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A method for obtaining very precise results along the lines of the Hilbert
Irreducibility Theorem is described and then applied to a special case. In
addition, the relationship of the irreducibility theorem to other tools of
diophantine analysis is investigated. In particular, we give a proof of the
irreducibility theorem that uses only Noether’s lemma and the fact that an
absolutely irreducible curve has a rational point over a finite field of large order.

In this paper we treat problems related to several aspects of Hilbert’s
irreducibility theorem. Let L be a number field with ring of integers o, .
Let f(x, y) € L[x, y] be an irreducible polynomial in two variables. Then
Hilbert’s theorem states that there exists an infinite number of specializa-
tions of the variable x to x,€ o0, such that f(x,, y) is an irreducible
polynomial in one variable over L. In fact, using the techniques of Section 1
(or of [12, Section 5]) it can be shown that the set of x, € o, for which
f(xo ,y) is reducible over L and for which the maximum of the absolute
values of the conjugates of x, is less than &V has cardinality bounded by
¢ - N1/2 where c is a constant independent of N (dependent only on f and
L). In the notation of Section 1, we write

| R(f, op , N)| < c- N2

In addition, there exist constants ¢; , ¢ > O, and an integer / for which
either

(0.1) ¢y - N < | R(f,0,,N)| <<cy - NY, or

0.2) ¢ - (og N)! < | R(f, 0., N)| < - (log N)!, or

(0.3) | R(f, o, , N)| is bounded as a function of V.

* Author’s address for 1973-74: Department of Mathematics, State University of
New York at Stony Brook, Stony Brook, New York 11790.
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212 MICHAEL FRIED

We say that: R(f, o,) (as in Section 1) has exponential density in Case (0.1);
and R(f, o,) has logarithmic density in Case (0.2).
The results of Section 1 are primarily concerned with the case when

04 L=0Q, and
0.5 fx,»)=hny) —x for h(y)eQ[y].

For g € Q(y) we define V(g, Z) to be the intersection of Z and the image
of g on Q. Clearly, V(h, Z) C R(W(y) — x, Z). Let S(h, Z) be
Rh(y) — x, Z) — V(h, Z). In Theorem 1 we show that Sk, Z) is
Ui, V(g:,Z) UV where 7 is a finite set, and g, ,..., g; are rational
functions satisfying certain conditions (see Corollary 2). From this we
deduce (Corollary 1) that S(k, Z) is finite or has logarithmic density if

either

(0.6) deg /& is an odd prime-power, or

(0.7) A& is an indecomposable polynomial (4 is not a functional composi-
tion of two polynomials of lower degree).

Of course, we are most interested in finding out when S(k, Z) is finite.
From Corollary 2 we obtain Corollary 3; S(k, Z) is finite if deg A = p is a
prime for which 2p — 1 is not a square. Corollary 3 uses a result of
Wielandt, which is probably far from definitive. In particular, results of
Feit and Scott [16] may be applied to show that S(h, Z) is finite if deg A = p
is a prime with 5 << p << 333. The case p = 5 1s exceptional, as we explain
in example 2. In fact, p = 5 is the only known case of a prime for which
S(h, Z) 1s infinite with deg &z = p.

For L a number field different from Q, there may exist indecomposable
polynomials %, defined over L, of degree n for which S(4, o;) has exponen-
tial density. In such cases, L N Q(Z,) 5= Q (where (, is a primitive n-th
root of 1). Such examples are discussed 1n [10, Section VI], and it is
suspected that these examples of degree 7, 11, 13, 15, 21, and 31 are the
only such examples. These examples are the source of much additional
number theory anomaly. For A€ L[y] let V(#) be the values assumed by
A modulo the prime ideal p of o, (as in Section 2). Consider pairs of
polynomials A, ge L[y] for which V,(h) = V,(g) for all but a finite
number of primes p (a.a.p). When g(y) = h(ay + b) for constants
a, be L (h, g are linearly related) it 1s easy to see that V,(h) = V, (g) for
a.a. p. As an application of the theory of Section 2 we show that the
indecomposable polynomials # for which S(#, o,) has exponential density
are exactly the indecomposable polynomials for which there exists
g € L[y] where h, g are not linearly related, and V,(h) = V,(g) for a.a. p.




HILBERT’S IRREDUCIBILITY THEQOREM 213

In particular, (Theorem 2) for %~ € Q[y] satisfying (0.6) or (0.7) if
V,(h) = V,(g) for a.a. p, then % and g are linearly related (i.e., £ is deter-
mined by its value sets modulo p).

Let P be an elementary statement (general diophantine problem)
involving polynomials with coefficients in o, . Section 2 develops some of
the tools for a primitive recursive procedure for deciding

(*) whether the reduction modulo p of P is true for a.a. p. These
tools include a non-regular analogue of the Cebotarev density theorem
for function fields over finite fields, (generalizing results of S. Cohen [4]
and S. Lang [19]) and a precise form of Noether’s lemma. Ax [1] showed
there is a decision procedure for deciding (*), but, as his techniqur  "lized
ultra-products and logic, the procedure is not primitive recursive. Com-
bining the method of Section 2 with a generalization of Bertini’s theorem
(generalizing further still the statement of [10, Section 11.2] for algebraic
pencils) we can give an inductive argument completing our procedure.
This argument will appear in a later paper.

In [5] we gave a rough, but useful, procedure for investigating '(*). One
of the essential tools used there was Hilbert’s irreducibility theorem.
Hilbert’s theorem also played a role in the related matters discussed in
Jarden’s paper [11]. Therefore, we show in Theorem 3 that the purely
algebraic methods of Section 2 yield a proof of the irreducibility theorem.
In fact, Hilbert’s theorem is roughly a consequence of Noether’s lemma
and the fact that an absolutely irreducible curve over a finite field has
rational points if the order of the finite field is “‘large.”” This latter fact is
a consequence of the celebrated Riemann hypothesis for curves over
finite fields, which has finally been demonstrated to be of a reasonably
elementary nature (see [2]).

Andrej Schinzel has greatly influenced the author through his contribu- -
tions to the problems considered here. In addition, we would like to thank
Jack MacLaughlin for discussions concerning the group theoretical
literature related to Corollary 2.

The author’s correspondence indicates confusion as to which of the-
announced items in [7] this paper corresponds. Families of Riemann
surfaces (I) has been broken up into three (expanded) papers: this one;
[9] (upon which the proofs of Corollary 1 and 2 depend); and the partly
expository paper [10].

The reader might view the juxtaposition of the results of this paper as
gravy on one’s frosting (both appealing, but not during the same course).
We hope, nevertheless, that we have exposed some apposite aspects of
Hilbert’s famous theorem, thereby placing it in a more general Dio-
phantine context.
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1. HILBERT’S IRREDUCIBILITY THEOREM

Let L be an algebraic number field, finite dimensional over Q. Let L* be
a fixed algebraic closure of L. We denote by o; the ring of integers of L. For
h(y) € L(y), let

R(A(y) — x,0;) = {xo€0; | (¥) — X, 1s reducible over L} (alternatively,
R(A, 0.)),

Wi(h, 0;) = {x, €0, | A(y) — X, has, at least, 3 irreducible factors over L},
and

V(h, 0;) = {xo€ 0. | h(y) — X, has a zero in L}.

Certainly, we have V(h,0,) C R(h(y) — x,0,). However, a more
complete description of R(4, oy) can be given. For simplicity we restrict
ourselves to the case where 4 is a polynomial. Consider g € L(y) where
g = g1(¥)/g(y) with g, , g, relatively prime polynomials. We have need
for the following conditions:

(1.1) $£2,_,= £, ., where £2,_, is the splitting field of A(y) — x over L(x);

(1.2) go(2) - (h(y) — g(z)) 1s a reducible polynomial in two variables
over L (we say h(y) — g(z) is reducible); and

(1.3) either g,(y) is constant; or g,(») is a power of a linear polynomial
and deg g, > deg g, ; or g,(y) is a power of an irreducible qua-
dratic polynomial and deg g, = deg g, .

DeriNiTION 1. Let f(y) € L(y). We say f(y) is decomposable over L
if f(y)=fO(f®(y)) where deg f“(y) >1 for i = 1,2. Otherwise,
we say f(y) is indecomposable over L. If f(y) is written as a ratio
(W /fo(y) of relatively prime polynomials, then deg f is the integer
max(deg f1 , deg f5).

DEerINITION 2. Let f(3), g(¥) € L(y). We say that f and g are linearly
related if f((ay + b)/(cy + d)) = g(y) for some a,b,c,de L. We say
that fis composite with g if there exists r(y) € L( y) such that g(r(y)) = f(»).

We remind the reader of the definitions of the: cyclic polynomial of
degree n, A(y) = ay™ + b,a,b e L; and the Chebychev polynomial of
degree n, h(y) = 27" H(y + (¥ + HDVH" + (¥ — (¥* + D/}

The next proposition is proved in ([9], Theorem 1) and it is the technical
basis on which the results of this paper depend.
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ProrosiTioN 1. Ler h(y) e L(y). Suppose Z(y) = (2,/8.) € L(y) with
g, > @2 relatively prime polynomials. Assume that Z,(z) - (h(y) — g(2)) is
reducible as a polynomial in two variables. Assume also that if h = h,(hy(y))
with hy, hy, e L[y] and deg h, ,deghy, > 1, then Zy(z) - (h(y) — g(2)) is
not reducible. Then there exists g(y) € L(y) such that g(g.(y)) = g(») for
some go(y) in L(y) and (1.1) and (1.2) hold.

Suppose in addition that h, g are polynomials and h is indecomposable.
Assume that h(y) — g(z) = H; @iy, z) with t > 1 where o@/x,y) are
absolutely irreducible polynomials (irreducible over L*). Then:

(1.4) degg = deg h = n, and g(y) is indecomposable; and

(1.5 t =2 (so that h(y) — g(z) has exactly two irreducible factors)
unless h and g are both linearly related to a cyclic or Chebychev
polynomial ([6], p. 41).

Let {,, be a primitive n-th root of 1. Assume that L N Q({,) C M, where
M is the totally real subfield of Q({,). Then h and g must be linearly related.

THEOREM 1. Let h(y)e L[y]. Then we have
7
(1.6) R(h o;) = (U V(g(), oL>) U V(o) U T,
=1

where V is a finite set, and h, g(1, y),..., g(I, ¥) are a maximal set of rational
Sfunctions for which no function is composite with another; and

Qh—x i Qg(i,y)—m 5 h(y) - g(i: Z)

is reducible (as in (1.2)), and g(i, y) satisfies (1.3) fori = 1,..., r.
If we assume in addition that h is an indecomposable polynomial that is
neither cyclic nor Chebychev, then we have

(1.7) Wk 0)C ( U V(B0 og) UV

where V is a finite set, and g(B(1), ¥),..., 2(B(?), ¥) is the subset of g(1, y),...,
g(l, y) consisting of the non-polynomials.

Proof. Factor A(y) — x over an algebraically closed extension of L(x)
to obtain

WMy) —x=c]](y—y for some constant c.
=1
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If we fix determinations of the algebraic functions y, ,..., ¥, , then for
X, € 0, wWe may associate values y,(x,) to these functions. Let M U N =
{1, 2,..., n} denote a partition of the integers from 1 to » into disjoint
non-empty sets.

Suppose ¢ - [Tieasr (¥ — yi(xo)) € o[ ¥] for infinitely many x, € o, . Con-
sider the curve % ,, which has a generic point given by

EM) — (x, S Yis D YiVisee |1 y) or

ieM T<j ieM
i,jeM

EM — (x, EM,..., §M)), where m is the order of M.

This curve has infinitely many points whose coordinates are in o, . By a
theorem of Siegel’s ([14], p. 51) this implies that %,, is of genus zero.
Therefore, the function field for €,, is L(x, £&{*),..., £&M) = L(z) for some
transcendental function z.

Thus, x is a rational function of z (say x = g®(2)). If f}'(z) = &M,
then

e T1 7 — 3 = SA00G) ym
Therefore A(y) — g*(z) is reducible and £,z _, C 2,_, (because L(z) C
Qh—x)-

It is a consequence of the Thue-Siegel-Roth Theorem ([13], p. 159)
that if gM)(z) takes on infinitely many quasi-integral values for arguments
in L, then the curve g™)(z) — x = 0 has at most two places over the
place x = 0. By a linear fractional change of the variable z we may assume
that (1.3) holds. See the discussion of [10, Section I1.3, Remark 1]. From
the collection g‘™’(y) as M runs over partitions (as above), we select a
maximal subset g(1, y),..., g(/, ) such that

U V(g™(»), 00) = (J V(h, 0.)) U (L_) V(g »), oa:»)

and no rational function in the set is composite with another. This con-
cludes the proof of the first part of the theorem.

Now assume %4 is indecomposable. The process above shows that
14
WaC U (V(gBUGN, o)V TV
i=1

where A(y) —g(B(j), z) has at least three irreducible factors. Since 4 is
indecomposable, Proposition 1 (expression (1.5)) shows that g(B(j), z)
cannot be a polynomial unless /4 is a cyclic or Chebychev polynomial.




HILBERT’S IRREDUCIBILITY THEOREM 217

As in the introduction, we define S(4, o;) to be R(A, o) — V(h, ;). For
each positive real number N we let S(#, o, , N) be the set of x, € S(4, o)
for which the maximum of the absolute values of the conjugates of x, is
less than N. As in expressions (0.1) and (0.2) with R(4, o, , V) replaced by
S(h, o, , N) we speak of: S(4, o;) as having exponential density if

Cz 'Nl/l <IS(h, DLJN)I <C1 'Nl/l

for some comstants ¢;, ¢, > 0, and integer /; or S(4, o;) as having
logarithmic density if

C2 ° (logN)L <Z l S(h, DL ,.N)] < Cl ° (10gN)l.

Comnsider V(g, o) for g satisfying one of the conditions in (1.3). It is
easy to see that if g(») is a non-constant polynomial, then there exist
constants ¢; , ¢, > O such that

caNY/ee8 9 < | P(g, 0, N)| < ey N*aeg o,

In the case that g,(y) is a power of an irreducible quadratic polynomial
over L, let L’ be the field obtained by adjoining the zeros of g,(y) to L. If
g+(») is not constant and V (g, o.) is not finite, then there exist constants
¢, , ¢ > 0 such that

co(log N)' < | ¥V (g, oL , N)| < ¢y (log N)!

where / is the rank of the units in o, if g,(y) is a power of a linear poly-
nomial, and / is the rank of the units in o, if g,(y) is a power of
an irreducible quadratic polynomial. In the former case, this follows from
the fact that g;(y)/y* with k£ > O takes on values in a fixed fractional ideal
only for values of y in finitely many cosets of the units of o, in L (see [14]
or [13, p. 159]). In the latter case we reduce to the former case by con-
sidering a linear fractional change of the variable y over L’ sending the two
distinct zeros of g,(y) to O and oo, respectively. [

COROLLARY 1. Let A(y) e Q[y] be such that either h is an indecom-
posable polynomial (condition (0.7)) or deg h is an odd prime-power
(condition (0.6)). Then, either S(h, Z) is finite or S(h, Z) has logarithmic
density.

Proof. From the remarks above this will follow if we show that among
the rational functions g(1, y),..., g(/, ) satisfying (1.3) as in the conclusion
of Theorem 1, there are no polynomials. For the case (0.6) this was demon-
strated in [7]. However, we note that it was incorrectly concluded there
that S(h, Z) must be finite. For the case (0.7) this follows from
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Proposition 1. In fact, if g(1, ¥) (say) is a polynomial, since A(y) — g(1, z)
is reducible, Proposition 1 contradicts the fact that # and g are defined

over Q. B

We need some additional notation from group theory. Let G be a finite
group with a faithful, transitive permutation representation 7. This consists
of an embedding T : G — S,, where S, 1s the symmetric group on n letters
and the image of G is a transitive group. We say that 7" has degree n. The
groups G(T, 1),..., G(T, n) are the subgroups of G that stabilize a letter.
We obtain an equivalence class of permutation representations by con-
sidering the collection 7°*: G — S, ,x €S, where T% o) = o - T(o) - a™?
for 0 € G. For o€ G, write T(o) = ]_[;;1 B(o, j) as a product of disjoint
cycles in S, , where | B(o,j)| = s(j) denotes the order of B(o,j). By abuse,
we sometimes write 7(o) = (s(1),..., s(w)). Then ind(7 (o)) (called the
index of o) is the sum X, (| B(c, /)l — 1). Let o(1),..., o(r) € G be such
that [1,_, o() = Id. Then g(o(l),..., o(r)) (called the genus of the r-tuple
(a(1),..., o(r))) is computed from

(1.8) 2(n + g(o(l),..., o(r)) — 1) = >;_, ind(T(c(7))) (the Riemann-—
Hurwitz formula).

CorOLLARY 2. Let he Q[y] be an indecomposable polynomial. Assume
that S(h, Z) is infinite. Then, the group G(£25,_./Q(x)) has two faithful
transitive permutation representations T, and T, having the following
properties:

(1.9) T, is a doubly transitive representation of degree n — deg h;

(1.10) T, is a representation of degree 2n which is not doubly transitive;
there exist generators o(1),..., o(r) of G(Q* - £2,,_,/Q*(x)) for which
ITi: oG) = 1d.;

(1.11) Ti(o(r)) = (m)(an n-cycle) and T,(o(r)) = (n)(n) the product of two
n-cycles);

(1.12) () =i, ind Ti(e() = 2(n — 1),
(b) >_,ind To(o(i)) = 2(2n — 1): and

(1.13) (a) G(I3,1) contains none of the groups G(Ty , 1),..., G(T, , 2n),
(b) the restriction of T, to G(T,, 1) is an intransitive group.

Proof. Since A is indecomposable and S(4, Z) is infinite, Corollary 1
(with the remarks preceeding it) implies that

S0 2) € (U V(BN 2)) U P




HILBERT’S IRREDUCIBILITY THEOREM 219

(as in expression (1.7)) where g(B8(1)),..., g(B(¢)) are the rational functions
in the list g(1),..., g(/) (expression (1.6)) satisfying the third of the three
conditions of (1.3). Let g(B(1), y) be denoted henceforth as g(y). Using
the fact that 4 is indecomposable, Proposition 1 implies that £2,_, = 2,_, .
We remind the reader that 4 is not composite with g (from Theorem 1).

Let y;,..., y, be the zeros of A(y) — x; z;,..., Zn the zeros of g(z) — =x.
Consider the representations 75 (respectively 7,) obtained from the action
of G(£2;,_,/Q(x)) on y, ,..., y, (respectively, z; ,..., z,). Let

a(l),..., o(r) € G(Q* - £2,_,/Q*(x))

be a description of the branch cycles for the field extension Q* - 2, _,/Q*(x)
(as in [6], say). Thus, o(l),..., o(r) generate G(Q* - 2, _./Q*(x));
I1;—; o) = Id.; and we assume that o(r) is the branch cycle corresponding
to x = oo. Since the field extensions Q*(y;) and Q*(z,) are of genus zero,
the Riemann-Hurwitz formula gives (1.12a and b). As A(») — g(2) is
reducible, Galois Theory shows that G(£2,_,/Q(»1)) is not transitive on
Zy 5---5 Zm - This gives (1.13b), and (1.13a) follows (from the fact that 4 is
not composite with g). The branch cycle for A(y) — x = 0 over x = «©
is an n-cycle (that is, T3(c(r)) = (n)). In particular, o(r) is of order n. The
places of Q*(z;) over x = oo correspond to the poles of g(y). Since g(y)
satisfies the third of the conditions (1.3), To(o(r)) = (m/2)(m/2). But, as
o(r) is of order n, we must have m/2 = n or m = 2 - n. Thus, we have
(1.11).

From Lemma 9 of [6] the representation 7} is doubly transitive, unless
h is a cyclic or a Chebychev polynomial (see comment below Definition 2.)
In the former case Q*(y,) = £2,_,, and in the latter case

[Q* - 255 1 Q*(y)] = 2.

Since g is of degree 2n, and 4 is not composite with g, each of these cases is
ruled out. Therefore, we have demonstrated (1.9).

To conclude our proof, we show that 7, is not a doubly transitive
representation. If 7, were doubly transitive, then G = G(£2,_./Q(x)) is a
doubly transitive group (where deg 7, = 2 - n) with an intransitive
subgroup H = G(T;, 1) of index less than 2 - n. It is (well) known that
this is impossible. ||

CorOLLARY 3. Let he Q[y] be a polynomial of prime degree, p, for
which S(h, Z) is infinite. Then 2p — 1 is a square. Also, we have either

p = 5orp > 333.

Proof. In the notation of Corollary 2 we will show that 7, (on
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G(£2,_/Q(x))) 1s a primitive representation. Thus, 7, is a primitive (not
doubly transitive) representation of degree 2p with p a prime (containing
an element o(r) with 7Ty(co(r)) = (p)(p)). This contradicts the results of [18]
if 2p — 1 is not a square; and it contradicts the results of [16] if
5 << p << 333.

If 7', is not primitive then there exists a group G with G(7,,1) C G C G.
From the fundamental theorem of Galois theory we conclude that the
fixed field in ©2,__ of G is a proper subfield of Q(z,). Thus, g(») = £,(8.()))
where deg g, , deg g, > 1. Since degg = 2 - p and (deg g;) - (deg g&,) =
deg g; either deg g, or deg g, is 2. Let #(1),..., % (u) be the places of
2.(z) — x = O over x = co. Let k; be the number of places of g,(z) —x = 0
over the place given by x = % (i), i = 1,..., u. Since g(z) — x = O has
2 places, with ramification index p, over x = oo, we have 212;1 k, = 2.
Thus, either

(119 u=2 and k&, = k, =1, or
(1.15 u=1 and k, = 2.

In the case (1.15), by a linear fractional change of the variable z (over Q)
we may assume that the place of §,(z) — x = Oover x = o0 isz = 00. So
Z.(z) € Q[z]. Since the ramification indices of the places of g,(z) — x = 0
over x = oo times the degree of g,(z) is equal to p (the ramification indices
of the places of g(z) — x = 0 over x = o0) we have deg g, = p. We have
Qe o C £,_. . In fact, since G(£2,_./Q(y,)) has order relatively prime to p,
this group cannot be transitive on the p zeros of g,(z) — x = 0. As in the
proof of Corollary 2, we conclude that A(y) — g,(z) is reducible (as a
polynomial in two variables). Since A(y), £§:(y) € Q[y], this contradicts
the last line of Proposition 1. We have eliminated (1.15).

Now consider case (1.14). Then g,(z) — x = O has two totally ramified
places (over x = %/(1) and x = %(2)). Therefore, we may assume (by a
change of variable over Q* sending % (1) -0 and %(2) — o) that
g-(2) is a cyclic polynomial (comment following Definition 2). Using, as
above, the multiplicativeness of the ramification indices in the layer
Q*(zy) D Q*(&x(z1)) D Q*(x) over the place x = oo, we conclude that
deg g, = p. The branch cycles for the cover g(z) — x = 0 (of the x-sphere)
are therefore o(1) and o(2) of order 2 corresponding to the branch points
of g(z) — x=0 (degg, = 2), and o(3) of order p corresponding to
x = oo. Since 2,_, = £, ., the characterization of Chebychev poly-
nomials shows that A(y) is a Chebychev polynomial (step 3 of Lemma 9 of
[6]). Thus, [Q* -2, _.: Q*(x)] = 2 - p. Therefore, Q* - 2,_, = Q*(zy)
and contrary to assumption 4 is composite with g (Definition 2). We have
excluded case (1.14), and this finishes the proof of the corollary. |}
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Remark 1. Let h(y) € Q[ y] be such that G(£2,_,/Q(x)) is the symmetric
group (respectively, alternating group) of degree n (denoted S,;
respectively A,) in its action on the zeros, y;,...,y,, of A(y) — x. If
n = 5, then S(h, Z) if finite. This follows from Corollary 2 (expression
(1.13)) as follows. The representation 7, corresponding to g(z) — x = 0
(as in the proof of Corollary 2) corresponds to the action of S,
(respectively, 4,) on the unordered subsets of {1, 2,..., n} of cardinality %,
for some fixed integer 1 << £ < n (dependent on 73). On the other hand,
since S, (respectively A,) is transitive on these subsets, the number of
such subsets must be 2n = deg 7, . But the number of such subsets is (7).
Thus, kK = 2 and n = 5. As example 2 shows, the case n = 5 is truly

exceptional.

ExXAMPLE 1. A polynomial h € Q[y] for which S(h, Z) has exponential
density. Let h(y) = y* + y2. Then Ry(Z) = V(Z2) U V,(Z2) U ¥V where V
is a finite set and g(y) = —4y* — 4y? — 1. This can be seen from
Theorem 1 and some simple computations after observing that

h(y) — g(z) = (¥® + 2yz + 222 + 1)(y* — 2yz + 222 + 1).

As in the discussion preceding Corollary 1, there exist constants
¢y, ¢g > 0 for which ¢, - N/ < | S(h, Z, N)| << ¢y - NY/A.

ExaMPLE 2. A polynomial h € Q[y] (of degree 5) for which S(h, Z) has
logarithmic density. This is the exceptional case in Corollary 3. Our
discussion uses tools discussed carefully in [10], to which the reader is
referred for notation and deeper considerations.

Let G = S; ; 7, the standard representation of S5 ; and o(1) = (1 2)(3 4),
oc(2) = (15),0(3) = (53), 0(4) = (154 32). Let T, be the representation
of S; on the set of unordered pairs z; = {1, 2}, z, = {1, 3), z; = {1, 4},
2o ={1,5, z5=1{2,3}, zs = {2,4}, z,=1{2, 5}, zs = {3, 4}, z, = {3, 5},
z19 = {4, 5}. If we replace the letters z, ,..., z;o by the numbers 1, 2,..., 10
we obtain:

To(a(1)) = (2 6)(3 5)(4 T)(9 10); To(c(2)) = (1 7)(2 9)(3 10);
Ty(o(3) = 2 DG TN 10);  Th(o(d) = (14108 5)(273 9 6).

We verify that the Riemann—Hurwitz conditions (1.12a and b) are satisfied.
Thus, Riemann’s existence theorem implies there exist genus zero covers
Y; 22 PY(C) and Y, *2PY(C) of projective space (P1(C)) such that
o(1),..., o(4) are a description of the branch cycles for ¢, and 7,(c(1)),...,
T5(c(4)) are a description of the branch cycles for ¢, . If we assume that
o(4) is the branch cycle over oo on P*(C), then (Y7, ¢,) corresponds to a
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polynomial A(y)e C[y]; (Y., @) corresponds to a rational function
g(y) e C[y]. Also we have: C - £2;,_, = C - £2,_, ; and all the conditions of
Corollary 2 are satisfied. The biggest problem is to demonstrate that we
can choose the branch cycles of A(y) — x = 0 so that 2 and g can
be defined over Q. For problems like this we have the techniques of [10;
especially Sections V and VI]. The idea, is to form a total family of covers
(Hurwitz scheme) of P! containing all covers of P! with a description of
their branch cycles given by o(1),..., o(4) (called .7 sv™® jn [10]). Then the
subscheme consists of those covers of P! with 3 fixed branch points (say
0, 1, o0) can in this case (as in [10; Section VI.3)]) be shown to be para-
metrized by an affine open subset of PY(C). In addition, in this case, the
subscheme is easily seen to be defined over Q. For a specialization of the
parameter we get 2 and g defined over Q. |

Remark 2. Let L be a number field. For h(y) € L[ y] we may consider
the set

T(h, L) = {x, € L | h(y) — x, is reducible over L}.

This leads us to consider when the curve €,,, in the proof of Theorem 1,
has infinitely many ZL-rational points. There are two questions to be
concerned with here. The Mordell Conjecture asserts that any curve of
genus larger than 1 has only finitely many L-rational places. There is no
known curve % that has been proven to have the property: if € is defined
over L, then € has finitely many L’-rational places for every finite extension
L' of L.

Assuming the Mordell Conjecture is true, there is still the problem of
characterizing polynomials #(y) for which %,, has genus greater than 1.

2. NON-REGULAR ANALOGUE OF THE CEBOTAREV DENSITY THEOREM
AND VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS

We now prove an analogue of the Cebotarev density theorem. The
proof is completely analogous to the classical proof except that we do not
restrict ourselves to regular extensions. Let £ = F(g) (the finite field with ¢
elements), and let x be indeterminate over k. Let L be a finite Galois
extension of k(x). Let the algebraic closure of k in L be £ (we have need
for the case & 5= k). The group G(k/k) =d¢t the Galois group of %/k, has
a canonical generator called the Frobenius symbol, which we denote by
F,. Let G =9¢f {g € G(L/k(x))| o restricted to % is Fy}. The set G was
introduced by S. Cohen in [4]. For each prime p of k(x) there exists a
conjugacy class of elements, (“*/%®), of G(L/k(x)) such that o e (*/%*)
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induces F, on the residue class field of some prime of L lying over p
(p. 164 of [3]). In addition, (*/%*®) is uniquely determined by this property
if p is unramified in L. In the case when p is of degree 1 in k(x) and p is
tamely ramified in L (p. 29 of [3]) we can describe (*/ 5®) quite explicitly.
Let o be a primitive generator for L/k(x), and let «™™,..., «™ be the con-
jugates of « over k(x). Then each of «?) can be expressed as a Taylor series
in pt/t (for some integer #; the Puisseux expansions about p). The action
of F, on the coefficients of these Taylor series yields a permutation of
aP,..., a™ representing (*/4*).

PROPOSITION 2. For o € G(L/k(x)) let {o) denote the conjugacy class of
o. Let B(c) = number of degree 1 primes p of k(x) such that (*/5*)) = (o).
Then

Kol . .
Bloy — (& 1K1+ OUKRE i osG.

0 otherwise

Here | | denotes the order of a set and O(x) for o > 0 signifies a ‘
quantity << C -« where C is an explicitly determinable constant (in this
case, dependent only on the genus of L).

Note. It makes no difference as to whether we take conjugacy classes
in G or G.

Proof. Let p be a finite dimensional irreducible representation of
G(L/k(x)). We have

1
log (Det(] — p(p) 19e8 p)) = —tr(log( — p(p) tdes »))

(for p any prime of k(x)), where p(p) denotes any representative of
p((*1%*))). We obtain from this:

4 tog Z(LK), 1)

- i ( 2 (deg p) - x(p(p)n/dee P)) 1,

deg pln
p prime of k(wx)

where Z(L/k(x), t) is the L-series corresponding to the character y of p
(see [17], Chapter V). Following Dirichlet’s well-known argument, for
each o € G(L/k)x)), we form

e) Y (Lieg LUk, ) - x(oH) = Mo, ).

irreducible x
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By inspection, the constant term of M(o, t) is seen to be:

22 ¥ y @) - x(o=) = A(0).

x p of deg 1 of k(x)

From the orthogonality relations: if p(p) 5% p(o), then >, x(p(P)) x(c™1) =
0; while if p(p) = p(0), then 3, x(o) x(¢7?) = | G [/[<o)|. Thus,

B(o) - | G |/IKa> = A(o).

We now estimate 4(o) from the Riemann hypothesis for curves.
Let Z, , be the zeta-function for L. Then:

Z, . = [1 LWLk, 1).

Let L' = k(x), and let ¥’ run over the irreducible (one dimensional)
characters of G(&(x)/k(x)).

Since Zy-; = 1/(1 — (%901 — | &| 154 — T, ZAL'/k(), 1), if we
extend each x’ to a character x” of G(L/k(x)) such that x” is trivial on
G(L/L") we obtain

[1 LLik), 1))

xE{x"}

2.3) Z,, = Z, z@¥) = ([] Z(Lfk(x), ) - (

The function Z, , is a rational function in 7 with denominator
(1 — FFY(1 — | & | ¢IFHTy,

The numerator of Z, ; is a polynomial of degree equal to 2g, where g is the
genus of L. This polynomial has zeros of absolute value

(| & PR — | |22

(by the Riemann hypothesis for curves over finite fields.) Thus, if x ¢ {x"},
ZL(L/k(x), t) has zeros of absolute value | k |~1/2, and (utilizing standard
notation) we write:

(2.4) ZUL[k(x),t) = [] A — «;t) where | o | = | k [/2 for x ¢ {x"}.
=1
We return to (2.2) to estimate A(c) by using (2.1) to obtain:

(25) A@©) = 3 2 log LALIKED), 1) X" (6] cq + O K 42,
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The first term on the right side of (2.5) remains exactly the same if we
replace x” by x’. Explicitly, we have

, B 1
ALK, 0 =] (T =z,

@) des ® )
where Fjp, is the Frobenius element corresponding to the residue class
field k(p) of p. Therefore

A= ¥ (ZxE - x ™M)+ 00k 12);

p of degree 1 x’

or

(2.6) A(o) =[k: k]l | k| + O( k|'? if o e G, and
A(o) = O(] k |*/?) otherwise. Thus,
B(o) = (Ko)|[k: k)| G| k| 4+ O( k') ifoeG.

Since | G |/[k : k] = | G|, this concludes the lemma as B(¢) = 0if 0 ¢ G
(restriction of a Frobenius symbol to £(x) must be given by the action of
F,on k). |

Let A be an elementary (diophantine) statement which can be inter-
preted over all (or all but a finite number) of residue class fields of a
number field. Proposition 2 (and its generalizations) can be utilized to
give a primitive recursive procedure for deciding the subset of those finite
fields for which A is true. We now give an example to illustrate this
(compare with [4] and [5]). For this we need a lemma. Consider the
following notation:

K is an algebraic number field with ring of integers ox ; f (x, ¥) € ogx, ¥];
L2, is the splitting field of f over K(x); f(p) is the polynomial obtained by
reduction of f modulo p for prime ideals p of ox ; k(p) is the residue class
field ox/p of the prime p; £, is the splitting field of f(p) over k(p)(x); K
1s the algebraic closure of Kin £, ; $ is (for each p) a choice of a prime of
oglying over p; and K® is the fixed field in K of the element [KéK] e G(K/K).

LemMMA 1. Excluding a finite set of (effectively computable) primes p,
there is a canonical isomorphism

(2.7) G2,/ K (x)) = G(824p)[k®P)(x))-
Proof. Let B, = {p | p is ramified in K}. Then, if p ¢ B, ,
[K : KP] = [K(x) : KP(x)] = [kB)(x) : kE)()].
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Thus, to prove (2.7) we are reduced to showing
(2.8)  G(82,/K(x)) = G(R27/k(B)(x)).

Let o, be the integral closure of og[x] in £2,. Thus, o, = og[x, y]/I
where 1 ®K is an absolutely irreducible ideal over K. We show that
(excluding a finite set of primes), the quotient field of S($) =4def o e, & k(p)
is 24 - The action of G(£2,/K(x)) on £2,, is obtained from its actlon on
S(P). We know that S(P) is an integral domain for almost all § by Noether’s
lemma ([6], p.- 48). Let B, be the exceptional set of primes.

Let y, ,..., v, be the zeros of f(x, y) regarded as a polynomial in y. There
exists B € og[x] such that By,eo, for i=1,.,n Let By={p|B=0
mod $}. If we exclude p € By, we prove (2.8) under the assumption that
Y1 50 Yn € Dg, -

Let o« = Z;L:l ¢; y; for some choice of ¢, ,..., ¢, € g so that o(«) == « for
each o € G(£2,/K(x)). Then, ([13], p. 44), « is a primitive generator of 2,
over K(x). Let A(x, y) € og[x, ¥] be absolutely irreducible and such that
h(x, o) = 0.

Modulo I we have 0A/0y(x) = [ [onq (¢ — o(x)). Also, there exist poly-
nomials {r;(x, y)}T and {z,(x, ¥)}T € og[x, y] for which y, = r,(x, &)/t;(x, «),
i=1,...,n

Let B, = {p | ri{x, ¥) = 0 mod P or ¢,(x, y) = 0 mod p for some integer
i=1,.,n}. Let By = {p | 0h/dy mod p € I Q k(D)}.

From the usual discriminant theory we can compute the finite set Bj .
For p ¢ B;, « mod P has | G(2,/K(x))| conjugates over K(p)(x), and the
action of G(£2,/K(x)) on S(p) is faithful. For $ € B, , the quotient field of
S®) is L5(p). Thus, for p ¢ Uz 1 B:, (2.7) is established. |

Let K be a number field, and let A(y), g(¥) € og[y]. For p a prime of

Ok, let V(h) = {x, € og/p | there exists y, € og/p with A(y,) = x,}. Assume
that

(2.9) Vy(h) = Vy(g) for all but finitely many primes p. As in Section 1,
letQ, = @2, _, -2, _,,andlety, ,..., y, (respectively, z; ,..., z,,) be the zeros
of h(y) — x (respectively, g(z) — x). We denote (A(y) — x)(g(»¥) — x) by
f(x,¥), in order to apply Lemma 1. Let o, be a representative of the
conjugacy class of the Frobenius symbol for the degree 1 prime x — x, of
k(p)[x]. Excluding the finite (computable) set of x;, such that x — x,
is ramified in £2,,,, then (2.9) imples that

o’mo S G(Qf(p)/k(p)( yl)) iff U% € G(Qf(p)/k(p)(zj))

for some j (see the discussion preceding Proposition 2). Excluding a finite
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set of primes p (those for which the order of k(p) is “too small’’) Proposi-
tion 2 implies that every element of G(£2,()/k(p)(x)) is of the form o, for
some x, € k(p). Thus, (2.9) implies (in fact, is essentially equivalent to):

2.10) ) Gy /k@(3)) = ) CQpa/k@)z).
=1 §=1 ’

There exist infinitely many primes p (see Lemma 2 of Section 3 for an
explicit construction) such that K® = K (in the notation preceding
Lemma 1.) Then k(p) = k() and (by Lemma 1)

G(£2,/K(x)) = G(2;)/k(P)(X)) = G246 /k(p)(x))

Thus, (2.10) implies that

@1 U G@JR» = U GE@RE).

=1 j=1

THEOREM 2. Let h(y), g(y) € Z[y] where either; h is an indecomposable
polynomial (Definition 1); or deg h is an odd prime-power. Assume that
Vo(h) = V,(g) for all but a finite set of primes p (a.a. p). Then h and g are ~
linearly related (Definition 2.). 7

Proof. From the preceding discussion (2.11) holds with K = Q. It is
easy to show from Galois Theory (Proposition 3 of [9]) that (2.11) implies
that 2, = @, and A(y) — g(z) is reducible. When deg 4 is an odd prime-
power, the Theorem follows from the result of [7]; when 4 is indecom-
posable, we conclude the theorem from Proposition 1. |}

Remark 3. As pointed out in the introduction (or see [10; Section VI])
there exist number fields K and pairs of indecomposable polynomials
h, g € K[ y] for which

Voh) = Vo(2)

for almost all primes p of pg. It is believed, however, that the examples
where deg % is one of 7, 11, 13, 15, 21, or 31 are the only possible examples

(with % indecomposable).

On the other hand, we do not know to what extent Theorem 2 may be
improved. In fact, we have no examples where V,(h) = V,(g) for a.a. p.
(of Q) and 4 and g are not linearly related. The technique of proof of
Theorem 2 shows that # and g have non-trivial composition factors which
are linearly related. |
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3. A PrOOF OF THE IRREDUCIBILITY THEOREM

For the standard comments and reduction of cases in Hilbert’s Irreduci-
bility Theorem see ([21], Chapter 5). There it is shown that the essential
case to consider is f(x, y) € Z[x, y] where f(x, y) is irreducible as a poly-
nomial in two variables over Q. For simplicity we restrict ourselves to this
situation. However, our proof can be applied directly to the case when f
is defined over any number field (see [10; Section IV.1)] where this is done
without appeal to any of the standard reduction arguments).

THEOREM 3. Let f(x,y) e Zlx,y] be irreducible over Q. Then there

exists an (explicitly) computable arithmetic progression of integers I such
that:

(3.1) for xy€1, f(xy,y) is irreducible as a polynomial in one variable
over Q.

We need a Lemma which, in spite of its basic nature, seems to be
unavailable in the literature.

LEMMA 2. Let M/K be number fields. Then there is an inductively
constructable infinite set of primes p of ox such that

[or/P* : 0x/P] = 1 for each prime p* of o, over ok .

Proof. By the multiplicative property of the degrees of residue class
fields we can consider the case when K = Q and (by considering the
Galois closure of M over Q) M is Galois over Q. Let 8 € o,, be a separable
generator for M/Q, and let f(x) e Z[x] be its monic irreducible poly-
nomial.

From Kummer’s Theorem ([3], p- 92) we are reduced to inductively
finding primes p (not dividing the discriminant of f(x)) such that f(x) = 0
modulo p has at least one solution. Since M/Q is Galois; this will imply
that f(x) splits completely modulo p. Let f(0) = C. Let p, ,..., p, be the
first n primes p obtained for which f(x) = 0 mod p has a solution. Include
the primes dividing C in the list. Then we form p,., by taking a prime

(different from p; ,..., p,) dividing m = f(C - (IT: p:)?) where I is selected
so that m is not zero. §

Proof of Theorem 3. Factor f(x,y) over an algebraically closed
extension of Q(x) to obtain

(3.2) f(x,y) = c-T1;; (¥ — y:), for some constant c.
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We refer now to the notation of the proof of Theorem 1. For each partition
M U N of {1, 2,..., n} there exists £’ such that £* ¢ Q(x). Upon multi-
plying £ by an element of Z[x] we may assume &) is integral over
Z[x]. Suppose x, € Z and &M)(x,) ¢ Z. Then no factorization of f(x,, y)
over Q corresponds to the subset M. Let f,,(x, y) be the irreducible monic
polynomial for £ over Z[x].

The above argument shows that if x, € Z is such that for each M as
above

(3.3) fam(xo,y) = 0 has no solution for y e Z,

then f(x, , y) is irreducible over Q.

We now show that we can produce an arithmetic progression P such
that for x, € P, (3.3) holds. Fix M for some preliminary considerations.
If /1,(x, ) is not absolutely irreducible, then there exists only finitely many
(%0 , Yo) € Z X Z such that f,,(x,, ¥o) = 0 because such a point would be
an intersection point of the curves defined by two absolutely irreducible
components of f(x, y). Thus, we may assume f,/(x,y) is absolutely
irreducible. By Noether’s Lemma ([6], p. 48) fi/(x, y) remains absolutely
irreducible modulo p for almost all primes p. Suppose there exists 4,,, an
infinite set of primes such that for p € 4,, :

(3.4) there exists xu(p, M) = x, with fi/(xy,¥y) =0 modp, has no
solution.

Then we can conclude the proof of the Theorem as follows. Let p(M)e 4,,,
so that p(M), running over distinct subsets M of {1, 2,..., n}, consists of
distinct primes. By the Chinese remainder theorem, there is an integer
X, € Z such that X, = xo(p(M), M) mod p(M) for each M. Let
ng = | Ix p(M). Consider the arithmetic progression: P = {integers of
form X, + m - ny for me Z}. If, for some x, € P and some index M we
had fi(x, , yo) = O for some y, € Z, then by reduction modulo p(M) we
contradict (3.4).

Now we establish the existence of the set 4,,. Let Qf be the splitting
field of f,, over Q(x). Let Q be the algebraic closure of Q in 2, .LetA%*
be the set of primes p satisfying the conclusion of Lemma 2 (for K =Q,
M = Q), and let 4,,* be the subset of 4%* such that expression (2.7) of
Section 2 holds. Then we have G(£2;,, /Q(x)) = G(.Qf (o/k( p)(x)), and the
algebraic closure of k( p) in £2;, (,) is _]LlSt k( p). Slnce Ja(x, ¥) is absolutely
irreducible there exists o € G(.Qf /Q(x)) with o(y,) %= y, for i = 1,...,n
(where y; ,..., ¥, are the zeros of fM(x ).

Let A, be the subset of A4,,* consisting of primes p of AM* for which
the image of the element o (selected above) in G(£2;, ()/k(p)(x)) is the
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Frobenius symbol for some first degree prime x — x, of k( p)[x] (as in
Proposition 2). Then (from the discussion proceeding Proposition 2)

Fa(xo,¥) =0 mod p has no solution for pe 4,,. This concludes the
proof. 1

Remark 4. Our proof of Theorem 3 started out with a procedure (due

to Hilbert) whereby we are reduced to limiting the integral points on a

collection of curves (defined by fa,(x, y) in the notation of the proof). We
could have proceeded more directly, and thereby have eliminated this
reduction of the problem (as in [10; Section VI1.4)]). In fact, let f(x, ) be
the polynomial (absolutely irreducible) for which we desire to demonstrate
the conclusion of Theorem 3. For each o in G(22,/Q(x)) let x, and p, be
given (by the proof of Theorem 3) satisfying: { p,},cc 1s a distinct set of
primes;

GOAQ()) 2 GQn((p)():  and (F@KPON _ (o

x_xo

where x — x, is a first degree prime of k( p)[x]. By the Chinese remainder
theorem, solve for x, so that x, = x, mod p, for each o € G(2,/Q(x)). The
proof of Theorem 3 shows that P = {x, + m - [lsec P, | m € Z} is the
desired arithmetic progression.

The group G(£2,/Q(x)) is a permutation group when represented on the
n zeros of f(x,y). If o e G(£2,/Q(x)) is an n-cycle in this representation,
then f(x,,y) mod p, 1s an irreducible polynomial in one variable over
k(p,). Thus for integers x,€ P, = {x, +mp, | me Z}, f(x,,y) 1s an
irreducible polynomial in one variable over Q. Hence we obtain

THEOREM 4. Let f(x, y) € Z[x, y] be irreducible over Q. Assume that
(in the previous notation) G(£2;/Q(x)) contains an n-cycle in the representa-
tion of this group on the collection y, ,..., ¥, of the zeros of f(x,y). Then
there exists an arithmetic progression I of prime modulus such that the
conclusion of Theorem 3 holds.
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