MATH 120A SAMPLE MIDTERM EXAM SOLUTIONS

WINTER 2015

Problem 1 (10 points).
(1) F "The operation $*$ on \mathbb{R} defined by $a * b=\max (a, b)$ is associative." True: $(a * b) * c$ and $a *(b * c)$ are both equal to whichever of a, b, and c is largest.
T (F) "The set of all nonzero integers forms a group under multiplication." False: it has an identity element 1, but the element 2 has no inverse because there is no nonzero integer a such that $2 a=1$.
T (F) "Any two groups of order 4 are isomorphic to each other." False. You saw a counterexample in homework set 3 .
T (F) "Every element of the group $(\mathbb{Z},+)$ has infinite order." False: the identity element, 0 , has order 1 .
(1) F "Let A be a set. If there is a surjection from \mathbb{N} to A, but there is no bijection from \mathbb{N} to A, then A is finite." True. ${ }^{1}$
(1) F "Let $(S, *)$ be a binary operation and let $A, B \subseteq S$. If A and B are closed under $*$, then their intersection $A \cap B$ is closed under $*$." True: let $x, y \in A \cap B$. Then $x * y \in A$ because $x, y \in A$ and A is closed under $*$. Similarly $x * y \in B$ because $x, y \in B$ and B is closed under $*$. Therefore $x * y \in A \cap B$.
(1) F "If a and b are identity elements of a binary structure $(S, *)$, then $a=b$." True: the expression $a * b$ evaluates to a and also to b.
T (F) "The group $\left(\mathbb{R}^{*}, \cdot\right)$ of nonzero real numbers under multiplication has a subgroup that is isomorphic to \mathbb{Z}_{4}." False: if it did, then the element of \mathbb{R}^{*} corresponding to the element 1 of \mathbb{Z}_{4} would have order 4. But every element a of $\left(\mathbb{R}^{*}, \cdot\right)$ either has order 1 (if $a=1$,) order 2 (if $a=-1$,) or infinite order (if $a \neq \pm 1$.)
T (F) "If G is a cyclic group, then G has no subgroups other than $\left\{e_{G}\right\}$ and $G . "$ False: for example, \mathbb{Z} is cyclic and has nontrivial proper subgroups of the form $n \mathbb{Z}$.
T (F) "Let G_{1} and G_{2} be subgroups of $G L_{2}(\mathbb{R})$ under matrix multiplication. If every element of G_{1} is diagonal, and $G_{1} \cong G_{2}$, then every element of G_{2} is diagonal." False: this is not a structural property. For a counterexample, let $G_{1}=\{I,-I\}$ and $G_{2}=\{I, A\}$ where $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

[^0]Problem 2 (4 points). Let S be a set.
(a) What is a binary operation on S ?
(b) If $*$ is a binary operation on S and A is a subset of S, what does it mean for A to be closed under $*$?

Solution.
(a) A binary operation on a set S is a function from $S \times S$ to S.
(b) It means that $x * y \in A$ for all $x, y \in A$.

Problem 3 (4 points). Let G be a group and let $a \in G$. Define the function $\phi: G \rightarrow G$ by $\phi(x)=a x a^{-1}$. Prove that ϕ is an isomorphism from G to G.

Solution. To see that ϕ is injective, let $x, y \in G$ and assume that $\phi(x)=\phi(y)$, which means that $a x a^{-1}=a y a^{-1}$. Multiplying both sides on the left by a^{-1} and on the right by a, we get $x=y$.

To see that ϕ is surjective, let $y \in G$ and note that $\phi\left(a^{-1} y a\right)=a a^{-1} y a a^{-1}=y$.
To see that ϕ is a homomorphism, let $x, y \in G$ and note that $\phi(x) \phi(y)=a x a^{-1} a y a^{-1}=$ $a x y a^{-1}=\phi(x y)$.

Problem 4 (4 points). Let G denote an arbitrary group. Prove that the property P saying $a^{2}=e_{G}$ for every $a \in G$
is a structural property.
Solution. Let G and G^{\prime} be groups and let ϕ be an isomorphism from G to G^{\prime}. Assume that G has property P. We want to show that G^{\prime} has property P. Let $a^{\prime} \in G^{\prime}$. Take $a \in G$ such that $\phi(a)=a^{\prime}$. We have $a^{2}=e_{G}$, and applying ϕ to both sides gives $\phi\left(a^{2}\right)=\phi\left(e_{G}\right)$. Because ϕ is a homomorphism we have $\phi\left(a^{2}\right)=\phi(a)^{2}=\left(a^{\prime}\right)^{2}$ and $\phi\left(e_{G}\right)=e_{G^{\prime}}$, so $\left(a^{\prime}\right)^{2}=e_{G^{\prime}}$ as desired.

Problem 5 (4 points). For each part, make sure to justify your answer:
(a) Give an example of a set S and an operation $*$ on S that is associative but not commutative.
(b) Give an example of a set S and an operation $*$ on S that is commutative but not associative.

Solution.

(a) One example is where S is $M_{2}(\mathbb{R})$ and $*$ is matrix multiplication. We saw in class that this operation is associative but not commutative.
(b) One example is where S is \mathbb{R} and $*$ is defined by $a * b=(a+b) / 2$. We saw in class that this operation is commutative but not associative.

Remark. This is not a very good problem that I wrote here. On the real exam I will try to avoid the situation where a problem says "justify your answer" and a sufficient justification is just "we saw the whole thing in class." But if there is a problem like this it would be a good idea to add some further argument if you have time.

Problem 6 (4 points). Consider the set of matrices $G=\{I, A, B, C\}$ where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) .
$$

Then G forms a group under matrix multiplication (you may assume this.)
(a) Compute the order of each element of this group G.
(b) Draw a subgroup diagram for G.

Solution. (a) The order of I is 1 because it is the identity element. The order of A is 2 because $A \neq I$ and $A^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$. The order of B is 2 because $B \neq I$ and $B^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$. The order of C is 2 because $C \neq I$ and $C^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$.
(b)

[^0]: ${ }^{1}$ Let me outline a proof even though it is outside the scope of this course. If there is a surjection f from \mathbb{N} to A then there is an injection g from A to \mathbb{N} given by defining $g(a)$ to be the least $n \in \mathbb{N}$ such that $f(n)=a$. If the range of g is unbounded in \mathbb{N}, then one can define a bijection from \mathbb{N} to A. Otherwise, A is finite.

