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1. Introduction and notation. Let A} and AZ be two copies of affine n-
space defined over Q. The Noether cover is the Galois cover (with group S,)

¢'I
associated to the map A — Ag¢ that sends (y(1), ..., y(n) to the n-tuple of
symmetric functions

(x(), .., xm) = (... (=1 Yy ..oy ...)-

J)y <..<jd

For {i(1), ..., i(w)} = I a subset of {1, 2, ..., n}, the coefficient locus X (I) is

defined by the equations x (i) =0 for all i¢l.

The discriminant locus is the image in A7 of the points of A; for which
two or more entries are equal. We identify the irreducible components of the
intersection of X (I) with the discriminant locus. If the elements of I have no
common divisor, besides some trivial components (hyperplanes), this intersec-
tion is irreducible (Theorem 3.1).

Cohen [1] has shown that the Galois group of the cover induced by
certain subvarieties of X(I) is §,. An easy -onsequence of the above
irreducibility is a less sharp result: the group of the cover induced over X (I)
is S,. Examples show (§ 4) that our results may remain valid for all of
Cohen’s subvarieties.

For F a field, F is a fixed algebraic closure of F. Let A% (F) denote the n-
tuples of elements (y(1), ..., y(n))e(F)". The subscript R (for “roots”) in-
dicates that the n-tuple is regarded as an ordering on the roots of the monic
polynomial .

ﬂl(y—y(i)) =p(y) =y"+ 21 x(@)-y"t

Let AZ(F) denote another copy of affine n-space: the subscript C (for
“coefficients”) indicates that the points of A% (F) correspond to the coefficients
of monic polynomials of degree n.

For X defined by equations with coefficients in F ([3], p. 181), X is F-

* Supported by NS.F. Grant MCS 80-03253.



60 M. Fried and J. Smith

irreducible if X is not the union of two proper closed disjoint subsets of X
defined over F. It is reduced if each F-irreducible component appears with
multiplicity one.

Denote by D, the discriminant locus of A¢. For {i(1),...,i(u)} =1 a
subset of {1, 2, ..., n} the coefficient locus corresponding to I is the F-linear
space X (I) of A} defined by the equations x(i) = O for all i¢I. We explicitly
identify the components of the intersection of X (I) with D,. Under the
hypotheses that nel, gcd. (i(1), ..., i(w)) =1, and the characteristic of the
field is suitably restricted, it consists of (possibly) two coordinate hyperplanes
and a large irreducible component. It follows easily that the decomposition
group for X (I) is a primitive group containing a 2-cycle; thus it is S,. Cohen
[1] has shown that this last result holds even for a sublocus X’ of X(I)
defined as follows (subject to restrictions on the characteristic): for
J = 1u {0} with |I U {0} ~J| > 2, X’ is the subset of X (I), x(i) = a(i) for ieJ
with a(i) a nonzero constant. In Section 4 we present evidence that the
irreducible components of the intersection of X (I) and the discriminant locus
remain irreducible upon intersection with these Cohen loci.

For a polynomial f(y) = x(0)-y"+ ) x()'y" 'eF[y] the discriminant

of f, D(f) is traditionally defined as ([4;11 p. 86-87):
(1.1) D(f) = (x(@) " > [T =»())

where y(1), ..., y(n) are the zeros of f.
Consider the universal polynomial of degree n:

R

(1.2) Y x(@) y"i-zi = 0.

i=0

Denote it by z"-f(y/z; x). Then D(f(y/z; x)) is D,. Also:
D(f(z/y; ®) = x>~ - [T ((z/34D) ~(z/y ()))

= x(m*" ([T (y()/2)— (v (/2) (T[T 0 @/2)- (v 3)/2))
= x(m>™ 2 (x(n)/x (0)) "2~ “( (y(i)/z (v ()/2)))
= D(f(y/z; ®).

Finally, consider the trinomial x(0)-y"+x(j)-y" /- z'+x(n) 2"
=z"f(y/z; I) with I = {j, n}. Then

(1.3) D(f(y/z; D) = (x(0Y ™) (x(n)"~ "~ ") E(I)

with E(I)=n"x(0)" 7 x(nf+ (= 1) 1 -Gy -(n—j)" F-x()". If (char(F),j)
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= (char (F), n—j) = (char (F), n) = (n, j) = 1, then E(]) is irreducible since the
specialization of x(0) to 1 gives an irreducible polynomial.

2. Basic lemmas on the resultant. As in expression (1.2) consider the
polynomial

" f(yfz; %) =) x(i) y" "2

and its discriminant D(f (y/z; x)). Throughout this section I = {i(1), ..., i(u)}
denotes a subset of {1, 2, ..., n} with these properties:

21 @ i<i@<...<i(w)=n; and
b  ((),iQ,....iw)=1.
For simplicity denote x(0)-y"+ Y. x(i()) y"~'P-2'? by z"-f(y/z; D). 1t is
j=1
vaiuable to let i(j) = n—i(j) whenever it is clear that i(u) = n.
The fundamental theorem on discriminants ([4], p. 87):

0
x(0)-D(f (v/z; x)) = R(f(y; x), aﬁy(f(y; x)))

(often abbreviated Rt £, 1) where R(f, f) is the determinant of the matrix
M (x):

[ x(0) x() ... x@m 0 o |
ne 4 0 x(0) ... x(n=1) x(n) 0
2.2 - 0 x(n)
| nex©) (n—=1-x(1) ... 0
.l 0 n-x(0)
i 0 e 2:x(n=2) x(n—l):

In the specialization of z"-f (y/z; x) to z"-f (y/z; I) the resulting specialization
of M(x) is denoted M (I). Clearly, D(f (y/z; x)) is a homogeneous polynomial
of degree 2-n—2.

DerINITION 2.1. A monomial [] x(i)® is defined to have weight equal to
i=0
Y i-r(i), and a polynomial is said to be weighi homogeneous if all terms
i=0
have the same weight. Denote the weight of a weight homogeneous poly-
nomial he F[x(0), ..., x(n)] by wt(h).
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LEMMA 2.2. The polynomial D(f (y/z; x)) is weight homogeneous of weight
n-(n—1). The polynomial D(f (y/z; I)) is equal to

(X (O)i(l)— 1) ,(x(n)n—i(u— 1)~ 1) -E (I)
where

deg(E(D) =n—i(1)+i(u—1) and wt(E(I))=n-i(u—1).
Proof. The statement that D(f y/z x)) is weight homogeneous is
equivalent to the statement that D(f (y/z; X)) is homogeneous (of degree
n:(n—1) in x(0), ..., x(n) where X = (1, x(1), x(2)?, ..., x(n)").
For a an indetermmate, consider the effect of changing (x(0), ..., x(n))
to (ax(0), ..., a-x(n): z"-f(y/z; X) becomes

Yatx(@ oy =Y x() -y (o 2)
From expression (1.2) the effect on D(f (y/z; X)) is this: If 5(1), ..., y(n) are
the zeros of f(y;X), then [[(F(®)—F()) becomes [](a- y(t) a-y(j)) or

i# i#tj
a0~V D(f (y/z; ). ’

Now consider the second statement of the lemma. The first i(1) columns
of M (I) are divisible by x(0), and the last n—i(u—1)—1 columns of M(I) are
divisible by x(n). The remainder of the lemma follows easily. =

The proof, in Section 3, that E(I) is irreducible, depends on considering
the effect on E (I) of setting x(i(j)) = O (write E(J)mod (x(i(j))); it is the same
as E(I—-{i(j)})). These next lemmas simplify calculations.

Lemma 23. Let I' = {i’(1), ..., i'(w)} be a subset of {1, 2, ..., n} satisfy-
ing (2.1) (a) but not necessarily (2.1) (b): (i'(1), ..., ' () = d. Rename the
u'+1-tuple of variables (x(0), x(i' (1)), ..., x(i' ))) to be

(x'(0), X' (" (1)/d), ..., X (i' (u)/d)).
For

I'(x)y={i'(lyd, ..., i (w)/d}

(a subset of (1,2, ..., n/d}) allow a slight misuse of notation and write f(y/z; I')
=f((y/2)"; I”(x ). Then

D(f (vy/z; 1) = (=1~ x (O - x(m)*~*d" D{z"-f (y/z; I" (X))
-Consequently, E(I') = (—1)""®d-g"-(E(I" (x))f (where E(I"(x)) is computed
Jrom f (y/z; I" (x)))).

Proof. Factor out d from each of the last n rows of M(I'). Then
rearrange the rows so that the new rows, in order, are the old 1st, (d + Dth,
(2:d+th, ...; 2nd, (d+2)nd, ...; ... rows. Then do the same for the col-
umns. The result is a block diagonal matrix with d blocks: the first d—1
blocks are the same and equal to
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n/d
() B
_ e -
i JI x(0) 0... (x(i'(1)) ... x(n) 0 ...0
CXO) x(n)

i { (n/d)-x(0) O ... (7 (1)/d)-x(i'(D) ... O

by . —

and the last block, M”, is obtained from M’ by removing the (n/d)th row and
the last column. Expand the determinant of M’ along the last column to
obtain det(M') = (— 1)™? - x(n)-det(M"”). The lemma follows easily from the

¢
observation that det(M") is the resultant of f(y; I”(x)) and 5 fy; I (x))

and so equals x(0)-D(f(y; I"(x))). =

LemMMma 24. Let I' = {i'(1), ...,.i' (u")}, as in Lemma 2.3, be a subset of
{1,2, ..., n} satisfying (2.1) (a) (i.e, i'(W)=n). Let I" = {i'(1), ..., i' (W' —1)}
regarded as a subset of {1, 2, ...,V (W —1)}, and, allowing a slight misuse of
notation, write

(23) (@)  f/z: 1) =W/~ f (y/z; I')+x(n).

Then D(f (y/z; I))/x(nf"® =Y~ ' mod (x(n)) equals

23) b) (=D T =)' V(i@ ~ D@D (f (y/z; 1)
with ' = (n—1)-7 (W' —1).

Proof. Factor x(n) out of each of the last ' (' —1)—1 columns of M(I')
to obtain the matrix M’ whose determinant is

x(0)- D(f (y/z; I))/x(mf @11,

Consider the matrix

(] x0 . x@@=) o , o .
') S E W o
*. . o
0 x(0) x({"(w™-1) 0...|x(n)
nex(©) ... Pu-1)x@w=-1) o...
M= n—1 o . 0
n+x(0) " ~1) -x("(u'~1)
Pu'--x(@i’@w-1)| o
) 1
0 .
i 1
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The last 7 («'—1) rows of M" are, in order, the (i (W' —1)+1)th, ..., (n—1)th
rows of M’, while the (i'(u'— 1)+ 1)th to the (i’ (' — 1)+ njth rows of M” are,
in order, the nth to the (2-n—1)th rows of M’

‘Thus, det(M”)mod(x(n)) is the product of

(W —1) x(i' ' — 10)) E
and the determinant of the following matrix:

x(O cox(i (u —1) |
O] ". .
x(0)... x(L' Wu’-1)

M=

n-x(O). -1 x(['(u'—1))
i'w'=1) ’ .
] nx(O) "= 1) x (i (')

Subtract 7’ (u'—1) times each of the first i'(¥’'—1) rows from the correspond-
ing one of the last i'(u'— 1) rows, and then expand the determinant of the
resulting matrix about the 2-i' (' — 1)th column (which has only one nonzero
entry, x(i'(u’ —1)), in the i'(u'—1)th row). The result is

e 0
(=1 “”'X(i’(u’—l))'R(f(y; 7, 5;(f(y; I"))>,

and from this the conclusion of the lemma follows easily. m

CoRrOLLARY 2.5. Let I'={i'(1), ..., ' (W)} be a subset of {1,2,...,n}
satisfying (2.1) (a). Rename the w'-tuple of variables (x(i'(1)), ..., x(i' () to
e (x'(0), x (' (Q=i'(1)), ..., x'(n—i'(l))). Let 1" = {i'(Q—i'(1), ..., n—i'(1)}

regarded as a subset of (1,2, ..., n—i'(1)} and write

Zn~ l(l)f( /Z I x)) "Z ( (])—l 1)) n=i'Q) . L@ -v)

Then D(f (y/z; I'))/x(0)" ¥~ ' mod (x(0)) equals

(24) (= D= DD (D x (i (D DTLD(f (v/z; I (X))
Assume that v = 3. Then
(2.5) (a)

E(I'ymod (x(n)) = (= "™ DT 0.7 (o — 1)@ =D x (7 (' — 1)) @~ D E(I")

where 1", regarded as a subset of {1, 2, ..., i (W' —1)} is given in the statement
of Lemma 24; and

25) (b)  E(I)mod(x(0) = (— 1)~ DOy (1y' W x (i (1)l @ - E(I'" (x')).
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Proof. From Section 1, D(f (y/z; I')) = D(f(z/y; I') where y"-f(z/y; I')
equals

x(0)-z2"+ 3 x(i'())-y-nmEO,
i=1

Apply Lemma 2.4 to D(f (z/y; I')) by changing x(n) to x(0) (the coefficient of
z"), by changing x(i' (&' —1)) to x(i'(1)) after noting that the power of y that
appears in the corresponding terms changes from i’ (u'— 1) to /’(1), and finally
by noting, again from Section 1, that D(f (y/z; I''(x)) = D(f (z/y; I'" (x))).

Formula (2.5) (a) follows, now, immediately from Lemma 2.2 by check-
ing -the power of x(i'(u'—1)) that appears on both sides of the equation.
Similarly for (2.5) (b). =

Finally, the next lists summarize the application of Corollary 2.5
and Lemma 2.3 to simplify the expressions E(I) mod(x(k)) for k = 0, i(1), ...
..., i(#) = n. Consider the greatest common divisors of the following sets: for
Mu=1),...,i(1), n} = {i(j)} let this be d(j), j=1,...,u—1; for li(u—1)—
—i(u—2), ..., i(u—1)~i(1), i(u—1)} let this be d(u); and for }i(u—1), ..., (1)}
let this be d(0). Denote by I(j) the set

@G, s 1G=1/d ), iGHD/AG), ..., i/d ()],

regarded as a subset of [1,2,...,i(w/d(j)} if j+#u; let I(u) be the set
{i(V)y/d @), ..., i(u—1)/d(u)}
regarded as a subset of {1,2,...,i(u—~1)/d(w)}; and let 1(0) be the set
{1 (2)=i(D)d(0), ..., (n—i(1))/d(0)}.

Compatible with notation of the previous results of this subsection define
f(y/z; 1(j)) by the following formulae:
(2.6) (@) f/z: D =L (/"5 T(D)+x(i(j))-(w/2)" P,
j=0,1,...,u—1 where i(0) = 0; and
(b)  f(y/z; 1) = (/2" f (y/z; Tw)+x(n).
Then, for E(I(j)) computed from f(y/z; I(j)) as above:
27) (@) E(D) = (=1 -d iy (E(I()) mod (x(i(j)
for j#£0,1,u~1, u;
(b) E()=(=1)" x(i(w— 1“2 T~ 1" d@e " x
x E (I (w)*™ mod (x(n)),
with n' = n-(i(u—1)+1)—(i(u—1)/d (w);
(© E()=(=1"x (V)i (1) -d (0" E(I(0)*® mod (x(0)),
with n" = n-(i(1)+1)—(i(1)/d (0));

5 — Acta Arithmetica XL1V.1



66 M. Fri¢d and J. Smith
() E@)= (=1 0@ @70 -d(1) E(I()F mod (x(i(1)); and

(C) E(I) = (_ l)n—(n/d(u— 1) ,x(n)i(u— D —iu—2) -d(u— l)n %
x E(I u— 1)y~ Y mod (x (i (u—1))).

This subsection concludes with an example to accustom the reader with these
formulae and to display the comparative case with which we may now show
that, for I satisfying expression (2.1), E(I) is reduced.

ExaMpLE 2.6. Let n =15, I = {5, 6, 15} so f(y/z; I) is a quadrinomial.
We simplify the formulae (2.7) by totally disregarding the power of —1
appearing in the initial term of the products. In addition we use expression
(1.3) to compute E(I) in the case that f(y/z; I) is a trinomial. Compute:

(28) (@) E(I)=9°x{6)'°(6° x(0) x(6)° — 5°- x(5)*) mod (x (15));
(b)  E(I) =5% x(5)°(10'° x(5)° - x(15)—9° - x(6)*®) mod (x(0));
(©)  E()=3"-x(0)(5° x(0)® x(15)2+22-33 x(6)°)* mod (x(5)); and
d)  E()=5'x(15)(3*- x(0)*- x(15)+22 - x(5)*)° mod (x(6)).

All expressions are of weight 90 and degree 16. If E(I) is irreducible, then it
is reduced; assume that E(I) = F-G. Let F be the factor of largest weight.
From (2.8) (b) and (c), F has weight 60 or 90. If F has weight 60, then deg(F)
=10 and deg(G) = 6 which implies, from (2.8) (c), that Gmod(x(5)) is a
constant times x(0):(5°-x(0)*-x(15)%?+2%-3%-x(6)°) which is reduced if
char(F) does not divide 2-3-5. Clearly, with this supposition E(I) is
reduced. =

3. The irreducibility of E(I). This section consists of the proof, divided
into parts, of the following:

THeoreM 3.1. For
" f(y/z; D) =x(0)-y"+ Y x(i(j)) y"~V- 2V
j=1

where expression (2.1) holds (ie. (i(1), ..., i(w) =1, i(u) = n) consider E(I),
defined by the formula

D(f (y/z; 1) = x(OFD~ - x(nj*~ =1 -E())
(as in Lemma 22). Then, there exists an explicitly computable integer
N(i(1), ..., i(w) such that E(I) is irreducible if (char (F), N(i(1), ..., i())) = 1.
We go through the proof on the assumption that char(F) =0, and, at

the conclusion, collect observations on the integer N(i(1), ..., i(u)). When
f(y/z; I) is a trinomial the result is known: expression (1.3).

Part 1. Reduction to the case when f(y/z; I) is a quadrinomial. Induct on
the cardinality of I assuming that the result is true in the case that |I] = 3 (or
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2). For this argument let c; denote a constant of no serious consequence to
the computations. Suppose E(I}) = F-G. Conclude from expression (2.7) that
(3.1) (@ F=c; x Oy (E(I(1)))" mod(x(i(1))) with
s(1) <d(1) and r(1) <i(2)—i(l1); and
(b) F =c, (E(I(2)F'®mod(x(i(2))) with s(2) < d(2).

Thus, from Lemma 2.2, wt(F)=s(1)-wt(E(I(1)))=s(1)-n-i(u—1)[(d(1))
=5(2)-wt(E(I(2)) = s(2)-n-i(u—1)/(d(2)). Note that the weight, in these
cases, involves the coefficients of f(y/z; I) although they appear in terms of
lower degree in y/z in f(y/z; I(j)). From this equation d(1)-s(2) = d(2)-s(1),
and since (d(1), d(2)) = 1, this implies that either s(1) = d(1) and 5(2) = d(2),

or s(i) = 0 for some i = 1, 2. In either case, one of F or G is a constant, and
this concludes the argument under the induction assumption.

Part 2. The basic equations when f(y/z;I) is a quadrinomial. Let [
= {i(1), i(2), i(3)} and start the analysis as in Part 1 by an application of
(2.7) and (1.3) to a factor F of E(I) to conclude:

(3.2) (@) F =co-x(i(1)y@-(E(I(0))* mod (x(0))
=co X ( 1))r(0)( 0)+( 1)('(1)/d(0)) I.B(O)):(O)

with
s(0)<d(0), r(0)<i(2), i'(2, 1) = ({(D—i(1))d(0),
A0) = ﬁ(l)/d(o))f(l)/d(o).x(i(l))f(z)/d(o) -x(i(3))'"‘2'”, and
B(0) =i'(2, 1)1"(2.1) .ﬁ(z)/d(o))T(Z)/d(O).x(i(z))f(l)/d(o);
(b) F=cy3-x(i@y®-(E(IQ3)*> mod(x(i(3))
=cy- x(i (2))r(3) '(A B)+(— 1)(i(2)/d(3))— 1 .3(3)):(3)
with
s(3) <d(@3), rG) <i(l), "2, 1) = ({(Q—i()yd(3),
AQ3) = (i (2)/d(3))i(2)/d(3).x(())i”(z.l) . x(i (2))-'(1)/:1(3), and
B(3) _(i(l)/d(3))t(l)/d(3) i"(2, 1)! (2,1), x(l(l))'(z)/d(s)
€ F=c,-x(0y®-E(I()f™ mod(x(i(1)))
=c - x(O)’(” ( (1)+(=1 )(1(3)/d(1)) 1 'B(l))’(”
with '
s(1) < d(l), r(1) <i(Q—i(l),
A(l) = (n/d(l))"/d“’ x( )1(2)/d(1) x( 3))1'(2)/:1(1), and
B(1) = (i(/d (1)) - F(2)/d (DD - x (; Q)0
d) F=c, x(i@)® E(I(2)®mod(x(i(2)))
=c,- x(i (3))r(2) '(A 2+ (- 1)(i(3)/d(2))— 1, B(z))s(Z)
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with
s(2) <d(2), r(Q)<i(2)—i(1),
A(2) = (n/d ()42 - x(O)'T‘”/“‘Z’-x(i(3))"‘”/"‘2’, and

B(2) = (i(l)/d(z))i(l)!du) .(7(1)/61(2))1'(1)/:1(2) . x(i(l))"/d(z’.

Part 3. Two variable monomial equalities. The powers a and b to which
the variables x (i (j)) and x (i (k)) appear in the monomial x (i (j)f* x (i (k))’ in F
may be checked through the appearance of this monomial in the formulae of
(3.2): monomials involving only x(0) and x(i(3)) in (3.2) (c) and (d) give the
formulae

r(D)+s(1)-FQYd (1) = s {(1)d ()

and

s(1)-({(d (1)) =r(2)+s(2)-(i(1)/d (2));
monomials involving only x(0) and x(i(2)) in (3.2) (b) and (c) give the
formulae
s(3):i"(2, )=r(1) and r(3)+s@3)-(i(1)/d3)) =s(1)-n/d(1);
monomials involving only x(i(1)) and x(i(3)) in (3.2) (a) and (d) give the
formulae
r(0)+s(0)-(1(2/d(0) = s(2)-(n/d(2)) and  s(0):i'(2, 1) = r(2);
and monomials involving only x(i(1)) and x(i(2)) in (3.2) (a) and (b) give the
formulae
r(0) =s(3):(i(2//d(3)) and s(0)-(i(1)/d(0)) = r(3).

Eliminate r(0), r(1), r(2) and r(3) from these equations to obtain
equations relating the quantities s(i)/d(i) =s'(i), i=0, 1, 2, 3:
(33) @ SO -([{()-i2) =52 i()=s(1)i(2);

(b) s'(1):-n=s5(0)i(1)+s(3)-i(1);

(¢ s3)i(2Q=52)n-s50)i(2); and

d)  sO-(i(Q=i())=5(1)i(Q—5(2)i(1).
Note: i(2)—i(1) =i(1)—i(2), and given any two of these equations the other
two are linearly dependent upon these.

Finally we record the coefficients, up to sign, of the monomials of
F involving only two variables: coefficients of monomials involving only
x(0) and x(i(3)) in (3.2) (c) and (d)
(34) (@) ¢y (n/d)? and ¢, (n/d(2))"® where ¢, divides d(1)" and

¢, divides d(2)";
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coefficients of monomials involving only x(0) and x(i(2)) in (3.2) (b) and (c)

(b)) ¢y (i(2/d (3PP and
¢y (i (2)/d (DY@ D ([{(2)/d ()P where
¢, divides 7(2)"®-d(3)®;
coefficients of monomials involving only x(i(1)) and x(i(3)) in (3.2) (a) and (d)
(©  co(f(1)/d(@)"* and
¢y (i (1)/d QY@ - ([ (1)/d(2)f V' where
¢o divides i(1yV-4(0y"; and
coefficients of monomials involving only x(i(1)) and x(i(2)) in (3.2) (a) and (b)
@ o (= iY@~ [{(2/d O+ and
3 (D@D (=i () d @@=,

Part 4. The divisibility relation for a sequence. Recall, for a prime p, that
the notation p||r means that the ith power of p is the highest power of p that
divides r. A sequence of integers a(1), a(2), a(3) satisfies the divisibility
relation if the following holds: (a(1), @(2), @(3)) = 1; and, for each prime p, if
Plla(2), then either p|a(1) or pjla(3). Clearly, if a(l), a(2), a(3) satisfy the
divisibility relation then a(2) =(a(2), a(1))-(a(2), a(3)).

Consider the following sequences:

(35 (@ i@=i(1),i(2), n;

(b) (1), i(2)—i(1), i(2);

© n i), i(2—i(1);

(d (1), i(2)—i(1); and

© i(2—-i(l),i(2),n.

From (i(1), i(2), n) =1 each sequence is a relatively prime triple. Suppose
that each satisfies the divisibility relation. Then, from the expression i(2)
=i(1)+ (i(2—i(1)) (3.5 (b), (c) and (e) yield

(2, i@—i(1)(i(2), n)
=(i(1), n)-(i()), i) —i(M)+ (((D—i(1), i(1)({(Q—i(1), {(2).
Divide this by (i(1), i(2)—i(1)) to obtain
({2, n) = (i), )+ ((2)—ith), (D) or (i(2). n)>(i(H. n).
Similarly, from the expression i(1) =i(2)+i(1)—i(2) (3.5) (a), (b) and (d) yield
(7(1), n)-(i(1), i(1)—1i(2))
=(7(2), 1(1)=1(2)-(1(2), n)+(7()=7(2), i(V)-({()=7(2). ().
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Divide this by (i(1), i(1)~7(2)) = (7(2), 7(1)=7(2)) to obtain
(i), n) = (12, M+ ~i(2), i(1)

or

(7(1), n) = (i(1), n) > (i(2), n) = (i(2), n).
This contradiction shows that it is not possible for all of the sequences of
expression (3.5) to satisfy the divisibility relation.

Part 5. Conclusion that there exists i # j for which s'(i) = s'(j}. From the
argument of Part 1, E(I) is irreducible in the quadrinomial case if there exists
i #j for which s'(i) = s'(j), and this concludes the proof of the theorem. The
remainder of this part consists of computations to show that either s'(l)
= §'(k) for some | # k or all of the sequences of expression (3.13) satisfy the
divisibility relation: from the conclusion of Part 4 this proves the theorem.

The treatments of each of the sequences of expression (3.5) are ap-
proximately the same; tedious, mostly, once one has been inspected.
Therefore we consider only (3.5) (b} which is, perhaps, the most involved
since it has i(2)—i(1) as the middle term. Suppose p||i(2)—i(1) with e > 0.
We must show that if pti(1) (resp., p4i(2)) then either p%(i(2) (resp., p%li(1))
or s'(I) =s'(k) for some I # k.

Assume pti(1) and p/|[i(2) with e #f. Let a; be the power of p in
¢, i=0,1,2 3. There are two subcases: start with the case f> e. Then
peli(1). Also, ptn, so ptd(1), d(2) or d(3), and p°||d(0). By equating the
powers of p that appear in the pairs of coefficients of expression (3.4), we
obtain (in order) four equations: 0 =0; a; =f-i(2)s'(}); ao = e-i(1):5'(2);
and ao+(f—e€)i(2)-s'(0) = as +e-(i(2)—i(1)) 5" (3).

Eliminate a, and a; to get

e (1) s+ (f—e)-i(2)s(0) =/i(2) s ()+e-(i(—i(1))s'(3).
Now use the equations of (3.3) (a) and (d) to eliminate s'(0) and s'(3); the
result is s’ (1) = s'(2).

Now consider the subcase e > f, so p/||i(1). Again, from the pairs of
coefficients of expression (3.4): 0 = 0; ay = f-i(1)-5'(1); ap =f-i(1)-s'(2); and
ag+(e—f)-(i(2Q—i(1)) s'(0) = az+e-(i(2)—i(1)) 5’ (3).

Thus,

L) s+ (e—f) (((—i(1))s'(0) =11(2) s’ (D +e-(i(2—i(1))- s’ (3).
Eliminating s'(0) and s'(3) as above, one concludes s'(1) = s'(2).

Part 6. Comments on the divisors of N(i(1),...,i(u)). The proof
above has established that E(I) is irreducible (as a polynomial in
Z[x(0), ..., x(n)]). It is clear from the proof that, in extending the result
from Q to F of arbitrary characteristic, the characteristics of difficulty must
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include the divisors of i(l), ..., i(u), and i(j)—i(k) for j#k, j=1, ..., u;
k=1, ..., u. It is reasonable to guess that these are the only bad primes and
that N (i(l), ..., i(u)) may be taken to be the product of just these primes.
There is, however, a fair objection to this. The argument of Parts 4 and 5
depends on divisibility properties of differences of coefficients in the list of
expression (3.4), and such an argument cannot work directly over a field of
positive characteristic.

Thus, appropriately, as an ending to our argument, we appeal to a well
known lemma of Noether: Since E(I) (as a polynomial in Z[x(0), ..., x(n)]) is
irreducible, there is an explicitly computable integer N (i(1), ..., i(w)) such
that, for p a prime not dividing N (i(1), ..., i(w), E(I)mod (p) is irreducible in
Z/p)[x(0), ...., x(n)] (e.g., [2]; Lemma 3.1 on p. 219). This is the integer
whose existence is asserted in the statement of the theorem.

4. The intersection of E (I) with a Cohen locus. A Cohen sublocus of X (I)
derives from a subset J of I U {0} with |I U{0}—J| > 2 and nonzero values
a(ieF for ied.

Denote the result of specialization of x(i) to a(i) in E(I), ieJ, by
E(l, a).

In the next theorem we consider only the case I = {m, m+1, n} and
J=1{0, n} (ie, set x(0) =a(0) and x(n) = a(n)).

THEOREM 4.1. If the characteristic is suitably large (dependent only on m
and n), then E(I, a) is irreducible where I and J are given above.

Proof. Since the result is so special we show the method of proof only
in the case m =5, n=15 (ie, Example 2.6) to avoid tedious calculation.
With no loss assume that F = F is algebraically closed. Denote E(I, a) by E
and note that (2.8) (c) and (d) are valid for E and (2.8) (a) and (b) can be used
to identify the terms of E which do not contain both x(0) and x(n).

Write E = R(16)+ R(15)+ ... +R(0) where R (k) consists of all terms of
total degree k in x(5) and x(6). From (3.8) (up to change of the sign of E):

R(16) = —5°-97-x(5)°- x(6)'°;
R(15) =31%:2-3%-4(0)- x(6 15+515-2“’-a(15)-x(5)15.
Suppose E = F-G. Display the terms of F and G by their total degrees:
F=P(@i)+P{i—1)+ ... +P(0),
G=0()+Q(—-D+ ... +Q(0), i+j=16.

Since P(i)-Q(j) = R(16) both P(i) and Q(j) are monomials. Moreover
P@i)-Q(j—1)+P(i—1)-Q(j) = R(15) contains both x(6)!> and x(5)!°. This is
impossible if either P(i) or Q(}) is divisible by x(5)- x(6). So each of P(i) and
Q(j) is a power of a single variable, say P(i) = c(10)-x(6)*° and Q())
=d(6) - x(5)° for some c(10), d(6) in F.
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Since ¢(10)-d(6) = —5°-9° we may assume c(10)= —9°, d(6) = 5°.
Hence R(15)= —38-x(6)'°-Q(5}+5°-x(5)%-P(9). All monomials in the
first term are divisible by at least 10 powers of x(6) and those in the second
by at most 9, so there is no cancellation of terms. Hence

Q(5) = —6°-a(0)-x(6)°>, P(9) =10'°-a(15) x(5°,
F=—-9"x(6)'°+10'%-a(15) x(5)° + P(8)+ ... + P(0).

Note that Emod(x(5)) is 3'°-a(0) times a product of fifteen terms of the
form 2%5-335-x(6)+¢;-5-a(0)*®-a(15)*° where the ¢; are various fifth roots
of 1. Since F mod(x(5)) starts with 3'8-x(6)'® it must contain a product, =,
of ten of the above factors:

n=2%35%(6)04+ ... +¢-51%-a(0)5-a(15* with & =1

and
F=-38-x(6)'"+ ... = =3'2:27* 7 mod (x(5)).

Hence the constant term, P(0), of F is —3'2-274.510.4(0)5-a(15)* ¢.
A similar argument gives

F =10'°-a(15)-x(5°+ ... =10'°-27%-4(15) 7' mod (x(6)),
where 7’ is a product of 9 factors of the form
222 -x(5)+n;-3-a(0)*?-a(15'?  with 5} =1.

Hence P(0) = 5'°-2*-3°-4(0)°-a(15)*-n. If the characteristic of F is not
2, 3 or 5, comparison of these two expressions for P(0) gives -2% = —¢g-33,
Put both sides to the 15th power to get a contradiction if (Char(F), 2'2°+
+345) =1. m
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