MATH 13 WINTER 2016 HOMEWORK 6

Due: Monday, March 14, 2016 Please turn in at the final exam.
Each group please turn in only one paper. If you prefer to work alone, that is fine: A group can consist of one member.

Student name/id (include all students in the group):

IMPORTANT INSTRUCTIONS: It is crucial that you write your arguments clearly and that each argument clearly shows how you arrive at the conclusions from the assumptions. This is the point of homeworks - to practice understanding of the material, proofwriting, and the ability to express your understanding.

When preparing the homeworks, please follow the Rules for homeworks on the course webpage under Course information and policies and also the guidelines under Grading. In particular, keep in mind the Aspects of grading in the Grading section.

1. (6pt; 2pt for each question a,b,c) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Prove the following: If both functions f, g are injections then the composition $g \circ f: A \rightarrow C$ is also an injection.
(b) Assume f is not an injection and g is an injection. Can the composition $g \circ f: A \rightarrow C$ be an injection? (Equivalently, is there a pair of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that f is not an injection, g is an injection and the composition $g \circ f$ is an injection?)
(c) Assume f is an injection and g is not an injection. Can the composition $g \circ f: A \rightarrow C$ be an injection? (Equivalently, is there a pair of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that f is an injection, g is not an injection and the composition $g \circ f$ is an injection?)
2. (8pt; 2pt for each question a,b,c,d) If not specified otherwise, A, B, C and D are sets.
(a) Assume $f: A \rightarrow C$ and $g: B \rightarrow D$ are bijections. Prove that the map $h: A \times B \rightarrow C \times D$ defined by

$$
h(\langle a, b\rangle)=\langle f(a), g(b)\rangle
$$

is a bijection.
(b) Prove that the function $f:[0,1] \rightarrow[0,9]$ defined by $f(x)=9 x$ is a bijection between intervals $[0,1]$ and $[0,9]$.
(c) Prove that the function $g:(0,1) \rightarrow(1, \infty)$ defined by $g(x)=1 / x$ is a bijection between intervals $(0,1)$ and $(1, \infty)$.
(d) Denote the set of all infinite sequences of integers by S. Prove that the functions $h: S \rightarrow S$ defined by

$$
h\left(\left\langle a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\rangle\right)=\left\langle a_{2}, a_{1}, a_{3}, a_{4} \ldots\right\rangle
$$

is a bijection.
Remark. So the function h swaps the first two members of the sequence.
3. (6pt; 1pt for each question $\mathbf{a}(\mathbf{i}), \mathbf{a}(\mathbf{i i}), \mathbf{b}(\mathbf{i}), \mathrm{b}(\mathrm{ii}), \mathbf{c}(\mathbf{i})$ and $\mathbf{c}(\mathrm{ii})$) The following exercise focuses on equivalence relations.
(a) The binary relation E on \mathbb{R} is defined as follows:

$$
\langle a, b\rangle \in E \quad \Longleftrightarrow \quad a-b \text { is an integer }
$$

(i) Prove that E is an equivalence relation.
(ii) Explain what is the equivalence class $[5]_{E}$.
(b) Consider a line ℓ in the plane P. The binary relation R on P is defined as follows: If $x, y \in P$ are two points in P then

$$
\langle x, y\rangle \in R \quad \Longleftrightarrow \quad \operatorname{dist}(x, \ell)=\operatorname{dist}(y, \ell)
$$

where $\operatorname{dist}(x, \ell)$ is the distance of the point x from the line ℓ.
(i) Prove that R is an equivalence relation.
(ii) Consider a point a in the plane P. Explain what is the equivalence class $[a]_{R}$. Also explain what is $[a]_{R}$ in the case where a is a point on line ℓ, that is, in the case where $a \in \ell$.
(c) Let F be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which have the first derivative $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$. (This means: the first derivative $f^{\prime}(a)$ exists for every $a \in \mathbb{R}$.)
Let D be a binary relation on F defined by

$$
\langle f, g\rangle \in D \quad \Longleftrightarrow \quad f^{\prime}=g^{\prime}
$$

(i) Prove that D is an equivalence relation.
(ii) Explain what is the equivalence class $[f]_{D}$. In particular, describe the equivalence class $\left[c_{0}\right]_{D}$ where $c_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is the constant function with value 0 .

