
Connectedness of families of sphere covers
of a given type

Michael D. Fried

Abstract. There are now many applications of the following basic problem:
Do all covers of the sphere by a compact Riemann surface of a “given type”
compose one connected family? Or failing that, do they fall into easily dis-
cernible components? The meaning of “given type” usually uses the idea of a
Nielsen class — a concept for covers that generalizes the genus of a compact
Riemann surface. The answer has often been yes, and that answer has fig-
ured in many problems from the connectedness of the moduli space of curves
of genus g (geometry) to Davenport’s problem (arithmetic) and the genus 0
problem (group theory). This survey arose in response to the following special
case asked by Brian Osserman. Do all genus zero covers of the sphere with r
specific pure-cycles as branch cycles form one connected family?
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1. Formulation of the problem in Nielsen Classes

1.1. Source of connectedness problems. The genus of a curve (compact,
connected, Riemann surface) discretely separates decidely different algebraic rela-
tions in two variables to focus us on the connected moduli space Mg. Yet, direct
modern applications feature a data variable (function) on the curve. This data
variable produces a monodromy group G embedded as a transitive subgroup of a
symmetric group Sn, with n the degree of the data variable.

1.1.1. Stage [I]: Using Conjugacy classes to detect variable relations. A data
variable also produces r ≥ 2 (the case r = 2 is trivial compared to the others)
conjugacy classes, denoted below C = C1, . . . ,Cr in G. You can pass a conjugacy
class C in G to Sn, interpreting the result CSn as a disjoint cycle type. This map
can be many-to-one. For example, as in §B.2, the projective linear group over a
finite field has several conjugacy classes of cycles acting on the points of projective
space. Still easier, any product of disjoint cycles of distinct odd lengths in Sn (for
example g = (1)(2 3, 4)(5 6 7 8 9) with lengths 1, 3, 5 in S9) has two representing
conjugacy classes in An. The Riemann-Hurwitz formula recovers the genus of the
curve from CSn (as in (2.1)).

Now we discuss why a data variable z on a Riemann surface X induces a re-
lation. One consequence of Riemann’s Existence Theorem (RET) is that there is
another function w on X so that z and w generate all meromorphic functions on
X. The points of X, excluding a finite number then identify with the pairs (z, w)
modulo a nontrivial relation f(z, w) = 0. The simplest case is when X itself has
genus 0, and (again from Riemann), there is a w giving z as a rational function
in w (at least over C). This isn’t a trivial case: As §B.1 reminds, many renown
theorems in number theory are instances asking for concise listing of rational func-
tions f(w) ∈ Q(w) with the following property. Their reductions modulo infinitely
many primes are one-one maps on the projective line over the residue field having
the now ubiquitous use of encoding data into finite fields for protecting it.

Applications generalizing — Davenport covers §B.2 — give universal relations
among among Poincaré series (counting functions). These problems epitimize ask-
ing of all two variables relations between data, which have a particular property.
As our examples hint, some skill is involved in translating the original problem into
data about groups and conjugacy classes, basically a version of Galois theory. So,
in attacking some application, Stage [I] is finding which pairs (G,C) could give
the desired algebraic relations. My examples have a version over any number field
— the finite fields appear by reduction modulo primes of the number field. A very
successful conclusion to Stage [I] would consists of listing only those pairs (G,C)
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for which a solution to the problem over some number field would be realized by
the group-conjugacy class pair.

1.1.2. Stage [II]: Putting structure in relations. Solving a data problem P
posed by these examples requires collation: Cataloging usefully algebraic relations
that solve the problem. An effective technique starts with finding for each pair
(G,C) a list of parameter spaces SP for the desired relations. That is, points of
these spaces are pointers to solutions of the original data problem. There is a
recognition problem. If someone gives you a set of algebraic relations with a data
variable, can you detect if one in collection SP contains it?

The spaces that have worked are versions, depending on our needs for this data
variable, of Hurwitz spaces. The data above, r ≥ 3 conjugacy classes C in the data
variable monodromy G defines a Nielsen class (§1.2), a generalization of conjugacy
class. The spaces to which this gives rise depend on any equivalence relation we
put on the data problem solutions. For example, in looking for unique solutions
we might equivalence two data variables if they differ by composition with a linear
fractional transformation: reduced equivalence. This gives a space of dimension
r − 3. When r = 4, for example, this space is a curve and often we can be precise
things about it. No matter what is r, this is what you would first want to know:

(1.1a) What are the geometric components of the space associated to (G,C),
its connected pieces; and

(1.1b) what are the definition fields of these components.

When r = 4, the following information has often been sufficient to nail the nature
of the solutions.

(1.2a) What are the genuses of the components?; and
(1.2b) what are the cusps of each component?

Near completion of Stage [I] we might know solutions to the problem exist
over some number field. We may know we have limited all pairs (G,C) to those
whose Nielsen classes contain solutions. Hurwitz spaces, however, need not be
connected and while solutions may exist with varying number fields, many problems
require algebraic relations over Q, the regular version of the Inverse Galois Problem
foremost among them (§B.3). As nonreduced Hurwitz spaces are nonsingular, they
won’t have Q points unless they have Q components. So minimally we need to
detect the Q components. That lands us at Stage [III]: Decide if it is possible to
list the points on these parameter spaces that define the solutions over a given field
to the original problem.

We concentrate on Stage [II], and especially questions (1.1). Question (1.1a)
on connectedness has a combinatorial group formulation, and from its answer we
often divine how to answer to (1.1b). Further, a description of cusps as in (1.2b) is
an even easier form of group theory. This works for all values of r ≥ 4 (as in §A.2).
Yet, when r = 4 the spaces of SP will be upper half-plane quotients covering the
j-line, whose compactifications will have geometric cusps over j = ∞. This case
allows rich comparison with the modular curves they generalize.

1.1.3. Liu-Osserman pure-cycle Nielsen class problems. Problem 2.2 (posed by
Fu Liu and Brian Osserman [LOs06]) restricts the Nielsen classes to the case G
is An or Sn, the genus of representing covers is 0, and the conjugacy classes are
pure-cycles — each the class of one disjoint cycle. The context for the topic comes
alive with related generalizations of their question.
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§3 reminds of the whole genus 0 problem. This asks which groups G can appear
as monodromy groups of a genus 0 data variable. The case r = 4 has always
stood out. It requires much more than the topic of dessin d’enfants (three branch
point covers) because now there is significant variation of the algebraic relations.
For example, a formulation of modular curves has often entered in solutions of
problems like those in the appendices (§5). Further, the Liu-Osserman special cases
(2.2) have a significant modular curve-like property: Their reduced Hurwitz spaces
embed naturally in P1

j × P1
j (§5.2). Here P1

z
def= Cz ∪ {∞} refers to the Riemann

sphere uniformized, with by a variable z: The same variable used in a first course
in complex variables. So, P1

j refers to the copy of the Riemann sphere called the
j-line from (usually the end of) 1st year graduate complex variables (§5.1).

Our main examples of (2) go with the most modern applications, where the
disjoint cycles lengths are all odd, so G = An for some n. Let d1, . . . , dr be the
lengths of the disjoint cycles. For this we often use the symbol d1 · · · dr, with
repetitions repeated as exponents. Detailed understanding of the special case 3r,
supports many results going beyond the restriction the genus is 0 (§4).

For the first time we also see the role of Schur multipliers, in the case of An

appearing in the form of a half-canonical class. In turn, this alternating group
example epitimizes a strengthening of the Conway-Fried-Parker-Völklein result (§6)
whose gist is that if C repeats each class in its support sufficiently many times, then
we know precisely the Hurwitz space components and their definition fields. This
points to a conceptual affirmative answer to many problems generalizing those in
[LOs06].

1.1.4. The Main Conjecture on Modular Towers and the Strong Torsion. We
think the most compelling application is to MTs. Suppose a prime p divides |G|
but not d1 · · · dr, and each di is repeated an even number of times. A special case of
a general result then says the Nielsen class defines a projective system of nonempty
reduced Hurwitz spaces for which we temporarily use the notation {Hd1···dr,p,k}∞k=0.

Any projective system of components on these spaces is called a MT, and we
say it is defined over a number field K if all spaces with their system of maps has
definition field K. This construction works much more generally, and it leads to
a statement with this rough paraphrase: Projective systems of modular curves for
the prime p are to the dihedral group Dp as MTs are to all p-perfect finite groups
(more precisely stated in §B.4). The following statement is only serious if a MT
has definition field K for some number field K.

Conjecture 1.1 (MCMT). Let {H′
k}∞k=0 be a MT over a number field K.

Assume L is a number field containing K. Then, for k large, H′
k(L) is empty.

Cadoret has shown the Strong Torsion Conjecture (STC) on abelian varieties
implies Conj. 1.1. There has not been much progress on the STC, beyond the
famous case of elliptic curves called the Mazur-Merel Result. So, we are glad to
have that tools to check the MCMT from group theory and geometry in special
cases. When r = 4 there has been considerable recent progress on the MCMT, and
the results of Liu-Osserman allow us to test (and sometimes prove) it in myriad
cases (§5.2.1). Each case reflects on the STC and the RIGP. Our greatest motivation
for extending results from [LOs06] come from this topic.

1.2. Braid group actions on Nielsen classes. §1.2.1 defines Nielsen classes
from the data of r conjugacy classes in group G, the basic objects on which the
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braid group Br acts. §1.2.2 gives notation for subgroups of B4 quotients that make
precise the case r = 4. Here reduced Hurwitz spaces are rich generalizations of
modular curves. The comparison has been illuminating in both directions. Finally,
§1.2.3 gives an overview of how our examples work.

1.2.1. Nielsen classes and braid groups. For ggg
def= (g1, . . . , gr) ∈ Gr we use the

following conditions, collectively phrased as ggg generates (G) with product-one.

(1.3a) Generation — 〈g1, . . . , gr〉 = G; and
(1.3b) product-one —

∏
g1 · · · gr

def= Π(ggg) = 1.

Also, ggg defines a set C (with multiplicity) of conjugacy classes in G. Given r
conjugacy classes C, ggg ∈ C means ggg defines C. Example:

(1.4) gggHM = ((1 2 3), (1 3 2), (1 4 5), (1 5 4))

generates A5 with product-one, and defines C34 , the repetition of the 3-cycle con-
jugacy class with multiplicity 4.

Definition 1.2. For g ∈ G, define the Nielsen class (of (G,C)):

{ggg ∈ C | ggg generates with product-one} def= Ni(G,C).

A combinatorial braid group Br = 〈Q1, . . . , Qr−1〉 naturally acts on Ni(G,C)
with the twisting action of the generators illustrated as here:

Q2 : ggg �→ (g1, g2g3g
−1
2 , g2, g4, . . . , gr).

Check: The action of Q(r−1) def= Q1 · · ·Qr−1Qr−1 · · ·Q1, conjugates ggg by g1. In gen-
eral, applying all conjugates of Q(r−1) in Br to ggg gives the collection of conjugates

{ggggg−1 def= (gg1g
−1, . . . , ggrg

−1)}g∈G

of ggg. The group formulation of our main problem is to decide what are the orbits
of Br on Nielsen classes. It simplifies our problem (especially the cases r = 3 and
4) to consider inner Nielsen classes Ni(G,C)in, the quotient Ni(G,C) mod G. On
this set Br acts through Hr, the Hurwitz monodromy group: the combinatorial
group quotient of Br by the relation Q(r−1) — on inner Nielsen classes.

Typically we denote the image in Hr of Q ∈ Br in Hr by q whenever this helps
explain in which group we are operating. Significantly, Hr is the fundamental group
of a space many mathematicians use: The set Ur of monic polynomials of degree
r with no repeated roots. All the Hurwitz spaces that appear in this paper are
thereby naturally presented as covers either of Ur, or of its quotient by an action of
PGL2(C), the group of linear fractional transformations. The corresponding covers
of Ur/PGL2(C) are reduced Hurwitz spaces. We as well are asking about their
connected components. Comments on forming these spaces are in App. A.1.

1.2.2. Cusps when r = 4. When r = 4, reduced Hurwitz spaces are upper half-
plane quotients covering the j-line, ramified (in our normalization) only at 0, 1. So,
they have natural compactifications over P1

j with cusps over j = ∞. The exposition
accepts these facts without giving all details. Still, we will compare examples with
modular curve cusps using the group M̄4 below.

A graphic aspect appears in our examples from the sh(ift)-incidence matrix, a
pairing on reduced Hurwitz space cusps. We start with how group theory interprets
cusps using observations in H4 coming from the braid group relations from B4.
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The twist action of H4 = 〈q1, q2, q3〉 generators on ggg ∈ Ni(G,C)abs is above.
Here is the respective effect of q1 and q2 on gggHM in (1.4):

((1 3 2), (1 2 3), (1 4 5), (1 5 4)) and ((1 3 2), (3 4 5), (1 2 3), (1 5 4)).

As with modular curves, when r = 4, much data about the space attached to
an H4 orbit comes from cusps. Two groups figure in the definition of cusps:

(1.5a) Q′′ = 〈q1q
−1
3 , (q1q2q3)2〉 (Klein Image), a normal subgroup of H4; and

(1.5b) Cu4
def= 〈q1q

−1
3 , (q1q2q3)2, q2〉 = 〈Q′′, q2〉 (Cusp group).

The group M̄4
def= H4/Q′′ is actually PSL2(Z). [BF02, §2.4.2] has normaliza-

tions that identify the monodromy generators of the j-line covers from a Nielsen
class. These are images in M̄4 of the following three elements:

(1.6) q2 �→ γ∞ (local cusp generator); q1q2q3 (shift) �→ γ1 (order 2, for rami-
fication over j = 1); q1q2 �→ γ0 (order 3, for ramification over j = 0).

We can see these orders from the braid relations. Example for γ0: Use the
braid relation q1q2q1 = q2q1q2 mod Cu4, q1 = q3 mod Cu4, and 1 = q1q2q3q3q2q1

(image of Q(2) above). Then,

1 = q1q2q1q1q2q1 = q1q2q1q2q1q2 = (q1q2)3 = γ3
0 mod Cu4.

The definition of an inner reduced Nielsen class is the set given by the quotient
action Ni(G,C)in/Q′′ def= Ni(G,C)in,rd. The orbits of M̄4 on Ni(G,C)in,rd corre-
spond one-one with the orbits of H4 on Ni(G,C)in, and the lengths of the orbits
are the degrees of the corresponding reduced space components over the j-line.

We give the the cusps for the elementary modular curves X0(pk+1) and X1(pk+1)
(p odd), defined respectively as compactifications of quotients of the upper half-
plane H by the respective congruence subgroups:

Γ0(pk+1) def= {
(

a b
c d

)
≡

(
a b
0 d

)
mod pk+1; and

Γ1(pk+1) def= {
(

a b
c d

)
≡

(
1 b
0 1

)
mod pk+1.

Classically you list cusps by selecting good coset representatives and then com-

puting γ∞
def=

(
1 1
0 1

)
orbits on them. §A.2 shows how to list these cusps in the

framework of Nielsen classes, and then §A.3 gives examples of nonmodular curves
where you would be hard-pressed to find a classical approach.

1.2.3. Example rubric. We can label pure-cycle Nielsen classes as follows. Put
in the distinct integers d∗1 < ... < d∗s that appear as disjoint cycle lengths. If, how-
ever, all these lengths are odd, and d∗s = n−1 (n even) or n (n odd), then you might
have to consider two conjugacy classes respectively referred to as d∗s(1) and d∗s(2).
Now consider just Nielsen classes with support in d ∗1 · · · d∗s: The corresponding
conjugacy classes appear with multiplicity, say respectively, (m1, ..., ms). Denote
this Nielsen class Niddd∗,mmm. The tacit assumption is this: The group G is An if all the
d∗i s are odd, and otherwise Sn. We state results for both cases, though concentrate
on the former case as justified by its many applications and its educative value, for
this is where interesting invariants and distinguishing the cases of two — versus
one — Hurwitz space component(s) arise in clear abundance.

Fix odd d ∗1 · · · d∗s, and consider on the set

Dd∗
1 ···d∗

s

def= {mmm ≥ (1, 1, . . . , 1) | d∗m1
1 · · · d∗ms

s }.
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It makes sense to consider an alternative to Niddd∗,mmm, where we replace An by the
nonsplit degree two to extension Spinn → An. For n = 5, for example, the natu-
ral map SL2(Z/5) → PSL2(Z/5) represents this cover is represented by identifying
A5 with PSL2(Z/5). As in §??, consider the odd order conjugacy classes that lift
d ∗1 · · · d∗s to Spinn by the same symbol. Then denote the Nielsen class by substi-
tuting Spinn for An by Nispddd∗,mmm. This gives a natural one-one (but not necessarily
onto) map Nispddd∗,mmm → Niddd∗,mmm. To this map we associate three possible symbols: ⊕
if it is onto,  if Nispddd∗,mmm is empty, and ⊕ if neither of the first two happen. If
the symbol attached to mmm is ⊕, then there must be at least two braid orbits on
Niddd∗,mmm (two Hurwitz space components). Applying Conway-Fried-Parker-Völklein
(C-F-P-V, §B.3) to this particular case says that if all the mi s are suitably large,
there are exactly two braid orbits on Niddd∗,mmm(two Hurwitz space components; one
on Nispddd∗,mmm) and these two components are represented by the symbol ⊕. There
are two improvements here on this general result which is blind to what is G or C.
For fixed d ∗1 · · · d∗s:

(1.7a) There is an algorithm giving the precise mmm s for each of the symbols ⊕,
 and ⊕ (Thm. 4.1).

(1.7b) There is evidence the symbol tells precisely which component possibil-
ities occur.

In §4 we also do this for the case where the d∗i s include some even integers,
but then you replace Spinn by the representation cover of Sn. If we knew that this
analog determined the components (braid orbits) exactly, that would be the exact
analog of [Fri06b, Thms 1.2 and 1.3] for the case d ∗1 · · · d∗s is 3 — Nielsen classes
of 3-cycles which is the most precise version of (1.7b) in this case.

Notice, however, in any case, the analog of Figure 1 depends on knowing which
lifting invariant values occur for which mi s. I can give a serious result when all the
d∗i s are odd precisely because I can use a trick to apply [Fri06b, Thm. 1.3]. That
is the one original result I’m putting in this survey. This is what I meant when I
said I was using the Fried-Serre formula. This is one kind of generalization of the
Fried-Serre formula (something I flirted with in the Bailey-Fried paper).

[§5 strengthens [LOs06, ] (the genus now is 0) in the case r = 4 to give test
cases for the Main Conjecture on Modular Towers. The result here is that the cusps
are all 2′ cusps and then it inspects which of those cusps have 2′ cusps above them
at level 1.]

Example 1.3 (Dihedral and Alternating cases). If G = Dpk+1 with p odd, and
C∗ = {C2} (conjugacy class of an involution), then i �→ C2ri is one-one and onto,
with the ri s running over all even integers ≥ 4. Also, Hrd

i identifies with the space
of cyclic pk+1 covers of hyperelliptic jacobians of genus ri−2

2 [?, §5].
If G = An with C∗ = {C3}, class of a 3-cycle, then i �→ C3ri with ri ≥ n

is two-one. Denote indices mapping to r by i±r . Those covers in Hi±r
are Galois

closures of degree n covers ϕ : X → P1
z with 3-cycles for local monodromy. Also,

write the divisor (dϕ) of the differential of ϕ as 2Dϕ. Then, ϕ ∈ Hi+r
(resp. Hi−r

) if
the linear system of Dϕ has even (resp. odd) dimension; it is an even (resp. odd) θ
characteristic. For ri = n − 1 the map i �→ C3ri is one-one.

Together with the 3-cycle case what emerges is that all examples are as con-
nected as they can be. I always wondered why, and the alternating group and
3-cycles paper gives must to ponder going beyond the genus case.
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At the minimum you will get from it more evidence that your problem has
much application and is true in greater generality than you have first conjectured
– though we must still see on that. There is a statement in the alternating groups
paper I sent previously that will play a role in my coming essay. It’s forerunner was
used in a paper with Helmut Voelklein that appeared in the Annals in 1992 which
guides a lot of proven cases of connectedness of these spaces.

2. The Liu-Osserman problem

Call a product of disjoint cycles in Sn is pure-cycle if it has exactly one disjoint
cycle of length exceeding one.

We say of a Nielsen class Ni(G,C)abs it is pure-cycle if all conjugacy classes
are pure-cycle. Should we want to indicate a pure-cycle has length d, we refer to it
as a d-cycle. Often we assume G ≤ Sn is a transitive subgroup. Then, we say the
Nielsen class pure-cycle and transitive, and apply these words to the covers they
produce from RET. For such it is often convenient to indicate the Nielsen class by
Ni(G,Cd1···dr )

abs if d1, . . . , dr are the lengths of the pure-cycles.

2.1. Genus formulas. If G is transitive, there is a necessary condition that
Ni(G,C)abs is nonempty:

(2.1) The genus g = gd1···dr

def=
∑r

i=1 di

2 − (n − 1) is a non-negative integer.
From Riemann-Hurwitz gd1···dr

is the genus of any cover in the Nielsen class.
Suppose G ≤ Sn and ggg ∈ Ni(G,C), a pure cycle Nielsen class Ni(G,C), with the
image of C in Sn equal to CSn def= Cd1···dr . Suppose ϕ : X → P1

z corresponds to ggg
in this Nielsen class.

Suppose G is a transitive, but not a primitive, subgroup of Sn. Then ϕ decom-
poses as X → X ′ ϕ′

−→P1
z, with the degree of X → X ′ equal to 1 < m < n dividing

n. Since the Nielsen class is pure-cycle, by reordering the di s we have the following
setup. Above each of the branch points zi ∈ zzz, there is exactly one ramified point
xi ∈ X having image x′

i ∈ X ′, and for these the following hold:
(2.2a) for 1 ≤ i ≤ r′, xi/x′

i has ramification index m (totally ramified) and
x′

i/zi has ramification index di/m; and
(2.2b) for r′+1 ≤ i ≤ r, xi/x′

i has ramification index di (x′
i/zi doesn’t ramify).

So, X ′ → P1
z is a cover in the Nielsen Ni(G′,C′) with G′ a transitive subgroup of

S n
m

and (C′)S n
m = C d1

m ··· d
r′
m

.

Theorem 2.1. Continue the previous notation with ϕ, ϕ′, m, r′. Apply R-H to
ϕ′ to compute the genus g′ of X ′ as

g d1
m ··· d

r′
m

= 1
2m

(∑r′

i=1 di − m − 2(n − m)
)

= 1
2m (2gd1···dr

− ∑r
i=r′+1 di − 1 − (r′ − 2)(m − 1)).

Now suppose that no such m exists (G is primitive) and G contains a length d
pure-cycle with d ≤ (n−d)!. Then, G = An if all the di s are odd and Sn otherwise.

Proof. Formula (2.1) is just manipulation with R-H. The last paragraph fol-
lows from [Wm73]. �

[LOs06, Thm. 5.3] is the case gd1···dr
= 0 in (2.1), from which one deduces G

is primitive: there is no such m since the right side would then be negative. We will
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use the formula to conclude primitivity of G in many odd order pure-cycle Nielsen
classes, thus forcing G = An.

2.2. The Liu-Osserman Theorem. The following is [LOs06, Thm. 1.2].
Theorem 2.2. Suppose an absolute Nielsen class is transitive, pure-cycle and

genus 0. Then it consists of one braid orbit.
We are going to use and the Main Theorem of [Fri06b] to

2.3. Nonempty Nielsen classes. Consider the transitive pure-cycle Nielsen
class Ni(G,Cd1···dr ). Here we want to inspect when condition (2.1) is sufficient to
guarantee the Nielsen class is nonempty. Notice that by braiding, we may assume
with no loss a normalizing condition:

(2.3) d1 ≤ d2 ≤ · · · ≤ dr.

Notice the next result does not assume g = 0.
Proposition 2.3. If r = 3 and gd1···dr

= 0, then there is a unique element in
Ni(G,Cd1···d3) satisfying (2.3).

Proof. We assume d1 ≤ d2 ≤ d3. Assume the genus is g. Let g1 = (1 . . . d1−u . . . d1)
for some integer 1 ≤ u ≤ d1−1. Now consider the following two elements based on
another integer t:

(2.4)
g2 = (d1 d1−1 . . . d1−u n . . . n−t), and

g3 = (1 . . . d1−u−1 n . . . n−t d1)−1.

Note these properties:
(2.5a) (g1, g2, g3) has product-one.
(2.5b) The genus is ??.
(2.5c) This represents the unique element in Ni(G,Cd1···d3).

�

When r = 4, the reduced Hurwitz space of a pure-cycle Nielsen class has a
birational embedding in P1

j × P1
j . To see that consider such a cover ϕ : X → P1

z.
Then, map the four branch points ϕzzz to their j invariant jϕzzz . Above each branch
point zi is a unique ramified point xi. So, that gives the j invariant of xxx, which we
denote jϕxxx . The birational embedding is ϕ �→ (jϕzzz , jϕxxx).

3. The genus 0 problem

3.1. Polynomial case. Many applications that arose in early years consid-
ered covers by genus 0 curves. The serious applications included cases where the
covers were polynomials covers. The enclosed ”Two genus 0 problems of John
Thompson” is based on 4 branch point polynomial covers that arose in consider-
ing many problems when I was starting out (especially Davenport’s problem, and
separately Schinzel’s problem). Polynomial covers (of course) have one cycle (at
infinity) in their branch cycles. Yet, in these problems the other branch cycles were
not cycles. As in the Davenport problem case, they often had several unconnected
(braid group not transitive) families, though a marvelous thing happened. They
were accounted for as a collection by one of my early theoretical results called ”The
Branch Cycle Lemma.” This showed the families were conjugate by action of the
absolute Galois group of Q. In the enclosed paper, you also see the parametrization
spaces of all the families are the same in a provocative way: When you go from
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the covers to the associated vector bundles, the distinctions between the families
disappear.

3.2. Use of the Branch Cycle Lemma.

4. The Alternating Group Case

I’ve thought about your problem (all branch cycles are cycles and the cover is
genus 0), and so far I have no counterexamples. The case of 4 branch point covers
has always been the concentration point – except for this paper on alternating
groups where the number r of branch points is arbitrary – that feeds into a large
group of applications.

4.1. Possible groups G for pure-cycle Nielsen classes. For gd1···dr > 0 it
is possible that many more values of r will produce transitive subgroups of Sn that
don’t contain An. What we have to show: 1. Primitivity. 2. If d1 ≤ (n − d1)! we
get the desired conclusion. For the latter apply [Wm73] stating that if a primitive
subgroup of Sn contains a cycle of order d, with d ≤ (n − d)!, then it must be An

or Sn.
Theorem 4.1. Algorithm to figure on the symbol of mmm for a given d∗1 · · · d∗s.

5. Application case: 4 branch points

5.1. Modular Curves. Assume p is an odd prime, and consider the dihedral
group Dpk+1 of order 2 ·pk+1. You can identify it with There is a natural birational
embedding of the modular curves X0(pk+1) (p odd) into P1

j × P1
j . Here is how we

compare this with our other examples. Consider the Nielsen class Ni(Z/pk+1 ×s

{±1},C24)abs of pk+1 degree covers with 4 branch points whose conjugacy classes
are all repetitions of the class of −1 in

5.2. Pure-cycle cases of the MCMTs. We now have reason to try out
Liu-Osserman on their special case r = 4 and g = 0, which by itself is a model for
explicitly describing reduced Hurwitz spaces. Then, §5.2.2 considers what gener-
alizing their results does for the MCMTs. Finally, §5.2.3 considers what are the
implications for the STC.

5.2.1. The MCMTs for the genus 0 pure-cycle case. Theorem4.2. In Situation
4.1, the cardinality of a Nielsen class is min1≤i≤4(di(n + 1 − ei). Notice we have
g2g3 in place of there use of g3g4. Moreover, the possible ggg are classified as follows
with g

def= g2g3 = (ggg) |:
(5.1a) if g is trivial or a single cycle (k k + 1 . . . d2 + d3 − k), then

g4 = (n n−1 . . . d2+d3+1−k g−(n+2−k−d4)(�) g−(n+3−k−d4)(�) . . . g−(d2+d3+1−2k)(�) = �),

g1 = (d2 + d3 + 1 − k d2 + d3 + 2 − k . . . n − 1 n � g−1(�) . . . g−(n+1−k−d4)(�)),

g2 = (k k − 1 . . . 2 1 d3 + 1 d3 + 2 . . . d2 + d3 − k),

g3 = (1 . . . d3),

where we allow any k with d2 + d3 − n ≤ k ≤ d2 and k ≤ n + 1 − d1,
we allow � to vary in the range k ≤ � ≤ d2 + d3 − k.
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(5.1b) if g is a product of two disjoint cycles, then

g4 = (m + d4 − 1 m + d4 − 2 . . . m + 1m),

g1 = (n n − 1 . . . m + d4 m + n + k − d2 − d3 m + n − 1 + k − d2 − d3 . . . k),

g2 = (k k−1 . . . 1 d3+1 d3+2 . . . m+d4−1 m m−1 . . . m+n+1+k−d2−d3 m+d4 m+d4+1 . . . n),

g3 = (1 . . . d3),

where we allow any k with 1 ≤ k ≤ d2 + d3 − n − 1, and any m with
d3 − d4 + 1 ≤ m ≤ n + 1 − d4 and m ≤ d3.

5.2.2. The MCMTs for g > 0 in the pure-cycle case.
5.2.3. What the MCMTs says about the STC.

6. Guided by the Conway-Fried-Parker-Völklein result

6.1. Limit components. An addition to [FV91] says this (see App. ??).
Theorem 6.1 (Branch-Generation Thm.). Assume G centerless and C∗ a dis-

tinct rational union of (nontrivial) classes in G. An infinite set IG,C∗ indexes

distinct absolutely irreducible Q varieties RG,C∗
def= RG,C∗,Q = {Hi}i∈IG,C∗ with:

(6.1a) a finite-one map i ∈ IG,C∗ �→ iC, ri conjugacy classes of G supported
in C∗; and

(6.1b) the RIGP holds for G with conjugacy classes C supported in C∗ ⇔
i ∈ IG,C∗ with C = iC and Hi has a Q point.

The emphasis is on IG,C∗ being infinite. Realizations come by augmenting
existence of RG,C∗ with info on the varieties Hi, i ∈ IG,C∗ . Given C, the collection
of ggg ∈ C that generate with product-one is called the Nielsen class of (G,C). Denote
it Ni(G,C). Each i ∈ IG,C∗ corresponds to a unique Nielsen class Ni(G, iC) with iC
having ri elements (see §??). The reduced space Hrd

i equivalences field extensions
if they differ by a change z �→ α(z), α ∈ PGL2(C). Its dimension is ri − 3.

Appendix A. Hurwitz spaces

A.1. Inner, absolute and reduced equivalence.

A.2. sh-incidence and modular curve cusps. In the next subsections,

there are two different copies of
(

1 1
0 1

)
, γ∞ in SL2(Z) and also in Dpk+1 ; and they

shouldn’t be confused. We refer, therefore, to the first as γ∞.

A.3. Some nonmodular curve cusps.

Appendix B. Applications

B.1. Maps that are one-one.

B.2. Relations among zeta functions.

B.3. The Regular Inverse Galois Problem —RIGP.
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