MATH 120A SAMPLE MIDTERM EXAM SOLUTIONS

WINTER 2015

Problem 1 (10 points).

- (I) F "The operation * on \mathbb{R} defined by $a * b = \max(a, b)$ is associative." True: (a * b) * c and a * (b * c) are both equal to whichever of a, b, and c is largest.
- T (F) "The set of all nonzero integers forms a group under multiplication." False: it has an identity element 1, but the element 2 has no inverse because there is no nonzero integer a such that 2a = 1.
- T (F) "Any two groups of order 4 are isomorphic to each other." False. You saw a counterexample in homework set 3.
- T (F) "Every element of the group $(\mathbb{Z}, +)$ has infinite order." False: the identity element, 0, has order 1.
- (I) F "Let A be a set. If there is a surjection from \mathbb{N} to A, but there is no bijection from \mathbb{N} to A, then A is finite." True.¹
- (1) F "Let (S, *) be a binary operation and let $A, B \subseteq S$. If A and B are closed under *, then their intersection $A \cap B$ is closed under *." True: let $x, y \in A \cap B$. Then $x * y \in A$ because $x, y \in A$ and A is closed under *. Similarly $x * y \in B$ because $x, y \in B$ and B is closed under *. Therefore $x * y \in A \cap B$.
- (I) F "If a and b are identity elements of a binary structure (S, *), then a = b." True: the expression a * b evaluates to a and also to b.
- T (F) "The group (\mathbb{R}^*, \cdot) of nonzero real numbers under multiplication has a subgroup that is isomorphic to \mathbb{Z}_4 ." False: if it did, then the element of \mathbb{R}^* corresponding to the element 1 of \mathbb{Z}_4 would have order 4. But every element *a* of (\mathbb{R}^*, \cdot) either has order 1 (if a = 1,) order 2 (if a = -1,) or infinite order (if $a \neq \pm 1$.)
- T (F) "If G is a cyclic group, then G has no subgroups other than $\{e_G\}$ and G." False: for example, \mathbb{Z} is cyclic and has nontrivial proper subgroups of the form $n\mathbb{Z}$.
- T (F) "Let G_1 and G_2 be subgroups of $GL_2(\mathbb{R})$ under matrix multiplication. If every element of G_1 is diagonal, and $G_1 \cong G_2$, then every element of G_2 is diagonal." False: this is not a structural property. For a counterexample, let $G_1 = \{I, -I\}$ and $G_2 = \{I, A\}$ where $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

¹Let me outline a proof even though it is outside the scope of this course. If there is a surjection f from \mathbb{N} to A then there is an injection g from A to \mathbb{N} given by defining g(a) to be the least $n \in \mathbb{N}$ such that f(n) = a. If the range of g is unbounded in \mathbb{N} , then one can define a bijection from \mathbb{N} to A. Otherwise, A is finite.

Problem 2 (4 points). Let S be a set.

- (a) What is a binary operation on S?
- (b) If * is a binary operation on S and A is a subset of S, what does it mean for A to be *closed* under *?

Solution.

- (a) A binary operation on a set S is a function from $S \times S$ to S.
- (b) It means that $x * y \in A$ for all $x, y \in A$.

Problem 3 (4 points). Let G be a group and let $a \in G$. Define the function $\phi : G \to G$ by $\phi(x) = axa^{-1}$. Prove that ϕ is an isomorphism from G to G.

Solution. To see that ϕ is injective, let $x, y \in G$ and assume that $\phi(x) = \phi(y)$, which means that $axa^{-1} = aya^{-1}$. Multiplying both sides on the left by a^{-1} and on the right by a, we get x = y.

To see that ϕ is surjective, let $y \in G$ and note that $\phi(a^{-1}ya) = aa^{-1}yaa^{-1} = y$.

To see that ϕ is a homomorphism, let $x, y \in G$ and note that $\phi(x)\phi(y) = axa^{-1}aya^{-1} = axya^{-1} = \phi(xy)$.

Problem 4 (4 points). Let G denote an arbitrary group. Prove that the property P saying $a^2 = e_G$ for every $a \in G$

is a structural property.

Solution. Let G and G' be groups and let ϕ be an isomorphism from G to G'. Assume that G has property P. We want to show that G' has property P. Let $a' \in G'$. Take $a \in G$ such that $\phi(a) = a'$. We have $a^2 = e_G$, and applying ϕ to both sides gives $\phi(a^2) = \phi(e_G)$. Because ϕ is a homomorphism we have $\phi(a^2) = \phi(a)^2 = (a')^2$ and $\phi(e_G) = e_{G'}$, so $(a')^2 = e_{G'}$ as desired.

Problem 5 (4 points). For each part, make sure to justify your answer:

- (a) Give an example of a set S and an operation * on S that is associative but not commutative.
- (b) Give an example of a set S and an operation * on S that is commutative but not associative.

Solution.

- (a) One example is where S is $M_2(\mathbb{R})$ and * is matrix multiplication. We saw in class that this operation is associative but not commutative.
- (b) One example is where S is \mathbb{R} and * is defined by a * b = (a + b)/2. We saw in class that this operation is commutative but not associative.

Remark. This is not a very good problem that I wrote here. On the real exam I will try to avoid the situation where a problem says "justify your answer" and a sufficient justification is just "we saw the whole thing in class." But if there is a problem like this it would be a good idea to add some further argument if you have time.

Problem 6 (4 points). Consider the set of matrices $G = \{I, A, B, C\}$ where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

Then G forms a group under matrix multiplication (you may assume this.)

(a) Compute the order of each element of this group G.

(b) Draw a subgroup diagram for G.

Solution. (a) The order of I is 1 because it is the identity element. The order of A is 2 because $A \neq I$ and $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$. The order of B is 2 because $B \neq I$ and $B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$. The order of C is 2 because $C \neq I$ and $C^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$. (b)

