MATH 13 WINTER 2016 HOMEWORK 5

Due: Wednesday March 9 Please turn in at the lecture.

Each group please turn in only one paper. If you prefer to work alone, that is fine: A group can consist of one member.

Student name/id (include all students in the group):

IMPORTANT INSTRUCTIONS: It is crucial that you write your arguments clearly and that each argument clearly shows how you arrive at the conclusions from the assumptions. This is the point of homeworks - to practice understanding of the material, proofwriting, and the ability to express your understanding.

When preparing the homeworks, please follow the Rules for homeworks on the course webpage under Course information and policies and also the guidelines under Grading. In particular, keep in mind the Aspects of grading in the Grading section.

1. (4pt) Given are sets A, B, C and a set U such that $A, B, C \subseteq U$. The complements of sets A, B, C are computed with respect to U, so for instance $A^{c}=U \backslash A$. In each case decide whether the given statement is true for all such sets A, B, C, U or not, and then prove (if true) or disprove it (if false).
(a) (1pt) (1pt) $(A \cap B) \backslash C=(A \backslash C) \cap(B \backslash C)$.
(b) $(\mathbf{1 p t})(A \backslash B) \backslash C=A \backslash(B \cup C)$.
(c) $(2 \mathbf{p t}) A \times B^{c}=(A \times B)^{c}$.
2. $(4 \mathbf{p t})$ Given are the following a binary relations.
(i) R is a binary relation on \mathbb{N}, so $R \subseteq \mathbb{N} \times \mathbb{N}$ and is defined as follows.

$$
(a, b) \quad \Longleftrightarrow \quad a \equiv b \quad \bmod 7
$$

(ii) S is a binary relation on \mathbb{R}, so $S \subseteq \mathbb{R} \times \mathbb{R}$ and is defined as follows.
$(x, y) \in S \quad \Longleftrightarrow \quad$ there is an integer n such that $n \leq x, y<n+1$.
(iii) T is a binary relation on $\mathbb{Z} \times \mathbb{Z}$, so $T \subseteq(\mathbb{Z} \times \mathbb{Z}) \times(\mathbb{Z} \times \mathbb{Z})$ and is defined as follows.

$$
((a, b),(c, d)) \in T \quad \Longleftrightarrow \quad \max (a, b)=\max (c, d)
$$

Here $\max (a, b)$ is the larger number of a, b if one of them is smaller than the other, and $\max (a, b)=a=b$ if $a=b$.
(iv) V is a binary relation on $\mathbb{N} \times \mathbb{N}$, so $V \subseteq(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ and is defined as follows.

$$
((a, b),(c, d)) \in V \quad \Longleftrightarrow \quad \operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)
$$

Answer the following questions. In either case prove your answer.
(a) (0.5 pt for each relation) Is $R^{-1}=R$?
(b) (0.5pt for each relation) Assume $(a, b) \in R$ and $(b, c) \in R$. Is $(a, c) \in R$?

Formulate the corresponding questions for relations S, T and V, answer them, and prove your answer.
3. ($\mathbf{9 p t)}$ Given are the following functions. Recall that \mathbb{N} consists of all positive integers.
(i) $f: \mathbb{R} \rightarrow[-1,1]$ defined by $f(x)=\sin x$.
(ii) $g: \mathbb{R} \rightarrow \mathbb{Z}$ defined by

$$
g(x)=\text { the smallest integer } n \text { such that } x<n
$$

(iii) $h: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $h(a, b)=2^{a} \cdot 3^{b}$.
(iv) $u: \mathbb{Z} \rightarrow\{0,1,2,3,4\}$ defined by

$$
u(a)=\text { the remainder when } a^{3} \text { is divided by } 5
$$

(v) $w: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ defined by $w(A)=A^{c}$.

Answer the following questions; in either case provide a justifying proof.
(a) (0.5pt each) Is the function f, g, h, u, w injective?
(b) ($\mathbf{1} \mathbf{p t}$ for $u, \mathbf{0 . 5 p t}$ for $g, h, w)$ Is the function g, h, u, w surjective?
(c) (1pt each) Compute $g[[0, \infty)], f^{-1}[\{0\}], g^{-1}[\{0,1\}]$ and $u^{-1}[\{3\}]$.
4. (3pt) Construct bijections as directed, and in each case prove that the function you construct is a bijection.
(a) (1pt) Construct a bijection from A to B where

$$
\begin{aligned}
& A=\{a \in \mathbb{Z} \mid a \equiv 1 \quad \bmod 3\} \\
& B=\{b \in \mathbb{Z} \mid b \equiv 2 \quad \bmod 3\}
\end{aligned}
$$

(b) (1pt) Let A be a set. Construct a bijection from A to $\{0\} \times A$.
(c) (1pt) Let A, B be sets. Construct a bijection from $A \times B$ to $B \times A$.

