MATH 3A HOMEWORK 3

DUE: Wednesday, October 26

READING ASSIGNMENT: Read Sections 1.8, 1.9, 2.1, 2.2
PROBLEMS FROM TEXTBOOK:
Section 1.8: 4, 9, 11, 24, 30, 34
Section 1.9: 2, 3, 8, 10, 17, 25
Section 2.1: 1, 9, 15, 22, 24, 27
Section 2.2: 2, 6, 10, 20, 25, 30, 31

ADDITIONAL PROBLEMS:

1) Let $\mathbb{N}=\{0,1,2,3, \ldots\}$ be the set of all natural numbers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function: $f(n)=n+1$ for all $n \in \mathbb{N}$. Describe the range of f and explain if f is one-to-one and/or onto.
2) True or False. Explain your answers.
(i) If A is an invertible $n \times n$ matrix, then the equation $A \vec{x}=\vec{b}$ is consistent for each \vec{b} in \mathbb{R}^{n}.
(ii) For any matrices A, B, C, if $A B$ and $A C$ are defined and $A B=A C$, then $B=C$.
(iii) Let $n>m$ be natural numbers and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then it is impossible for T to be one-to-one.
(iv) The map $T_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ discussed in class (recall T_{x} is the projection onto the x-axis function) is one-to-one and is onto.
