MATH 120A SAMPLE MIDTERM EXAM

WINTER 2015

Student name:

Student ID number:

Instructions

- Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
- Cheating in any form may result in an F grade for the course as well as administrative sanctions.
- When time is called, you must stop working immediately, close your exam, and remain seated until your exam is collected.
- If you want to leave your seat for any reason before time is called, raise your hand and remain seated until acknowledged.

1	$/ 10$
2	$/ 4$
3	$/ 4$
4	$/ 4$
5	$/ 4$
6	$/ 4$
Total	$/ 30$

Problem 1 (10 points). Mark each statement ' T ' for true (meaning always true) or ' F ' for false (meaning sometimes false). You do NOT need to justify your answers to this problem.

T F The operation $*$ on \mathbb{R} defined by $a * b=\max (a, b)$ is associative.
T F The set of all nonzero integers forms a group under multiplication.
T F Any two groups of order 4 are isomorphic to each other.
T F Every element of the group $(\mathbb{Z},+)$ has infinite order.
T F Let A be a set. If there is a surjection from \mathbb{N} to A, but there is no bijection from \mathbb{N} to A, then A is finite.

T F Let $(S, *)$ be a binary operation and let $A, B \subseteq S$. If A and B are closed under $*$, then their intersection $A \cap B$ is closed under $*$.
T F If a and b are identity elements of a binary structure $(S, *)$, then $a=b$.
T F The group $\left(\mathbb{R}^{*}, \cdot\right)$ of nonzero real numbers under multiplication has a subgroup that is isomorphic to \mathbb{Z}_{4}.
T F If G is a cyclic group, then G has no subgroups other than $\left\{e_{G}\right\}$ and G.
T F Let G_{1} and G_{2} be subgroups of $G L_{2}(\mathbb{R})$ under matrix multiplication. If every element of G_{1} is diagonal, and $G_{1} \cong G_{2}$, then every element of G_{2} is diagonal.

Problem 2 (4 points). Let S be a set.
(a) What is a binary operation on S ?
(b) If $*$ is a binary operation on S and A is a subset of S, what does it mean for A to be closed under $*$?

Problem 3 (4 points). Let G be a group and let $a \in G$. Define the function $\phi: G \rightarrow G$ by $\phi(x)=a x a^{-1}$. Prove that ϕ is an isomorphism from G to G.

Problem 4 (4 points). Let G denote an arbitrary group. Prove that the property P saying $a^{2}=e_{G}$ for every $a \in G$ is a structural property.

Problem 5 (4 points). For each part, make sure to justify your answer:
(a) Give an example of a set S and an operation $*$ on S that is associative but not commutative.
(b) Give an example of a set S and an operation $*$ on S that is commutative but not associative.

Problem 6 (4 points). Consider the set of matrices $G=\{I, A, B, C\}$ where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) .
$$

Then G forms a group under matrix multiplication (you may assume this.)
(a) Compute the order of each element of this group G.
(b) Draw a subgroup diagram for G.

