SAMPLE 3A FINAL

Problem 1. (25 pts) Let
$$A = \begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

- (a) (10 pts) Determine if \vec{b} is in the span of the columns of A.
- (b) (10 pts) Determine if the columns of A are linearly independent. Compute the null space of A.
- (c) (5 pts) What is the rank of A? What is the Nullity of A?

Problem 2. (20 pts) Let $T(x_1, x_2) = (x_1 + 2x_2, x_1 - 2x_2)$ be a function from \mathbb{R}^2 to \mathbb{R}^2 .

- (a) (10 pts) Show that T is a linear transformation.
- (b) (10 pts) Compute the standard matrix for T. Use this matrix to show that T is one-to-one and onto.

Problem 3. (20 pts) Let
$$A = \begin{bmatrix} -1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 11 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3 \end{bmatrix}$$
.

- (a) (10 pts) Compute det(A) (using any method applicable). Use this to determine whether the columns of A are linearly independent.
- (b) (5 pts) Compute $det(A^T A)$.
- (c) (5 pts) Let S be a region in \mathbb{R}^4 of "volume" 1. Let A(S) be the region in \mathbb{R}^4 obtained by mapping S via the map $\vec{x} \mapsto A\vec{x}$. Compute the volume of A(S).

Problem 4. (30 pts) Let
$$A = \begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$$
.

- (a) (15 pts) Compute the eigenvalues and bases for the eigenspaces of A.
- (b) (5 pts) Determine if A is diagonalizable. If yes, diagonalize it (i.e. find P invertible and D diagonal such that $A = PDP^{-1}$.)
- (c) (10 pts) Find a nonzero 2×2 matrix B that is invertible but not diagonalizable. Explain your answer.

Problem 5. (25 pts)

- (a) (5 pts) Let $A = \begin{bmatrix} -5 & -5 \\ 5 & -5 \end{bmatrix}$. Compute the eigenvalues of A. The transformation corresponding to A (i.e. $\vec{x} \mapsto A\vec{x}$) is the composition of a rotation and a scaling. The the angle φ of rotation $(-\pi < \varphi \le \pi)$ and give the scale factor r.
- (b) (10 pts) Let $A = \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$. Find an invertible matrix P and a matrix C of the form $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that $A = PC^{-1}P$.
- (c) (10 pts) Solve the following initial-valued problem: $\vec{x}'(t) = A\vec{x}(t)$, where $A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$ and $\vec{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.