $H_{k_0+k} \to H_{k_0}$ Frattini (resp. ℓ -Frattini) for $k \ge 0$.
- OIT Conj.: For a MT $\{\mathcal{H}_k\}_{k=0}^{\infty} \leq_{\ell} \mathbb{H}(G, \mathbb{C}), \ \Phi_k : \mathcal{H}_k \to J_r$, with $H_k = G_{\Phi_k}$ (geom. monodromy of Φ_k), then ${}_{\ell}G_i(\Phi) \stackrel{\mathrm{def}}{=} \lim_{\infty \leftarrow_k} H_k$ is eventually ℓ -Frattini. 15
- Weak OIT Conclusion: Then, the decomposition group $_{\ell}\hat{G}_{j'}(\Phi)$ of a general $j' \in \bar{\mathbb{Q}}$ equals $_{\ell}\hat{G}_{j}(\Phi)$ (arith. mon.).

3.b. Comparing Serre's system with $\operatorname{Ni}_{\ell^{k+1},3} \stackrel{\operatorname{def}}{=} \operatorname{Ni}(G_{\ell^{k+1},3} \stackrel{\operatorname{def}}{=} (\mathbb{Z}/\ell^{k+1})^2 \times^{\mathfrak{s}} \mathbb{Z}/3, \mathbf{C}_{\pm 3^2}), k \geq 0$

- In Serre's system, $\operatorname{Ni}_{\ell^{k+1},2} \stackrel{\mathrm{def}}{=} \operatorname{Ni}(\mathbb{Z}/\ell^{k+1} \times^{s} \mathbb{Z}/2, \mathbf{C}_{2^4}), k \geq 0$: 2 types of decomposition groups: CM and GL_2 . 16
- Successes of Serre's original book:
 - Interpreting complex multiplication on modular curve pts.
 - Used Tate curve at "long" cusp on $X_0(\ell)$ for conclusions on nonintegral $j' \in \overline{\mathbb{Q}}$, but complete proof needed Falting's.¹⁷
- Small Heisenberg central extension $(\mathbb{Z}/\ell^{k+1})^2 \times^s \mathbb{Z}/3$, $\ell > 3$:

$$_{\ell^{k+1}}\mathbf{H} = \left\{ egin{pmatrix} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{pmatrix} \mid x,y,z \in \mathbb{Z}/\ell^{k+1}
ight\}$$

• [FrH16,Prop. 4.18] With $\psi:_{\ell^{k+1}}\boldsymbol{H}\times^{s}\mathbb{Z}/3\to G_{\ell^{k+1},3}$: lift inv. formula for $\boldsymbol{g}\in \operatorname{Ni}(\ell^{k+1},3)$ $(\ell=2\colon Q_8 \text{ replaces }_{\ell}\boldsymbol{H}).^{18}$

3.c. MT example, circumventing a Grothendieck objection.

- Let $K_\ell = \frac{\ell \pm 1}{6}$, $\ell \equiv \mp 1 \, \text{mod } 3$, $\ell > 3 \, \text{prime.}$ [FrH16, Thm. 5.2]:
- Thm[Level 0 Main Result] For $\ell > 3$ prime and level k = 0:
 - K_{ℓ} braid orbits with trivial (0) lift invariant. All **HM** orbits.
 - Braid orbits with nontrivial lift invariant consist of DI cusps.
 each such braid orbit distinguished by its lift invariant.

All **DI** components are conjugate over $\mathbb{Q}(e^{2\pi i/\ell})$.

• Extend OIT $_{\ell}G_{j}(\Phi)$ Conj.: For a decomposition group of any $j' \in \bar{\mathbb{Q}}$ (projective sequence over $j' \in \bar{\mathbb{Q}}$)

$$_{\ell}\hat{G}_{i'}(\Phi)\cap_{\ell}G_{i}(\Phi)$$
 is eventually ℓ -Frattini. ¹⁹

3.d. Comments on the program

- Motivic nature: Braid orbits on Hurwitz spaces break it into the Hurwitz version of motivic – MT – pieces. The result above shows different behaviors come with different pieces.
- [FrH16] describes all components/definition fields of MTs of the system $\{Ni_{\ell^{k+1},3}\}_{k=0}^{\infty}$: "Classically" interpreting how the HM and DI orbits intermix geometrically toward an OIT.
- The introduction noted in [Fr18] describes famous classical problems whose solutions were equivalent to well-understood cases in Serre's OIT, through Nielsen class identifications.
- An OIT goal aims at Hilbert's Irreducibility Theorem writ large. Making decomposition groups reflect geometry rather than accidents, as in the theory of Complex Multiplication.

- [Fr94] M. D. Fried, Review of J.-P. Serre's Topics in Galois Theory, with examples illustrating braid rigidity, BAMS **30** #1 (1994), 124–135. ISBN 0-86720-210-6.
- [FrV91] and H. Völklein, *The inverse Galois problem and rational points on moduli spaces*, Math. Ann. 290, (1991) 771–800.
- [Fr10] , Alternating groups and moduli space lifting Invariants, Israel J. Math. **179** (2010) 57–125.
- [Fr16] and M. van Hoeij, *The small Heisenberg group and l-adic representations from Hurwitz spaces*, prepint (2016).
- [Fr18] , Monodromy, ℓ -adic representations and the Regular Inverse Galois Problem, preprint (has a conf. vol. Introduction).
- [Se68] J.P. Serre, Abelian ℓ -adic representations and elliptic curves, New York, Benj. Publ., 1968.
- [Se92] –, *Topics in Galois theory*, no. ISBN #0-86720-210-6, Bartlett and Jones Publishers, notes taken by H. Darmon, 1992.
- [Se97b] –, *Unpublished notes on l-adic representations*, I saw a presentation during Oct. 97 at Cal Tech; it has pieces produced by various notetakers over a long period of time. He sent me these.