MATH 13 WINTER 2016 HOMEWORK 2

Due: Friday January 29 Please turn in at the lecture.
Student name/id (include all students in the group):

IMPORTANT INSTRUCTIONS: It is crucial that you write your arguments clearly and that each argument clearly shows how you arrive at the conclusions from the assumptions. This is the point of homeworks - to practice understanding of the material, proofwriting, and the ability to express your understanding.

When preparing the homeworks, please follow the Rules for homeworks on the course webpage under Course information and policies and also the guidelines under Grading. In particular, keep in mind the Aspects of grading in the Grading section.

1. An integer is a square if and only if it is of the form x^{2} for some integer x. Write down the following statements in rigorous mathematical language using quantifiers and logical connectives.
(a) ($\mathbf{1} \mathbf{p} \mathbf{t})$ Integer y is a square.
(b) (1pt) Some integers are not squares.
(c) ($\mathbf{1 p t}$) Integer y is a sum of two squares.
(d) $(\mathbf{1} \mathbf{p t})$ Every integer is a sum of two squares.
(e) (1pt) Negation of (d).

Prove or disprove:
(f) (1pt) (b) holds.
(g) (2pt) (d) holds.

Caution! When forming negation do not simply put the negation sign in front of the statement, but reformulate the statement according to rules for negating quantified statements; see Book, Theorem 2.28. At the same time write down this negation in a way that it has reasonable mathematical meaning.
2. Consider the parametric equation

$$
\begin{equation*}
3 x^{2}+p x+1=0 \tag{1}
\end{equation*}
$$

Write down the following statements in rigorous mathematical language using quantifiers and logical connectives.
(a) (1pt) Equation (1) has an integer solution for any integer parameter p.
(b) (1pt) Equation (1) has an integer solution for some integer parameter p.
(c) (1pt) There is an integer parameter p for which equation (1) has more than one solution.
(d) (1pt) Negation of (c).

Prove or disprove:
(e) (1pt) (a) holds.
(f) (2pt) (c) holds.

Note: For forming a negation use the same guidelines as for Problem 1 above.
3. Consider a function f with real arguments and real values. We say that:

- f is unbounded from above if and only if f attains arbitrarily large values. Otherwise we say that f is bounded from above.
- f is unbounded from above on the interval (a, b) if and only if f attains arbitrarily large values while the argument ranges over the interval (a, b). Otherwise we say that f is bounded from above on the interval (a, b).
So for instance f is unbounded from above if and only if f is unbounded from above on the interval $(-\infty,+\infty)$.

Write down the following statements in rigorous mathematical language using quantifiers and logical connectives.
(a) ($1 \mathbf{p t}$) f is unbounded from above.
(b) ($1 \mathbf{p t}$) f is unbounded from above on the interval $(0,1)$.
(c) $(1 \mathbf{p t}) f$ is bounded from above.
(d) (1pt) f is bounded from above on every interval of the form $(0, a)$ where a is a positive real number.
Prove or disprove:
(e) (1pt) The conjunction (a) \wedge (d) holds.

