
EXAMPLES OF PROOFWRITING FOR MATH 13 DISCUSSION
PROBLEMS

OF THURSDAY, MARCH 10, 2016

The following are just examples of proofwriting. There are many other
ways how to write these proofs correctly, so should consider these only
as guidelines. The important point is that you justify each step and
clearly explain which assumption/property is which is used and how it
is used. You should be able to figure out on your own what to write and
how much to write.

Problem 1(a). The domain of f is N × N, so elements of the domain of f are
ordered pairs 〈a, b〉 where a, b ∈ N. The following equivalences hold for every
ordered pair 〈a, b〉 ∈ N× N.

〈a, b〉 ∈ f−1[E] ⇐⇒ f(〈a, b〉) ∈ E ⇐⇒ a ∈ E

The first equivalence is an immediate consequence of the definition of the inverse
image f−1[E]. The second equivalence follows from the definition of function f .
We thus have

f−1[E] = {〈a, b〉 ∈ N× N | a ∈ E} = {〈a, b〉 ∈ N× N | a is even}

This can also be equivalently expressed as follows:

f−1[E] = E × N,

because for every ordered pair 〈a, b〉,

〈a, b〉 ∈ E × N ⇐⇒ a ∈ E ∧ b ∈ N ⇐⇒ (a ∈ N ∧ b ∈ N) ∧ a ∈ E

⇐⇒ 〈a, b〉 ∈ N× N ∧ a ∈ E.

⊓⊔

Problem 1(b). The following equalities hold:

g[{〈a, b〉 ∈ D | a = 2}] = {g(〈a, b〉) | 〈a, b〉 ∈ D ∧ a = 2} = {g(〈2, b〉) | (2, b) ∈ D}

= {b | 〈2, b〉 ∈ D} = {b | b is divisible by 2} = E

The first equality follows from the definition of the image g[{〈a, b〉 ∈ D | a = 2}], the
second equality follows since (〈a, b〉 ∈ D∧a = 2) ⇐⇒ 〈2, b〉 ∈ D, the third equality
follows from the definition of g, the fourth equality follows from the definition of D
and the last equality follows from the definition of E. ⊓⊔

Problem 1(c). This is a generalization of Problem 1(b). Similarly as in 1(b) we
have the following calculations:

g[{〈a, b〉 ∈ D | a = d}] = {g(〈a, b〉) | 〈a, b〉 ∈ D ∧ a = d} = {g(〈d, b〉) | (d, b) ∈ D}

= {b | 〈d, b〉 ∈ D} = {b | b is divisible by d}

The justifications are the same as in 1(b) above. ⊓⊔
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Problem 1(d). The following equalities hold:

f [{〈a, b〉 ∈ D | b = 24}] = {f(〈a, b〉) | 〈a, b〉 ∈ D ∧ b = 24}

= {f(〈a, b〉) | 〈a, 24〉 ∈ D}

= {a | 〈a, 24〉 ∈ D} = {a | 24 is divisible by a}

= the set of all divisors of 24.

The first equality follows from the definition of the image f [{〈a, b〉 ∈ D | b = 24}],
the second equality follows since (〈a, b〉 ∈ D ∧ b = 24) ⇐⇒ 〈a, 24〉 ∈ D, the
third equality follows from the definition of f , the fourth equality follows from the
definition of D and the last equality follows by an obvious reformulation. ⊓⊔

Problem 2, calculation of f [Q] and g−1[f [Q]]. The quadrangle Q consists for
the following lines:

• A = {〈x, y〉 | R× R | y = x+ 3 ∧ −2 ≤ x ≤ −1}
• B = {〈x, y〉 | R× R | y = x− 1 ∧ 0 ≤ x ≤ 1}
• C = {〈x, y〉 | R× R | y = −x+ 1 ∧ −1 ≤ x ≤ 1}
• D = {〈x, y〉 | R× R | y = −x− 1 ∧ −2 ≤ x ≤ 0}

so f [Q] = f [A ∪B ∪ C ∪D]. Regarding f [Q]:

f [Q] = {f(〈a, b〉) | 〈a, b〉 ∈ Q}

= {f(〈a, b〉) | 〈a, b〉 ∈ A ∨ 〈a, b〉 ∈ B ∨ 〈a, b〉 ∈ C ∨ 〈a, b〉 ∈ D}

=
{f(〈a, b〉) | 〈a, b〉 ∈ A} ∪ {f(〈a, b〉) | 〈a, b〉 ∈ B}

∪ {f(〈a, b〉) | 〈a, b〉 ∈ C}
∪ {f(〈a, b〉) | 〈a, b〉 ∈ D}

=

{f(〈a, b〉) | b = a+ 1 ∧ −2 ≤ a ≤ −1}
∪ {f(〈a, b〉) | b = a− 1 ∧ 0 ≤ a ≤ 1}
∪ {f(〈a, b〉) | b = −a+ 1 ∧ −1 ≤ a ≤ 1}
∪ {f(〈a, b〉) | b = −a− 1 ∧ −1 ≤ a ≤ 0}

=

{a | b = a+ 1 ∧ −1 ≤ a ≤ −1}
∪ {a | b = a− 1 ∧ 0 ≤ a ≤ 1}
∪ {a | b = −a+ 1 ∧−1 ≤ a ≤ 1}
∪ {a | b = −a− 1 ∧−1 ≤ a ≤ 0}

= [−2,−1] ∪ [0, 1] ∪ [−1, 1] ∪ [−1, 0]

= [−2, 1].

Here the first equality follows from the definition of the image f [Q], the second
equality follows from the breakup of Q into the union of A,B,C,D above, the
third equality follows from the definition of the union of sets, the fourth equality
follows from the definition of sets A,B,C,D, the fifth equality follows from the
definition of f , and the remaining equalities are obvious.

Regarding g−1[f [Q]]:

g−1[f [Q]] = g−1[[−2, 1]] = {〈a, b〉 ∈ R× R | g(〈a, b〉) ∈ [−2, 1]}

= {〈a, b〉 ∈ R× R | b ∈ [−2, 1]}

= R× [−2, 1]
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Here the first equality follows from the calculation of f [Q] above, the second equality
follows from the defintion of g−1[[−2, 1]], the third equality follows from the defi-
nition of g and the last equality follows from the definition of Cartesian product.

⊓⊔

Problem 3(a). If A has only one element, say A = {a} then A×A = {〈a, a〉}. In
this case 〈a, a〉 = f(a), so every element of A × A is in Im(f). It follows that f is
surjective.

If A has more than one element, say a 6= b and a, b ∈ A then 〈a, b〉 ∈ A×A but
〈a, b〉 /∈ Im(f) because by the definition of f , if y ∈ Im(f) then y = f(x) for some
x ∈ A and f(x) = 〈x, x〉. Hence if y ∈ Im(f) then the components of z are equal.

If a, b ∈ A and f(a) = f(b) then 〈a, a〉 = 〈b, b〉 by the definition of f . Then
a = b since two ordered pairs are equal iff their first components are equal and also
their second components are equal. We thus proved f(a) = f(b) =⇒ a = b, for all
a, b ∈ A, so f is injective. ⊓⊔

Problem 3(c). (Problem 2(b) is similar – just think of the value b in 2(b) as the
constant function u : A → B such that u(a) = b for all a ∈ A.)

Injectivity of h: For each a, a′ ∈ A we prove h(a) = h(a′) =⇒ a = a′:

h(a) = h(a′) =⇒ 〈a, u(a)〉 = 〈a′, u(a′)〉 =⇒ a = a′

Here the first implication follows from the definition of h and the second implication
follows because if two ordered pairs are equal then they have to agree on the first
components. This proves injectivity of h.

Surjectivity of h: If B has precisely one element we prove that h is surjective.
For this we need to prove that for every y ∈ A × B there is some a ∈ A such that
h(a) = y. (This is by the definition of surjectivity.)

Say B = {b}. Then u(a) = b for all a ∈ A, as this is the only possibility for the
value u(a). Now pick y ∈ A×B. We find a ∈ A such that h(a) = y. As y ∈ A×B,
y = 〈a, z〉 for some a ∈ A and z ∈ B. But since B = {b} necessarily z = b, so
y = 〈a, b〉. Above we saw that b = u(a), so y = 〈a, u(a)〉. But 〈a, u(a)〉 = h(a)
by the definition of h, so we just proved that y = h(a), what was intended. This
proves the surjectivity of h in the case where B has precisely one element.

If B has more than one element we prove that h is not surjective. We show that
there is an element y ∈ A×B such that y /∈ Im(h). Pick a′ ∈ A. Since we assume
B has more than one element, there is some b′ ∈ B such that b′ 6= u(a′). We claim
that 〈a′, b′〉 /∈ Im(h), so the choice y = 〈a′, b′〉 works. Why: Consider the values h(a)
where a ∈ A. If a 6= a′ then h(a) = 〈a, u(a)〉 6= 〈a′, b′〉 because the two ordered pairs
differ in their first components. If a = a′ then h(a) = h(a′) = 〈a′, u(a′)〉 6= 〈a′, b′〉
since the two ordered pairs differ in their second components. We thus proved that
〈a′, b′〉 6= h(a) for every a ∈ A, that is, 〈a′, b′〉 /∈ Im(h). This proves that h is not
surjective, as required. ⊓⊔

Problem 4(c). In order to prove that T is an equivalence relation, we need to
prove that T is reflexive, symmetric and transitive.

Reflexivity: We need to prove that 〈x, x〉 ∈ T for all x ∈ K \ {0}. Now if
x ∈ K \ {0} then x/x = 1 ∈ Q, so this is satisfied. This proves the reflexivity of T .

Symmetricity: We need to prove that for every x, y ∈ K \ {0} the implication
〈x, y〉 ∈ T =⇒ 〈y, x〉 ∈ T holds. Let q = x/y. Since we are assuming 〈x, y〉 ∈ T ,
we have q ∈ Q. But then also 1/q ∈ Q since the ratio of two rational numbers is
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rational. But 1/q = y/x, so this shows that y/x ∈ Q, as desired. This proves the
symmetricity of T .

Transitivity: We need to prove that for every x, y, z ∈ K \ {0} the implication
(〈x, y〉 ∈ T ∧ 〈y, z〉 ∈ T ) =⇒ 〈x, z〉 ∈ T holds. By the definition of T , this
amounts to showing the implication (x/y ∈ Q ∧ y/z ∈ Q) =⇒ x/z ∈ Q. Now
x/z = (x/y) · (y/z). Since the product of two rational numbers is rational, also
x/z ∈ Q, which we intended to prove. This proves the transitivity of T .

Now consider an arbitrary x ∈ K \ {0}. By the definition of equivalence class,

[x]T = {y ∈ K \ {0} | 〈x, y〉 ∈ T }

so

[x]T = {y ∈ K \ {0} | x/y ∈ Q}

Now notice that the following are equivalent:

• x/y ∈ Q

• y/x ∈ Q

• x = y · q for some q ∈ Q

• y = x · q for some q ∈ Q

This is because x = y · (x/y) and y = x · (y/x). So we can equivalently write:

[x]T = {q · x | q ∈ Q}

or

[x]T = {y ∈ K \ {0} | x = q · y for some ∈ Q}

This describes the equivalence class [x]T . ⊓⊔

Problem 4(d). In order to prove that T is an equivalence relation, we need to
prove that V is reflexive, symmetric and transitive.

Reflexivity: We need to prove that 〈a, a〉 ∈ V for all a ∈ P . Since a = a, this is
immediately true by the definition of V .

Symmetricity: We need to prove that the implication 〈a, b〉 ∈ V =⇒ 〈b, a〉 ∈ V
holds for all a, b ∈ P . If a = b this conclusion is trivial, so assume a 6= b. Consider
the following calculation:

b1 − a1
b0 − a0

=
(−1)(a1 − b1)

(−1)(a0 − b0)
=

a1 − b1
a0 − b0

It follows:

〈a, b〉 ∈ V =⇒
b1 − a1
b0 − a0

= 1 =⇒
a1 − b1
a0 − b0

= 1 =⇒ 〈b, a〉 ∈ V

This proves the symmetricity of V .
Transitivity. We need to prove that for all points a, b, c ∈ P the implication

(〈a, b〉 ∈ V ∧ 〈b, c〉 ∈ V ) =⇒ 〈a, c〉 ∈ V holds. We may assume that a, b, c are all
distinct, as otherwise the conclusion follows trivially. This will make the following
calculations valid, as all differences in those calculations are non-zero. Now

〈a, b〉 ∈ V =⇒
b1 − a1
b0 − a0

= 1 =⇒ b1 − a1 = b0 − a0

where the first implication follows from the definition of V and the second follows
by multiplying both sides of the equation by b0 − a0. Similarly we get

〈b, c〉 ∈ V =⇒
c1 − b1
c0 − b0

= 1 =⇒ c1 − b1 = c0 − b0
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By adding the left/right sides of the two rightmost equations we get

(b1 − a1) + (c1 − b1) = (b0 − a0) + (c0 − b0)

hence

c1 − a1 = c0 − a0

and so
c1 − a1
c0 − a0

= 1

which by the definition of V means that 〈a, c〉 ∈ V . This completes the proof of
transitivity of V .

Now we compute the equivalence class [a]V . By the definition of V ,

[a]V = {b ∈ P | 〈a, b〉 ∈ V }

By the definition of V this means

[a]V − {b ∈ P | a = b ∨
b1 − a1
b0 − a0

= 1}

Now

a = b ∨
b1 − a1
b0 − a0

= 1 ⇐⇒ b1 − a1 = b0 − a0 ⇐⇒ b1 − b0 + (a0 − a1) = 0

So b ∈ [a]V iff b is the solution of the equation y − x + (a0 − a1) = 0. In other
words, b ∈ [a]V iff b is a point on the line with equation y− x+(a0− a1) = 0. This
is the line which contains point a and has slope 1, that is, the angle with axis x is
45◦. In conclusion,

[a]V = the line containing the point a with slope 1

= the line containing the point a which has angle 45◦ with axis x.

⊓⊔

Problem 4(e). In order to prove that equinumerosity is an equivalence relation,
we need to prove that it is reflexive, symmetric and transitive.

Reflexivity: We need to prove that if A ∈ P(U) then A ∼ A. By the definition
of equinumerosity, we need to find a bijection f : A → A. Now the identity map
i : A → A defined by i(a) = a for every a ∈ A is such a bijection. To see this,
we verify that i is both injective and surjective. Regarding injectivity, if a, b ∈ A
then we have a 6= b =⇒ i(a) 6= i(b) because i(a) = a and i(b) = b. This verifies
the injectivity of i. Regarding surjectivity, if a ∈ A then a = i(a) by the definition
if i, hence Im(i) = A. This proves that i is surjective. We have thus proved that
i : A → A is bijective, so it suffices to let f = i. This proves that the relation of
equinumerosity is reflexive.

Symmetricity. We need to prove for every A,B ∈ P(U) that if A ∼ B then
B ∼ A. By the definition of equinumerosity, this can be reformulated as follows:

(∃f)(f : A → B ∧ f is a bijection) =⇒ (∃g)(g : B → A ∧ g is a bijection)

So assume f : A → B is a bijection and we find a bijection g : B → A. We claim we
can let g = f−1. Recall that f ⊆ A×B and is a binary relation, so the expression
f−1 makes sense. By the definition of f−1,

f−1 = {〈b, a〉 ∈ B ×A | 〈a, b〉 ∈ f}
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We first show that f−1 is a function from B to A, in other words f−1 : B → A. We
already know that f−1 ⊆ B ×A, so by the definition of function we need to verify
that (i) for every b ∈ B and a, a′ ∈ A, the implication

(〈b, a〉 ∈ f−1 ∧ 〈b, a′〉 ∈ f−1) =⇒ a = a′

holds, and (ii) that for every b ∈ B there exists some a ∈ A such that 〈b, a〉 ∈ f−1.
We first verify (i). By the definition of f−1, the left side of this implication can be
equivalently rewritten as

〈a, b〉 ∈ f ∧ 〈a′, b〉 ∈ f

Since we are assuming that f is bijective, f is injective, so this conjunction implies
a = a′, which is what we wanted to prove. We thus proved the requirement (i) on
f−1 being a function. To prove requirement (ii), pick any b ∈ B. Since f we are
assuming that f is a bijection, f is surjective, so there is some a ∈ A such that
〈a, b〉 ∈ f . By the definition of f−1 this means that 〈b, a〉 ∈ f−1, which proves (ii).
So we proved that f−1 is a function from A to B. Now we need to prove that f−1

is a bijection. We first prove that f−1 is injective. By the definition of injectivity
this means to prove that for every b, b′ ∈ B and a ∈ A the implication

(〈b, a〉 ∈ f−1 ∧ 〈b′, a〉 ∈ f−1) =⇒ b = b′

holds. The left side of this implication can be rewritten as

〈a, b〉 ∈ f ∧ 〈a, b′〉 ∈ f

Since f is a function from A to B, by the definition of function it follows that b = b′,
which is what we needed to prove. So at the moment we proved that f−1 : B → A
is an injection. To prove that f−1 : B → A is a bijection we need to prove that
f−1 : B → A is surjective. By the definition of surjectivity, this means to prove
the following: If a ∈ A then there exists some b ∈ B such that 〈b, a〉 ∈ f−1. Since
f : A → B is a function, the value f(a) is defined, so we can let b = f(a). Then
〈a, b〉 ∈ f , and by the definition of f−1 we have 〈b, a〉 ∈ f−1, which is what we
needed to prove. So we proved that f−1 : B → A is surjective, and thereby that
f−1 : B → A is a bijection. This completes the proof of symmetricity.

Transitivity. We need to prove that if A,B,C ∈ P(U) then the following impli-
cation holds:

(A ∼ B ∧B ∼ C) =⇒ A ∼ C

So consider A,B,C as above. Since we are assuming that A ∼ B and B ∼ C, there
exist bijections

f : A → B and g : B → C

We claim that h = g ◦ f : A → C is a bijection. Once this is proved, this proves the
transitivity. By the definition of composition, h : A → C is a function such that

h(a) = g(f(a))

for every a ∈ A. We need to verify that h : A → C is a bijection. First we verify
the injectivity of h. By the definition of injectivity we need to verify that the
implication

h(a) = h(a′) =⇒ a = a′

holds for all a, a′ ∈ A. Now

h(a) = h(a′) =⇒ g(f(a)) = g(f(a′)) =⇒ f(a) = f(a′) =⇒ a = a′
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Here the first implication follows from the definition of h, which gives that h(a) =
g(f(a)) and h(a′) = g(f(a′)). The second implication follows from the injectivity
of g and the third implication follows from the injectivity of f . This completes
the proof of injectivity of h. Now we need to verify that h is surjective. By the
definition of surjectivity, we need to prove that if c ∈ C is arbitrary then there
exists some a ∈ A such that h(a) = c. So pick c ∈ C. Since we are assuming
g : B → C is bijective, g : B → C is surjective, so by the definition of surjectivity
there exists some b ∈ B such that c = g(b). Since we are assuming that f : A → B
is bijective, f : A → B is surjective, so again by the definition of surjectivity there
exists some a ∈ A such that b = f(a). But then c = g(b) = g(f(a)) = h(a), hence
we found a as we needed. This proves that h : A → C is surjective, and thereby
that h : A → C is bijective.

This also completes the proof of transitivity of equinumerosity, and thereby the
proof that equinumerosity is an equivalence relation.

We now look at equivalence classes. If A ∈ P(U) then by the definition of an
equivalence class,

[A]∼ = {B ∈ P(U) | A ∼ B}

so [A]∼ consists of all sets in P(U) which are equinumerous to A, or in other words
which have the same number of elements as A. ⊓⊔

As an example of good proofwriting of a proof in number theory, I am
giving an example or writing the solution of Problem 3 in Homework 4.
Please refer to the Homework 4 assignment sheet.

Regarding (G1), we want to prove that d | a and d | b. Assume a contradiction
this is false; so d 6 | a or d 6 | b. We will only treat the case d 6 | a, as the case d 6 | b is
treated similarly. By the division algorithm there are numbers q, r ∈ Z such that

a = d · q + r and 0 ≤ r < d.

Since we are assuming d 6 | a, we have r 6= 0. So 0 < r < d. Since d = a · x + b · y
where x, y are integers, by substituting in the formula above we have

a = (a · x+ b · y) · q + r = a · x · q + b · y · q + r

We now express r, so

r = a− a · x · q − b · y · q = a · (1− x · q) + b · (−y · q)

Then x′ = 1 − x · q and y′ = −y · q, are integers such that r = a · x′ + b · y′. Since
0 < r < d this contradicts the minimality of d. It follows that d | a after all.

Regarding (G2), assume d′ | a and d′ | b. By the definition of divisibility, this
means that there exist integers k, ℓ such that

a = d′ · k and b = d′ · ℓ

Then
d = a · x = b · y = a · d′ · k + b · d′ · ℓ = d′ · (a · k + b · ℓ)

Since a · k + b · ℓ is an integer, this shows that d′ | d. ⊓⊔


