WEEK 3
M: Inclusion and basic operations on sets.  
     2.3. Definition. Inclusion. Subsets. Proper subsets.
     2.4. Proposition. Basic properties of inclusion.  (a) Ø is a subset of any set, (b) reflexivity, (c) transitivity, 
                                  (d) antisymmetricity -- extensionality. 
     2.5. Definition. Basic operations on sets. (a) intersection, (b) union, (c) set difference, (d) symmetric difference, 
                               (e) complement ,
     2.6. Proposition. Basic facts about set operations. (a) intersection and union with Ø, (b) commutativity,
                                (c) associativity, (d) distributivity, (e) De Morgan Laws -- with proof of one of them. 
     PROBLEMS FOR DISCUSSIONS: Book, p.44 Exercise 3,  10, 13, 14, 17 and p.52 Exercise 22, 23 , 24, 30
 W: Power set. General unions and intersections. Examples. 
    2.7. Definition. Power set. 
           Examples: Power set of one, two element sets, P(Ø), P(P(Ø)), P(N). 
    2.8. Definition. General union and intersection.
           Examples: Union of two sets, union of finitely many sets. union of all Ap={n \in N+ | n divisible by p}, 
                               union of all intervals  In = (n, n+1). 
   PROBLEMS FOR DISCUSSIONS: Book, p.44 Exercise  11, 12, 18, 19, 20 and p.53 Exercise 25, 34, 35, 43, 48 
 F: More examples of infinite unions and intersections. Completion of the example with In from Wed. Viewing 
     the collections of {Ap| p prime} and {In | n integer}as examples of indexed systems. 
     Examples:  An open square can be expressed as the union of a set of open disks. 
                          A closed square cen be expressed as the intersection of a set of open disks. (Without proof.)  
   PROBLEMS FOR DISCUSSIONS: Book, p.54 Exercise 49, 52 and p.59 Exercise 54, 55, 57b, 58, 71