## MATH 13 WINTER 2016 HOMEWORK 3

Due: Friday, February 12 Please turn in at the lecture.
Each group please turn in only one paper.

## Student name/id (include all students in the group):

IMPORTANT INSTRUCTIONS: It is crucial that you write your arguments clearly and that each argument clearly shows how you arrive at the conclusions from the assumptions. This is the point of homeworks - to practice understanding of the material, proofwriting, and the ability to express your understanding.

When preparing the homeworks, please follow the Rules for homeworks on the course webpage under Course information and policies and also the guidelines under Grading. In particular, keep in mind the Aspects of grading in the Grading section.

1. (5pt) Consider the sequence $a_{1}, a_{2}, a_{3}, \ldots$ of integers such that

- $a_{1}=3, a_{2}=6$ and $a_{3}=9$.
- $a_{n+1}=a_{n}+a_{n-1} \cdot a_{n-2}$.

Use strong induction to prove that $a_{n}$ is divisible by 9 whenever $n \geq 3$.
2. (5pt) Recall that in the lecture we will prove/have proved the following property of prime numbers: If $p$ is a prime number and $a, b$ are arbitrary integers then

$$
\begin{equation*}
p \mid a \cdot b \quad \Longrightarrow \quad(p|a \vee p| b) \tag{1}
\end{equation*}
$$

Recall also that in the discussion you proved, using strong induction on $n$, the following generalization of (1): If $p$ is prime number and $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrary integers then

$$
\begin{equation*}
p\left|a_{1} \cdot a_{2} \cdots \cdots a_{n} \quad \Longrightarrow \quad p\right| a_{k} \text { for some } k \text { such that } 1 \leq k \leq n . \tag{2}
\end{equation*}
$$

Notice the resemblance between (2) and (1): Statement (2) can be written as

$$
\begin{equation*}
p \mid a_{1} \cdot a_{2} \cdots \cdots a_{n} \quad \Longrightarrow \quad\left(p\left|a_{1} \vee p\right| a_{2} \vee \ldots \vee p \mid a_{n}\right) \tag{3}
\end{equation*}
$$

Prove (2) using the least counterexample argument: Assume (2) is false for some positive integer $n$, some prime $p$ and some integers $a_{1}, a_{2}, \ldots, a_{n}$, then look at the smallest such $n$ and derive a contradiction.
3. (5pt) By calculating the remainder, decide whether the number

$$
\begin{equation*}
42^{113}+53^{21} \cdot 85^{235} \tag{4}
\end{equation*}
$$

is divisible by 43. Justify and explain all your steps clearly.
4. (5pt) (Book, Exercise 3.1.6) Assume $7 x \equiv 28(\bmod 42)$. By Theorem 3.9 in the book, it follows that $x \equiv 4(\bmod 6)$.
(a) (0.5pt) Use Theorem 3.6 from the book to verify this.
(b) ( $1 \mathbf{p t}$ ) If $7 x \equiv 28(\bmod 42)$, is it possible that $x \equiv 4(\bmod 42)$ ? (That means, is there such an integer $x$ ?) Justify your answer.
(c) $(1.5 \mathrm{pt})$ Is it always the case that

$$
7 x \equiv 28(\bmod 42) \quad \Longrightarrow \quad x \equiv 4(\bmod 42) ?
$$

(That means, does the implication holds for all integers $x$ ?) Justify your answer.
(d) (2pt) Prove Theorem 3.9 in the book, that is, prove that for any integers $k, n, a, b$ the following implication holds:

$$
k \cdot a \equiv k \cdot b(\bmod k \cdot n) \quad \Longrightarrow \quad a \equiv b(\bmod n)
$$

