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Abstract

In this work, we propose computational models and algorithms for point cloud registration with non-rigid transfor-

mation. First, point clouds sampled from manifolds originally embedded in some Euclidean space RD are transformed

to new point clouds embedded in Rn by Laplace-Beltrami(LB) eigenmap using the n leading eigenvalues and corre-

sponding eigenfunctions of LB operator defined intrinsically on the manifolds. The LB eigenmap are invariant under

isometric transformation of the original manifolds. Then we design computational models and algorithms for regis-

tration of the transformed point clouds in distribution/probability form based on the optimal transport theory which

provides both generality and flexibility. Our methods use robust sliced-Wasserstein distance, which is the average

of projected Wasserstein distance along different directions, and incorporate a rigid transformation to handle ambi-

guities introduced by the Laplace-Beltrami eigenmap. By going from smaller n, which provides a quick and robust

registration (based on coarse scale features) as well as a good initial guess for finer scale registration, to a larger n,

our method provides an efficient, robust and accurate approach for multi-scale non-rigid point cloud registration.

1 Introduction

Geometric modeling and analysis of surfaces and manifolds, such as shape comparison, classification, registration and
manifold learning, has important applications in many fields including computer vision, computer graphics, medical
imaging and data analysis [1, 2, 3, 4, 5]. Unlike images, which typically have a canonical form of representation
as functions defined on a uniform grid in a rectangular domain, surfaces and manifolds in 3D and higher are with
more complicated geometrical structures and do not have a canonical or natural form of representation or global
parametrization. Moreover, they are typically represented as embedding manifolds in RD, where it is well known that
intrinsically identical manifolds can have significantly different representations due to actions such as translation, rota-
tion, and more general isometric transformations. These intrinsic mathematical difficulties make geometric modeling
and analysis in practice much more challenging than processing 2D images. One important task in practice is to con-
struct distinctive and robust intrinsic features or representations, local and/or global, that can be used to characterize,
analyze, compare and classify shapes, surfaces and manifolds in general.

There have been a lot of study and proposed methods for shape analysis based on intrinsic geometry. In early
works, feature-based methods were developed in computer vision and graphics to compare surfaces in an intrinsic
fashion. Various features were proposed such as shape contexts, shape distributions, shape inner distance, conformal
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factor [6, 7, 8, 9, 10, 11] to characterize various aspects of surface geometry. These features are usually application
specific and do not render a metric structure in shape space. The shape-space approach overcomes this difficulty by
introducing metric structures on the space of all surfaces, where the distance between two surfaces can be measured
by the metric structure introduced for the shape space. For instance, the Teichmüller space, geodesic spectra and the
computation of Teichmüller coordinates is discussed in [12, 13, 14]. However, important local features are lost in this
approach because each surface is viewed as a point in the shape space. More recently, another class of approaches
were introduced based on the metric geometry [15]. In this approach, each surface is treated as a metric space and
surfaces are compared according to the theory of metric geometry by measuring their Gromov-Hausdorff distance and
Gromov-Wasserstein distance [16, 17, 18, 19]. Diffusion distance [20, 21] on surface was applied to compute the
Gromov-Hausdorff distance and compare non-rigid geometry based on the metric geometry [22]. While theoretically
this class of methods can compute both local and global surface differences, the need for optimization over all possible
correspondences makes it computationally challenging to conduct detailed analysis of surface structures in practice.

More recently, there have been increasing interests in using the Laplace-Beltrami (LB) eigensystem for 3D shape
and surface analysis. Mathematically, the LB eigensystem provides an intrinsic and systematic characterization of the
underlying geometry. Practically, LB eigensystem is very computable by well developed numerical methods. A series
of interesting works have been developed for surface characterization and analysis using its LB eigensystem [23, 24,
25, 26, 27, 28, 29, 30, 31, 32]. For surface registration, the LB eigen-system has been used to construct a common
embedding space to measure shape differences, such as heat kernel embedding [33] and global position signature [34].
After embeddings, nonrigid (near) isometric deformations can be handled naturally due to the intrinsic properties of
LB eigensystem. However, there are a few new challenges for the embedding using LB eigensystem. First, there are
ambiguities in LB eigensystem just like any eigensystem such as sign ambiguity for eigenfunctions and ambiguity due
to the multiplicity of eigenvalues. Second, numerically, two eigenfunctions may switch order if their corresponding
eigenvalues are too close. Both ambiguities can be modeled as an unknown rigid transformation. Third, the dimension
of LB embedding space is usually high in order to capture fine features.

In this paper, we propose a multi-scale nonrigid point cloud registration based on LB eigenmap. In practice
shapes, surfaces or manifolds in general can be sampled/represented in the simplest and most basic form, point clouds,
in any space dimensions. For examples, these point clouds could come from laser scanners or vertices of triangulated
surfaces in 3D modeling, or high dimensional feature vectors in machine learning. We first transform the original point
clouds to new point clouds in Rn by LB eigenmap, which is defined in Section 3, using the n leading eigenvalues and
corresponding eigenfunctions for LB operator defined intrinsically on the manifolds. In particular LB eigenmap can
remove isometric variance in the original point clouds. Hence the original point cloud registration problem becomes a
registration problem for the transformed point clouds. We use optimal transportation theory to model the registration
or mapping between point clouds in a distribution sense with a natural probability interpretation. This formulation
has both generality and flexibility to deal with point clouds to incorporate uncertainty, prior knowledge and other
information. By incorporating an unknown rigid transformation in the non-convex optimization problem, one can
overcome possible ambiguities of LB eigensystem by optimizing the robust Wasserstein distance (RWD) defined in
section 3. To overcome the computation complexity of RWD distance, we further propose a new distance, called robust

sliced-Wasserstein distance (RSWD), defined in the new embedding space by LB eigenmap. Using RSWD, which is
the average of projected Wasserstein distance along different directions, significantly reduces the computation cost.
Moreover, we show that both RWD and RSWD provide a metric in the LB embedding space which naturally quotient
out all isometric transformations in the original embedding space. Meanwhile, we design efficient algorithms to
solve the optimization problem. Monotonicity of the algorithm can be guaranteed although the proposed optimization
problem is non-convex. Finally, by going from smaller n, which provides a quick and robust registration based on
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large scale features as well as a good initial guess for finer scale registration, to a larger n, our method provides an
efficient, robust and accurate multi-scale non-rigid point cloud or manifold registration.

The rest of the paper is organized as follows. In Section 2, we briefly review the mathematical background of LB
eigensytem defined on Riemannian manifolds and discuss a few existing numerical methods to solve the LB eigenvalue
problem on point clouds. After that, in Section 3, we model the registration problem as a non-convex optimization
problem based on RWD in the new embedding space defined by LB eigenmap which can handle the ambiguities
inherited in the LB eigensystem. Motivated by the optimization problem in Section 3, we propose RSWD distance in
Section 4, this new distance has advantages for being both theoretically sound and computationally efficient. In the
end, a multi-scale registration process which can further improve both efficiency and robustness is developed based
on the multi-scale nature of the LB eigenfunctions. To demonstrate the effectiveness of the proposed models and
algorithms, several computational examples are illustrated in Section 5. Finally, conclusions are made in Section 6.

2 Laplace-Beltrami Eigensystem on Riemannian Manifolds

In this section, we first briefly present mathematical background of Laplace-Beltrami (LB) eigen-geometry. After that,
existing numerical methods of computing LB eigensystem on triangulated surfaces or point clouds will be discussed.

2.1 Mathematical background

Let (M, g) be a closed d−dimensional Riemannian manifold. For any smooth function φ ∈ C∞(M), the LB operator
in a local coordinate system {(x1, x2, · · · , xd)} is defined as the following coordinate invariant form [35, 36, 37]:

∆(M,g)φ =
1
√

G

d∑
i=1

∂

∂xi
(
√

G
d∑

j=1

gi j ∂φ

∂x j
) (1)

where (gi j) is the inverse matrix of g = (gi j) and G = det(gi j). In the rest of the paper, we are interested inM with
dimension d ≥ 2.

The LB operator is self-adjoint and elliptic, so its spectrum is discrete. We denote the eigenvalues of ∆M as
0 = λ0 < λ1 < λ2 < · · · and the corresponding eigenfunctions as φ0, φ1, φ2, · · · such that

∆(M,g)φk = −λkφk, &
∫
M

φk(x)φk(x)
√

Gdx = 1, k = 0, 1, 2, · · · . (2)

The set of LB eigenfunctions {φn}
∞
n=0 forms an orthonormal basis of the space of L2 functions onM. The set {λn, φn}

∞
n=0

is called an LB eigen-system of (M, g).
Due to the intrinsic definition of LB operator ∆M , the induced LB eigen-system {λi, φi}

∞
i=0 is also completely

intrinsic to the manifold geometry. In particularly, the LB eigen-system is invariant under isometric transformations
that are rigid or nonrigid. In practice, scale invariant is also desirable. The following scaling property of LB eigen-
system leads to a scale invariant embedding which will be introduced in the next section.

Proposition 1. Let c be a positive constant, {λi, φi} be the eigensystem of (M, g), and {λ̃i, φ̃i} be the eigensystem of

(M, cg), then

λi = c · λ̃i and φi = cd/4 · φ̃i (3)
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Proof. λi = c · λ̃i can be obtained by

∆(M,cg)φ =
1
√

cdG

d∑
i=1

∂

∂xi
(
√

cdG
d∑

j=1

c−1gi j ∂φ

∂x j
) =

1
c

∆(M,g) (4)

Due to the normalization condition, we have

1 =

∫
M

φi(x)φi(x)
√

Gdx =

∫
M

φi(x)φi(x)c−d/2
√

cdGdx =

∫
M

φi(x)c−d/4φi(x)c−d/4
√

cdGdx (5)

This yields φi = cd/4 · φ̃i. �

The eigenfunctions of the LB operator are natural extensions of the Fourier basis functions from a Euclidean
domain to a general manifold. A special example is the spherical harmonics, which are the eigenfunctions of the LB
operator on the unit sphere, and proved to be useful for representation and study functions defined on spheres. In
addition to being a useful tool for function analysis on manifolds, the LB eigen-system also provides an important
tool for characterization and study of the intrinsic geometry of the underlying manifold. One of the most famous
examples to study surface geometry using LB eigen-systems is Kac’s question [38]: “Can one hear the shape of a
drum?” Namely, can we determine the geometry of surfaces using their LB eigenvalues? However, LB eigenvalues,
which are just a part of the LB eigen-system, can not completely determine surface geometry [39, 40, 41, 42]. More
complete information is stored in LB eigenfunctions. Uhlenbeck [43] proved that LB eigenfunctions are generically
Morse functions which provides theoretical evidence that global information of a manifold can be obtained by its
LB eigenfunctions. Bérard et. al.[33] introduced the first theoretical result about using LB eigen-system as global
embedding to analyze manifolds, which shows that two manifolds have the same LB eigensystem if and only if they
are isometric to each other. This mathematical result suggests that the LB eigen-system provides intrinsic signatures
which can determine a manifold uniquely. In the past few years, there have been increasing interests in using LB
eigen-systems for 3D shape and surface analysis. M. Reuter [23] proposed to use LB eigenvalues as fingerprints to
classify surfaces. Rustamov [34] was one of the first to use global embedding obtained by LB eigen-system to study
surfaces. P. Jones et al. [30] introduced a new manifold local parametrization approach using LB eigenfunctions. J.
Sun, M. Bronstein et al. [31, 32] introduced intrinsic surface descriptors using heat kernel of surface heat equation.
Several applications of LB eigen-system in medical image analysis have been discussed in [44, 27, 45, 46, 47]. More
recently, LB eigen-system is proposed for global understanding of point clouds data in [48], which can be extended to
study manifolds represented by point clouds in higher dimensions.

2.2 Numerical methods for solving LB eigen-system on point clouds

There are several ways for solving the LB eigenvalue problem (2) for a given surface or a manifold sampled by
point clouds. The corresponding numerical methods are designed for different representations of the given surface
or manifold. If a global triangulation of a point cloud is available, differential operators on the triangulated manifold
can be readily approximated [49, 50, 51]. Typically finite element method is a natural choice which turns the LB
eigenvalue problem to the eigenvalue problem of a symmetric positive definite matrix [23, 44, 27]. Another possible
method, called closest point method [52], is to lay down a uniform grid and use closest point relation to extend
differential operators for functions defined on the surface to differential operators in the ambient Euclidean space.
Finite difference method is typically used for the discretization. The resulting linear system can not be guaranteed
symmetric or positive definite in general. There are also a few methods for solving LB eigenvalue problem directly
on point clouds without a global mesh or grid. These methods are particular useful in high dimensions where a global
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triangulation or grid is intractable. There are two types of methods in this class. One type is kernel based methods,
where the LB operator on point clouds is approximated by heat diffusion in the ambient Euclidean space [21] or
in the tangent space [53] among nearby points. In another word, the metric on the manifold is approximated by
Euclidean metric locally. This type of method does not need to approximate differential operators directly. The main
advantage of such methods, e.g., diffusion map method [21], is their simplicity and generality. It can be applied to
point clouds even not necessarily embedded in a metric space, e.g., graph Laplacian. The resulting linear system is an
H-matrix, i.e., satisfying discrete maximum principle, but not symmetric. However, these kernel based methods render
low order approximation and is only limited to the approximation of the Laplace-Beltrami operator on point clouds.
More recently, two new methods for solving PDEs on point clouds are introduced in [48, 54, 55], where systematic
methods are introduced to approximate differential operators intrinsically at each point from local approximation of
the manifold and its metric by moving least squares through nearby neighbors. The resulting linear system for LB
eigenvalue problem is also H-matrix but not symmetric. These methods can achieve high order accuracy and be used
to approximate general differential operators on point clouds sampling manifolds with arbitrary dimensions and co-
dimensions. Moreover, the computational complexity depends mainly on the true dimension of the manifold rather
than the dimension of the embedded space. However, the computational cost for local reconstruction of the manifold
and its metric based on moving least squares grows quickly with the dimension of the manifold.

With these available numerical methods, the LB eigenvalues and LB eigenfunctions for a given Riemannian man-
ifold can be obtained. In this paper, we mainly focus on the registration problem using solution from computed LB
eigenvalue problem.

3 A framework of nonrigid Manifolds Registration through LB eigenmap

Let (M, gM) and (N , gN ) be two isometric d-dimensional Riemannian manifolds with induced metric from RD. A
nonrigid isometric registration betweenM and N is a smooth diffeomorphism f : M → N , such that the pullback
metric satisfies f ∗(gN ) = gM. Due to the nonlinearity of f , it is not straightforward to compute f in the ambient
space RD. Here, we consider to approximate f through a registration between images of LB eigenmaps ofM and N .
More specifically, let’s write Φn = {λk, φk}

n
k=1 and Ψn = {ηk, ψk}

n
k=1 as the first n nontrivial LB eigenvalues and LB

eigenfunctions ofM and N respectively, which can be computed using the numerical methods discussed in Section
2.2. We consider the following LB eigenmap of M and N using their first n nontrivial LB eigenvalues and LB
eigenfunctions.

ιn
M

:M→ Rn, u 7→ p = ιn
M

(u) =

φ1(u)

λd/4
1

, · · · ,
φn(u)

λd/4
n


ιn
N

: N → Rn, v 7→ q = ιn
N

(v) =

ψ1(v)

ηd/4
1

, · · · ,
ψn(v)

ηd/4
n

 (6)

Note that the above LB eigenmap is scale invariant from Proposition 1. In addition, if a point cloud is sampled
from a two dimensional manifold, this embedding is the same as the global point signature (GPS) proposed in [34].
Figure. 1 illustrates the LB eigenmap using the first three nontrivial LB eigenfunctions for point clouds sampled
from cats and dogs, where each pair of point clouds for dogs and cats are sampled from surfaces which are close to
isometric. First, we can clearly see the LB eigenmap is intrinsic while the coordinated representation of original point
cloud embedded in Euclidean coordinates is not. So using LB eigenmap can remove isometric variance in non-rigid
deformation automatically. Second, the LB eigenmap gives a natural multi-scale representation of the underlying
manifold. Figure 2 shows multi-scaled reconstructions using different number of LB eigenfunctions to represent
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Figure 1: LB eigenmap using the first three nontrivial LB eigenfunctions.

(x, y, z) coordinate functions of give data. It is clearly to see that detailed geometric information of point clouds can
be gradually recovered using more and more LB eigenfunction. These two important properties are the motivation for
our proposed registration model.

Figure 2: Multi-scale representation using the first n LB eigenfunctions to represent (x, y, z) coordinate functions.

However, LB eigenmap introduces a few new problems due to ambiguities inherited in LB or any other eigen-
system. For example, if φi is an LB eigenfunction, so does −φi. Moreover, if the dimension di of the eigen-space
corresponding to λi,

{
φ | ∆Mφ = −λiφ

}
, is greater than 1, then there is a freedom of orthonormal group O(di) to choose

those LB eigenfunctions. A rigorous distance has been discussed in [33] to overcome this ambiguity while computation
complexity is quite high. In addition, there is another potential issue coming from numerical computation of the LB
eigen-system, where if two eigenvalues are too close, then ordering of LB spectrum may be switched. In Figure
3, we illustrate examples for these ambiguities by showing the first four nontrivial LB eigenfunctions of two point
clouds sampled from dog surfaces, which are obtained from the public available data base TOSCA [56, 57, 58]. It is
clearly that the pattern of the first nontrivial LB eigenfunctions are quite consistent for these two point clouds, while
the second nontrivial LB eigenfunctions have a sign change and the third and fourth LB eigenfunctions have order
switching for the two point clouds.
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Figure 3: Ambiguities of LB eigenmap, where the first four nontrivial LB eigenfunctions are color-coded on the point
clouds. The color coding from red to blue means value of the corresponding LB eigenfunction varies from positive to
negative.

Although using LB eigenmap removes the variance of all isometric transformations in the original representations,
possible ambiguities described in above from the LB eigenmap can cause serious problems and lead to unsatisfactory
point clouds registration. In fact, all these ambiguities can be modeled as an orthonormal group action on the image of
LB eigenmap. More specifically, to handle ambiguities due to arbitrary sign, multiplicity or possible order switching
of LB eigen-system, we would like to align P = ιn

M
(M) ⊂ Rn and Q = ιn

N
(N) ⊂ Rn in Rn up to an orthonormal

transformation. Intuitively, a one-to-one and onto map should be constructed to have an alignment between P and Q.
In practice, however, certain discretization has to be introduced to sampleM and N . In many cases, sampling ofM
and N do not necessarily have the same number of points. Thus, a one-to-one and onto map does not make sense in
this case. Here, we would like to view a registration in the distribution sense and propose the following registration
model for P and Q based on the framework of optimal transport theory, which was first introduced by G. Monge [59]
in 1781. A breakthrough of the optimal transport theory has been made in 1940’s by Kantorovich [60] who proposed
a relaxed version of Monge’s problem allowing mass splitting, which is known as the Monge-Kantorovich problem
described as follows.

Given two complete and separable metric spaces P,Q ⊂ Rn, we write B(P),B(Q) as the sets of Borel measurable
sets on P,Q respectively, and write P(P),P(Q) as the sets of Borel probability measures on P,Q respectively. For
fixed measures µP ∈P(P), µQ ∈P(Q), we define the admissible set

ADM(µP, µQ) =
{
σ ∈P(P × Q) | σ(A × Q) = µP(A),∀A ∈ B(P) and σ(P × B) = µQ(B),∀B ∈ B(Q)

}
(7)

The Monge-Kantorovich optimal transportation problem is to find an optimal transport plan by minimizing:

min
σ

∫
P×Q

‖p − q‖22 dσ(p, q), s.t. σ ∈ ADM(µP, µQ) (8)
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The existence of an optimal transport plan is guaranteed since the admissible set ADM(µP, µQ) is compact w.r.t. the
weak topology in P(P × Q). The optimal σ ∈ ADM(µP, µQ) for the above transportation problem can be viewed as a
correspondence or mapping in distribution sense. The mass at each location p ∈ P, which is µ(p), is transported to all
q ∈ Q with distribution σ(p, q) and vice versa. It also provides a probability interpretation of the correspondence: p

maps to each q with probability
σ(p, q)
µ(p)

. Mathematically, the optimal transportation problem (8) is a relaxed formula-

tion of the Monge’s original mass transportation problem [59] where one wants to find a measurable map T : P → Q
satisfying

min
T

∫
P

‖p − T (p)‖22 dµP(p), s.t. T#µ
P = µQ (9)

where T#µ
P is the push forward of µP by T . Monge’s optimal transport problem can be ill-posed because admissible T

may not exist and the constraint T#µ
P = µQ is not weakly sequentially closed. We use the Monge-Kantorovich optimal

transportation (8) because it theoretically well-posed and provides more generality and flexibility for our problem as we
will comment more later. The optimal transport theory has been widely used in many fields including economy [61],
fluid dynamics [62], partial different equations [63], optimization [64] as well as image processing [65, 66, 67]. More
details about the optimal transport theory can be found in [68, 69, 70], from where we also adopted notations for
this work. In our problem, we would like to align P and Q obtained from LB eigenmap up to an orthonormal matrix
to remove those ambiguities inherited in LB eigenmap as discussed before. Therefore, we propose to model the
registration problem as

min
R

min
σ

∫
P×Q

‖pR − q‖22 dσ(p, q), s.t. σ ∈ ADM(µP, µQ), R ∈ O(n) = {R ∈ Rn×n | RRT = In} (10)

Figure 4: Two distributions in R up to a rotation R ∈ O(1).

As an advantage of the above proposed model, the newly introduced rotation matrix R, can successfully handle
possible ambiguity of the data representation. A simple example is illustrated in Figure 4, where we consider P =

Q = R with two distributions up to a sign misassigment. In this case, the canonical Monge-Kantorovich model
will not be able to figure out this misalignment, while this can be successfully tackled using (10) as O(1) = {−1, 1}.
Similar situation can also be handled in the case of high dimension data whose representation has ambiguity up to an
orthonormal matrix. Therefore, the proposed model is more flexible and robust than the canonical Monge-Kantorovich
model for data with possible misassignment up to O(n).

In practice, we assumeM andN are sampled by two sets of points denoted by {ui ∈ M ⊂ R
D | i = 1, · · · , `M}with a

mass distribution µM ∈ R`M
+ and {vi ∈ N ⊂ R

D | i = 1, · · · , `N} with a mass distribution µN ∈ R`N
+ . Hence, our task is to

find a meaningful mapping or registration between two point clouds,
({

pi = ιn
M

(ui)
}`M

i=1
, µM

)
and

({
qi = ιn

N
(vi)

}`N

i=1
, µN

)
,

in Rn up to a orthonormal matrix using the optimal transportation model proposed in (10). For convenience and
consistency, we let `P = `M , `Q = `N , µ

P = µM, µQ = µN and write row vectors pi and qi as the i−th row of matrices
P ∈ R`P×n and Q ∈ R`Q×n respectively. In other words, we need to find an optimal transport plan σ ∈ R`P×`Q and an
orthonormal matrix R such that the mass transportation from (PR, µP) to (Q, µQ) is minimal. In this discrete setting,
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the corresponding admissible set of optimal transportation plan is

ADM(µP, µQ) =
{
σ = (σi j) ∈ R`P×`Q | σ~1 = µP, σT~1 = µQ, σi, j ≥ 0, i = 1, · · · , `P, j = 1, · · · , `Q

}
(11)

where ~1 denotes a column vector with all elements constant 1. As a discrete version of the optimization problem (10),
the registration of two point clouds P and Q can be formulated as the following optimization problem:

min
R

min
σ

∑
i, j

σi, j ‖piR − q j‖
2
2, s.t. R ∈ O(n), σ ∈ ADM(µP, µQ) (12)

Now we introduce a few definitions and notations to state properties of the proposed problem. We first define

Mn =

∞⋃
`=1

(P, µ) = {(pi, µi) ∈ Rn × R+}
`
i=1 |

∑̀
i=1

µi = 1, pi , p j if i , j

 (13)

as the space of all possible point clouds in Rn that has ` = 1, 2, . . . number of points associated with a measure µ. We
define an equivalence relation for two point clouds (P, µP), (Q, µQ) ∈ Mn, with number of points `P, `Q respectively as

(P, µP) ∼ (Q, µQ)⇐⇒

 P and Q have the same number of points, i.e. `P = `Q

there exist R ∈ O(n) and a permutation π of [1, · · · , `P] s.t. piR = qπ(i), µ
P
i = µQ

π(i)

We define robust Wasserstein distance (RWD) as

RWD
(
(P, µP), (Q, µQ)

)2
= min

R∈O(n),σ∈ADM(µP,µQ)

∑
i, j

σi, j ‖piR − q j‖
2
2 (14)

The following statements justify the well-posedness of the problem (12) and the definition of RWD.

Theorem 1. 1. The optimization problem (12) has at least one solution.

2. If (P, µP) ∼ (P′, µP′ ) and (Q, µQ) ∼ (Q′, µQ′ ), then RWD
(
(P, µP), (Q, µQ)

)
= RWD

(
(P′, µP′ ), (Q′, µQ′ )

)
.

3. RWD
(
(P, µP), (Q, µQ)

)
≥ 0, and RWD

(
(P, µP), (Q, µQ)

)
= 0 ⇐⇒ (P, µP) ∼ (Q, µQ).

4. RWD
(
(P, µP), (Q, µQ)

)
= RWD

(
(Q, µQ), (P, µP)

)
.

5. For any (S , µS ) ∈ Mn, RWD
(
(P, µP), (Q, µQ)

)
≤ RWD

(
(P, µP), (S , µS )

)
+ RWD

(
(S , µS ), (Q, µQ)

)
,

Thus, RWD(·, ·) defines a distance onMn.

Proof. 1. Note that the discretized version of ADM(µP, µQ) defined in (11) is a compact set in R`P×`Q , and O(n) is also
a compact set. Moreover, the cost function defined in (12) is certainly smooth with respect to variables σ and R. Thus
problem (12) has at least one solution. However, the uniqueness of solution is not guaranteed due to the orthonormal
matrix constraint.

2. If (P, µP) ∼ (P′, µP′ ), then there exists a permutation π and an orthonormal matrix R0 ∈ O(n) such that piR0 =

p′π(i), µ
P
i = µP′

π(i), i = 1, · · · , `P. Then
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RWD
(
(P′, µP′ ), (Q, µQ)

)2
= min

R∈O(n),σ∈ADM(µP◦π−1,µQ)

∑
i, j

σi, j ‖pπ−1(i)R0R − q j‖
2
2

R̂=R0R

σ̂i, j=σπ(i), j

min
R̂∈O(n),σ̂∈ADM(µP,µQ)

∑
i, j

σ̂i, j ‖piR̂ − q j‖
2
2

= RWD
(
(P, µP), (Q, µQ)

)2

Similar, one can also show that RW
(
(P, µP), (Q′, µQ′ )

)2
= RW

(
(P, µP), (Q, µQ)

)2
, if (Q, µQ) ∼ (Q′, µQ′ ), which yields

the first statement.
3. It is clear to see that RWD

(
(P, µP), (Q, µQ)

)
≥ 0 and (P, µP) ∼ (Q, µQ) implies RWD

(
(P, µP), (Q, µQ)

)
=

0. Next, we show RWD
(
(P, µP), (Q, µQ)

)
= 0 =⇒ (P, µP) ∼ (Q, µQ). Let (RPQ, σPQ) be an optimizer to at-

tain RWD
(
(P, µP), (Q, µQ)

)
. Since p1, · · · , p`P are distinct points, for any q j, there is at most one piRPQ satisfying

piRPQ = q j. Similar reason yields that for for any pi, there is at most one q j satisfying piRPQ = q j. In addition,
the condition that none of row vectors and column vectors of σPQ are zeros vectors implies that PR and Q have one-
to-one correspondence. In fact, ΠσPQ = diag(µ−1

P1
, · · · , µ−1

P`P
)σPQ is a permutation matrix satisfying PR = ΠσPQ Q and

µP = ΠσPQµQ.
4. Using change of variables, we have:

RWD
(
(P, µP), (Q, µQ)

)2
= min

R∈O(n),σ∈ADM(µP,µQ)

∑
i, j

σi, j ‖piR − q j‖
2
2

R̂=R−1

σ̂=σT

min
R̂∈O(n),σ∈ADM(µQ,µP)

∑
i, j

σ̂i, j ‖qiR̂ − p j‖
2
2

= RWD
(
(Q, µQ), (P, µP)

)2
(15)

5. Given (P, µP), (Q, µQ), (S , µS ) ∈ Mn, we denote (RPS , σPS ) and (RS Q, σS Q) as optimizers of RWD
(
(P, µP), (S , µS )

)
and RWD

(
(S , µS ), (Q, µQ)

)
respectively. In other words, we have

RWD
(
(P, µP), (S , µS )

)
=

∑
i, j

σPS
i, j ‖piRPS − s j‖

2
2

1/2

,
∑`S

j=1 σ
PS
i, j = µP

i ,
∑`P

i=1 σ
PS
i, j = µS

j (16)

RWD
(
(S , µS ), (Q, µQ)

)
=

∑
j,k

σS Q
j,k ‖s jRS Q − qk‖

2
2

1/2

,
∑`Q

k=1 σ
S Q
j,k = µS

j ,
∑`S

j=1 σ
S Q
j,k = µQ

k (17)

We define σPS Q
i jk =

1
µS

j

σPS
i j σ

S Q
jk and RPS Q = RPS RS Q. It is clear that

∑
j

σPS Q
i jk ∈ ADM(µP, µQ) as

∑
j,k

σPS Q
i jk = µP

i

and
∑
i, j

σPS Q
i jk = µQ

k . Moreover, we have

10



RWD
(
(P, µP), (Q, µQ)

)
≤

∑
i,k

∑
j

σPS Q
i, j,k ‖piRPS Q − qk‖

2
2

1/2

≤

∑
i, j,k

σPS Q
i, j,k

(
‖piRPS RS Q − s jRS Q‖2 + ‖s jRS Q − qk‖2

)2
1/2

≤

∑
i, j,k

σPS Q
i, j,k ‖piRPS RS Q − s jRS Q‖22

1/2

+

∑
i, j,k

σPS Q
i, j,k ‖s jRS Q − qk‖2

)2
1/2

=

∑
i, j

σPS
i, j ‖piRPS − s j‖

2
2

1/2

+

∑
j,k

σS Q
j,k ‖s jRS Q − qk‖2

)2
1/2

= RWD
(
(P, µP), (S , µS )

)
+ RWD

(
(S , µS ), (Q, µQ)

)
(18)

where the last inequality comes from the Cauchy-Schwartz inequality. This completes the proof. �

LetσPQ be an optimizer that attains RWD((P, µP), (Q, µQ)) defined in (14), we define ΠσPQ = diag(µ−1
P1
, · · · , µ−1

P`P
)σPQ

as a map from (P, µP) to (Q, µQ) in distribution sense. A map defined in distribution sense provides both generality
and flexibility as well as gives a natural probability interpretation. For example, ΠσPQ has a natural probability in-
terpretation which says a point pi maps to q j with probability µ−1

i σi, j. One can also think of µ−1
i σi, j as weights to

define an interpolative mapping pi 7→ µ−1
i

lQ∑
j=1

σi, jq j. Using this formulation one can deal with point clouds having

different number of points, e.g., point clouds with different sampling rate, as well as incorporate uncertainty, local
feature information, and prior knowledge into the measures µ and ν. One can also use a post-process step to obtain
correspondence in classical sense from σi, j. We show such examples in Section 5.

Remark 1. 1. RWD(·, ·) can be naturally generalized to “rotation” + “translation”, which can be used for more

general registration problems.

2. Since ADM(µP, µQ) defined in (7) is compact w.r.t. the weak topology in P(P×Q), one can similarly show that

the proposed problem (10) has at least one solution. Moreover, similar arguments used in this theorem can be

used to show that the formula (10) also defines a distance for two spaces P,Q ⊂ Rn with given mass distribution

µP, µQ respectively.

The constraints of the non convex set O(n) in (12) make the above optimization problem difficult to solve. Here,
we consider to solve the following two minimization problems alternatively to approach its solution.

Rk = arg min
R

∑
i, j

σk−1
i, j ‖piR − q j‖

2
2, s.t. RT R = In (19)

σk = arg min
σ

∑
i, j

σi, j ‖piRk − q j‖
2
2, s.t. σ ∈ ADM(µP, µQ) (20)

11



The first minimization problem has a closed-form solution as follows.

Rk = arg min
R∈O(n)

∑
i, j

σk−1
i, j ‖piR − q j‖

2
2

= arg min
R∈O(n)

∑
i, j

σk−1
i, j pi pT

i +
∑
i, j

σk−1
i, j q jqT

j − 2
∑
i, j

σk−1
i, j piRqT

j

= arg min
R∈O(n)

−2Tr(σk−1QRT PT )

= arg min
R∈O(n)

‖R − PTσk−1Q‖2F

= ProjO(n)(P
Tσk−1Q) = UVT (21)

where U,V are provided by SVD decomposition PTσk−1Q = UDVT . The second minimization problem can be
solved by linear programming methods in O(N2.5 log(N)) operations. Thus we have the following algorithm based
on the proposed alternative method, the drawback of which is the computation cost mainly due to the second sub-
optimization problem. In practice, large size of point clouds are usually expected, which makes this method quite time
consuming. This is also our major motivation to introduce a new distance in the next section.

Algorithm 1: Iterative Method for (12)

1 Initialize R0, σ0

2 while “not converge” do
3 Rk = arg min

R∈O(n)

∑
i, j

σk−1
i, j ‖piR − q j‖

2
2 = UVT , where SVD(PTσk−1Q) = UDVT .

4 Solve σk = arg min
σ

∑
i, j

σi, j ‖piRk − q j‖
2
2, s.t. σ ∈ ADM(µP, µQ) by a linear programming method.

Due the non-convexity of the problem (12), it is hard to find its global minimizer. However, the following theorem
suggests that the above alternative method will provide a monotone sequence to approach a local minimizer.

Theorem 2. For any R ∈ O(n) and σ ∈ ADM(µP, µQ), if we write E(R, σ) =
∑
i, j

σi, j ‖piR − q j‖
2
2, then the sequence

{Rk, σk}∞k=1generated by Algorithm 1 satisfies:

E(Rk+1, σk+1) ≤ E(Rk, σk) (22)

Proof. From the construction of Rk+1 and σk+1, we have:

E(Rk+1, σk) ≤ E(R, σk) & E(Rk+1, σk+1) ≤ E(Rk+1, σ), for any R ∈ O(n), σ ∈ ADM(µP, µQ)

Thus, let R = Rk, σ = σk in the above two inequalities, we have:

E(Rk+1, σk+1) ≤ E(Rk+1, σk) ≤ E(Rk, σk)

�
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4 Robust Sliced-Wasserstein Distance and Numerical Algorithms

To reduce the computation cost of the minimization problem discussed in the previous section, we first introduce a
new distance called Robust Sliced-Wasserstein distance between two point clouds. The computation efficiency of the
new distance is based on the existence of analytical solution of 1D optimal transport problem. We further develop
an alternative method to solve the proposed nonconvex optimization problem. Moreover, we can also show that the
proposed algorithm produces a decreasing sequence to approach a local minimizer. Inspired by the idea of the robust
Sliced-Wasserstein distance, we also propose an empirical but more efficient algorithm for point clouds registration,
which can be viewed as an approximation algorithm for model (12).

4.1 1D optimal transportation

Let’s first briefly discuss the solution of 1D optimal transport problem, which is our major motivation to propose a
new distance introduced in section 4.2. Let P(R) be the set of Borel probability measures on R. Given µ, ν ∈P(R),
we write Fµ, Fν : R → [0, 1] as the cumulative distribution functions of µ, ν respectively. Define F−1

µ : [0, 1] → R
as F−1

µ (t) = inf{x ∈ R | Fµ(x) > t}, then the solution of 1D optimal transport problem is described by the following
theorem [68].

Theorem 3. Consider the following 1D optimal transport problem

σµ,ν = arg min
σ∈ADM(µ,ν)

∫
R×R

(x − y)2dσ(x, y)

then the following statements hold,

1. Supp(σµ,ν) ⊂
{
(x, y) ∈ R2 | Fµ(x−) ≤ Fν(y) and Fν(y−) ≤ Fµ(x)

}
2. For any B ∈ B(R2), σµ,ν(B) = L

({
t ∈ [0, 1] | (F−1

µ (t), F−1
ν (t)) ∈ B

})
, where L stands for the Lebesgue measure

on [0, 1].

3. The optimal value is given by
∫ 1

0
(F−1

µ (s) − F−1
ν (s))2ds = min

σ∈ADM(µ,ν)

∫
R×R

(x − y)2dσ(x, y)

The above theorem suggests a closed-form solution for discrete 1D optimal transport problems. Given two discrete
sets X = {x1, x2, · · · , x`X } ⊂ R and Y = {y1, y2 · · · , y`Y } ⊂ R. We consider two discrete probability measures µX =
`X∑
i=1

µX
i δxi and µY =

`Y∑
j=1

µY
j δy j . The discrete 1D optimal transport can be formulated as:

σX,Y = arg min
σ∈ADM(µX ,µY )

∑
i, j

σi, j(xi − y j)2 (23)

whose solution can be obtained from Theorem 3 with the following closed form.

Corollary 1 (Solution of Discrete 1D optimal transport). Let πy, πy be two permutations such that xπx(1) < xπx(2) <

· · · < xπx(`X ) and yπy(1) < yπy(2) < · · · < yπy(`Y ). Let x̂i = xπx(i), µ̂
X
i = µX

πx(i), s0 = 0, si = µ̂X
1 + · · · + µ̂X

i , i = 1, · · · , `X and

ŷ j = yπy( j), µ̂
Y
j = µY

πy( j), h0 = 0, h j = µ̂Y
1 + · · · + µ̂Y

j , j = 1 · · · , `Y . Define
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σ̂i, j =



0, if si ≤ h j−1, or h j ≤ si−1

µ̂X
i , if h j−1 ≤ si−1 < si ≤ h j

µ̂Y
j , if s j−1 ≤ h j−1 < h j ≤ si

si − h j−1, if si−1 ≤ h j−1 < si ≤ h j

h j − si−1, if h j−1 ≤ si−1 < h j ≤ si

(24)

Then σX,Y
i, j = σ̂πx(i),πy( j).

Proof. Let σ̂ = arg min
σ∈ADM(µ̂x,µ̂y)

∑
i, j

σi, j(x̂i − ŷ j)2. According to Theorem 3, we have

σ̂i, j = L
({

t ∈ [0, 1] | (F−1
µ̂X (t), F−1

µ̂Y (t)) = (x̂i, ŷ j)
})

= L
({

t ∈ [0, 1] | F−1
µ̂X (t) = x̂i

}⋂{
t ∈ [0, 1] | F−1

µ̂Y (t)) = ŷ j

})
= L

(
(si−1, si] ∩ (h j−1, h j]

)

=



0, if si ≤ h j−1, or h j ≤ si

µ̂x
i , if h j−1 ≤ si−1 < si ≤ h j

µ̂
y
j, if s j−1 ≤ h j−1 < h j ≤ si

si − h j−1, if si−1 ≤ h j−1 < si ≤ h j

h j − si−1, if h j−1 ≤ si−1 < h j ≤ si

�

Particularly, if we set `X = `Y = N and µX
i = µY

i = 1/N, then σ̂i, j = 1
N δi, j, which is a well-known result for 1D

discrete optimal transport between two sets with the same number of points and uniform mass distribution. As the
result indicated from Corollary 1, the computation complexity of the 1D discrete optimal transport problem relies on
the cost of sorting algorithms, which can be as fast as O(N log N). The efficient algorithm for 1D optimal transport
problem inspires us to propose the following robust sliced-Wasserstein distance (RSWD), which can be viewed as
a generalization of slice-Wasserstein distance proposed in [71], where distance is only defined for two sets with the
same number of points and no rigid transformation flexibility is included.

4.2 Robust Sliced-Wasserstein distance

Let P,Q ⊂ Rn be two complete and separable metrizable topological spaces. Given a unit vector θ ∈ S n−1, where S n−1

denotes the unit sphere in Rn, and an orthonormal matrix R ∈ O(n), we define projection maps

πθ,R : P→ R
p 7→ pRθT

&
πθ : Q→ R

q 7→ qθT
(25)

For a given µP ∈ P(P), an induced measure πθ,R# µP on R is defined by πθ,R# µP(B) = µP((πθ,R)−1(B)),∀B ⊂ B(R).
Similarly, we define induced measure πθ#µ

Q on R for a given measure µQ on Q. In addition, we define

ADM(πθ,R# µP, πθ#µ
Q) = {σ ∈P(R × R) | σ(B × R) = πθ,R# µP(B), σ(R × B) = πθ#µ

Q(B),∀B ∈ B(R)} (26)
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By adapting the Sliced-Wasserstein distance proposed in [71], we define the following robust sliced-Wasserstein dis-
tance (RSWD).

RSWD
(
(P, µP), (Q, µQ)

)2
= min

R∈O(n)

∫
S n−1

min
σ∈ADM(πθ,R# µP,πθ#µ

Q)

∫
R×R

‖x − y‖22dσ(x, y) dθ (27)

For each fixed R, there exits an optimal transport plan σθ ∈ ADM(πθ,R# µP, πθ#µ
Q) for each direction θ ∈ S n−1. Since

O(n) is compact, there exists a minimizer R that achieves RSWD
(
(P, µP), (Q, µQ)

)
. Similar to the discretized robust

Wasserstein distance discussed in section 3, let {p1, · · · , p`P } and {q1, · · · , q`Q } be the discrete sampling of P and Q
respectively. Again we write P ∈ R`P×n and Q ∈ R`Q×n for their matrices notation. Also denote µP

θ,R and µQ
θ to be the

measures on R induced by πθ,R : pi 7→ piRθT and πθ : q j 7→ q jθ
T respectively. Then the discrete version of RSWD

can be formulated as follows.

RSWD
(
(P, µP), (Q, µQ)

)2
= min

R∈O(n)

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j‖piRθT − q jθ
T ‖2 dθ

= min
R∈O(n)

∫
S n−1

∑
i, j

σθ,Ri j ‖piRθT − q jθ
T ‖2 dθ (28)

where σθ,R ∈ ADM(µP
θ,R, µ

Q
θ ) denotes the optimizer for the optimal transport for the two 1D point sets {piRθT }

`P
i=1 and

{q jθ
T }
`Q

j=1 constructed as in Corollary 1 for each direction θ. Hence distance between two high dimensional objects
are measured by averaging Wasserstein distances from all 1D projections. This distance provides us a useful tool
for registration, comparison and classification of point clouds. Meanwhile, it has a great advantage in computation
efficiency since each 1D problem can be solved by sorting in O(Nlog(N)) operations discussed in section 4.1. In
addition, the following theorem justifies the proposed RSWD as a distance.

Theorem 4. The following statements hold for RSWD(·, ·).

1. If (P, µP) ∼ (P′, µP′ ), then RSWD
(
(P, µP), (Q, µQ)

)
= RSWD

(
(P′, µP′ ), (Q, µQ)

)
.

2. RSWD
(
(P, µP), (Q, µQ)

)
≥ 0, and RSWD

(
(P, µP), (Q, µQ)

)
= 0 ⇐⇒ (P, µP) ∼ (Q, µQ).

3. RSWD
(
(P, µP), (Q, µQ)

)
= RSWD

(
(Q, µQ), (P, µP)

)
.

4. For any (S , µS ) ∈ Mn, RSWD
(
(P, µP), (Q, µQ)

)
≤ RSWD

(
(P, µP), (S , µS )

)
+ RSWD

(
(S , µS ), (Q, µQ)

)
,

Therefore, RSWD(·, ·) defines a distance on the spaceMn/ ∼.

Proof. 1. If (P, µP) ∼ (P′, µP′ ), then there exists a permutation π and an orthonormal matrix R0 ∈ O(n) such that
piR0 = p′π(i), µ

P
i = µP′

π(i), i = 1, · · · , `P. Then

RSWD
(
(P′, µP′ ), (Q, µQ)

)2
= min

R∈O(n)

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi, j ‖pπ−1(i)R0RθT − q jθ
T ‖22 dθ

R̂=R0R

σ̂i, j=σπ(i), j

min
R̂∈O(n)

∫
S n−1

min
σ̂∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σ̂i, j ‖piR̂θT − q jθ
T ‖22 dθ

= RSWD
(
(P, µP), (Q, µQ)

)2

2. It is clear to see that RSWD(P,Q) ≥ 0 and P ∼ Q implies RSWD(P,Q) = 0. Next, we show RSWD(P,Q) =

0 =⇒ (P, µP) ∼ (Q, µQ). Let RPQ ∈ O(n) be a rigid transformation that attains RSWD
(
(P, µP), (Q, µQ)

)
= 0. It is
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clear that {piRPQ}
`P
i=1 = {q j}

`Q

j=1 implies existence of a permutation matrix Π satisfying RPQP = ΠQ, which also yields

µP = ΠµQ. Thus, it suffices to show {piRPQ}
`P
i=1 = {q j}

`Q

j=1 which can be proved by contradiction as follows.

Let’s assume {piRPQ}
`P
i=1 , {q j}

`Q

j=1. Without loss of generality, we assume q j0 < {piRPQ}
`P
i=1. Thus, there is a direc-

tion θ ∈ S n−1 such that ‖piRPQθT −q j0θ
T ‖22 > 0,∀i = 1, 2, . . . , `P. By the continuity of ‖piRPQθT −q j0θ

T ‖22 with respect
to θ, there is an open set Ω ⊂ S n−1 and has positive Lebesgue measure µ(Ω) > c1 > 0 such that ‖piRPQθT − q j0θ

T ‖22 >

c2 > 0,∀θ ∈ Ω, i = 1, 2, . . . , `P. Let σθ ∈ ADM(µP
θ,R, µ

Q
θ ) denote the optimizer of min

σ∈ADM(µP
θ,R,µ

Q
θ )

∑
i, j

σi j‖piRθT − q jθ
T ‖2

for each direction θ. Since
∑

i

σθi, j = µQ
θ (q jθ

T ) > 0, we have

RSWD
(
(P, µP), (Q, µQ)

)
=

∫
S n−1

∑
i, j

σθi, j ‖piRPQθT − q jθ
T ‖22 dθ

≥

∫
Ω

∑
i

σθi, j0 ‖piRPQθT − q j0θ
T ‖22 dθ

> c1c2µ
Q
θ (q j0θ

T ) > 0 (29)

This is in contradiction to RSWD
(
(P, µP), (Q, µQ)

)
= 0.

3. Using change of variables, we have:

RSWD
(
(P, µP), (Q, µQ)

)2
= min

R∈O(n)

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi, j ‖piRθT − q jθ
T ‖22 dθ

R̂=R−1

σ̂=σT ,θ̂T =θT R
min

R∈O(n)

∫
S n−1

min
σ̂∈ADM(µQ

θ̂,R̂
,µP
θ )

∑
i, j

σ̂i, j ‖qiR̂θ̂T − p jθ̂
T ‖22 dθ̂

= RSWD
(
(Q, µQ), (P, µP)

)2
(30)

4. Given (P, µP), (Q, µQ), (S , µS ) ∈ Mn, we denote RPS and RS Q as optimizers of RSWD
(
(P, µP), (S , µS )

)
and

RSWD
(
(S , µS ), (Q, µQ)

)
respectively. For each θ, we construct σθi, j,k from the two optimal 1D transport plans σθi, j for

{piRPS θT }
`P
i=1, {s jθ

T }
`S
j=1 and σθj,k for {s jRS QθT }

`S
j=1, {qkθ

T }
`Q

k=1 the same way as used in the proof of theorem 1. We have

RSWD
(
(P, µP), (Q, µQ)

)
≤

∫
S n−1

∑
i, j,k

σθi, j,k ‖piRPS RS QθT − qkθ
T ‖22 dθ

1/2

≤

∫
S n−1

∑
i, j,k

σθi, j,k

(
‖piRPS RS QθT − s jRS QθT ‖2 + ‖s jRS QθT − qkθ

T ‖2

)2
dθ

1/2

≤

∫
S n−1

∑
i, j,k

σθi, j,k ‖piRPS RS QθT − s jRS QθT ‖22dθ

1/2

+

∫
S n−1

∑
i, j,k

σθi, j,k‖s jRS QθT − qkθ
T ‖2

)2
dθ

1/2

=

∫
S n−1

∑
i, j

σθi, j ‖piRPS θT − s jθ
T ‖22dθ

1/2

+

∫
S n−1

∑
j,k

σθj,k‖s jRS QθT − qkθ
T ‖2

)2
dθ

1/2

= RSWD
(
(P, µP), (S , µS )

)
+ RSWD

(
(S , µS ), (Q, µQ)

)
(31)

�

Remark 2. 1. RSWD(·, ·) can be easily generalized to “rotation” + “translation”, which can also be used for

more general registration problems such as those considered in texture missing and image registration.
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2. In particular, if we freeze R = In and set `P = `Q = N, µP = µQ = 1/N, the RSWD distance reduces to the

sliced-Wasserstein distance SWD(P,Q)2 =

∫
θ∈Rn,‖θ‖=1

min
permutation π

N∑
i=1

(piθ
T − qπ(i)θ

T )2dθ proposed in [71], where

the authors only consider to measure two sets with the same number of points. The proposed RSWD distance

can be viewed as a generalization of slice-Wasserstein distance. It also has the built in flexibility to handle

ambiguities due to rigid transformation.

4.3 Numerical algorithms for solving the Robust Sliced-Wasserstein distance

To solve the non-convex optimization problem (28) for the Robust Sliced-Wasserstein distance, we propose to alter-
natively and iteratively optimize with respect to R and σ. The main advantage of this approximation is that σθ at each
step can be efficiently constructed by essentially a sorting algorithm as shown in Corollary 1 for a given direction
θ, which is much more efficient than solving (20) by linear programming methods. Here is the proposed iterative
algorithm for (28).

Algorithm 2: Iterative method for computing Robust Sliced-Wasserstein distance

1 Initialize R0, σ0(θ),
2 while “not converge” do

3 Rk = min
R∈O(n)

∫
S n−1

∑
i j

σk−1
i, j (θ)

(
piRθT − q jθ

T
)2

dθ.

4 For each θ ∈ S n−1, solve σk(θ) = arg min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRkθT − q jθ

T
)2

by Corollary 1.

Moreover, the following theorem guarantees that the proposed algorithm creates a monotone sequence to approach
a local minimizer of (28).

Theorem 5. Let E(R) =

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRθT − q jθ

T
)2

dθ and {Rk}∞k=1 be a sequence generated by algo-

rithm 2, then E(Rk+1) ≤ E(Rk).

Proof. From the construction of Rk+1, it is clear that∫
S n−1

∑
i, j

σk
i j(θ)

(
piRk+1θT − q jθ

T
)2

dθ ≤
∫

S n−1

∑
i, j

σk
i j(θ)

(
piRkθT − q jθ

T
)2

dθ (32)

Since σk(θ) = arg min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRkθT − q jθ

T
)2

, it is true that

∫
S n−1

∑
i, j

σk
i j(θ)

(
piRkθT − q jθ

T
)2

dθ =

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRkθT − q jθ

T
)2

dθ = E(Rk) (33)
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On the other hand, since min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRk+1θT − q jθ

T
)2
≤

∑
i, j

σk
i j(θ)

(
piRk+1θT − q jθ

T
)2

, we have

E(Rk+1) =

∫
S n−1

min
σ∈ADM(µP

θ,R,µ
Q
θ )

∑
i, j

σi j

(
piRk+1θT − q jθ

T
)2

dθ

≤

∫
S n−1

∑
i, j

σk
i j(θ)

(
piRk+1θT − q jθ

T
)2

dθ

≤

∫
S n−1

∑
i, j

σk
i j(θ)

(
piRkθT − q jθ

T
)2

dθ

= E(Rk)

�

To efficiently approximate the integration and solve the problem (28) with orthogonality constraint, we propose the
following curvilinear search algorithm. We denote Θ = {θ1, θ2, · · · , θL} ⊂ S n−1 as L randomly chosen unit directions
in Rn. For each θl ∈ Θ, it is easy to compute the optimizer of σ(θl) = arg min

σ∈ADM(µP
θ,R,µ

Q
θ )

∑
i, j

σi j

(
piRθT

l − q jθ
T
l

)2
by

the sorting method provided in Corollary 1. The crucial step is to solve the following optimization problem with
orthogonality constraint.

arg min
R∈O(n)

EΘ(R) =

L∑
l=1

∑
i, j

σi j(θl)
(
piRθT

l − q jθ
T
l

)2
(34)

Based on Cayley transform, a curvilinear search method with Barzilai-Borwein (BB) step size is introduced in [72].
Here, we adapt this method to solve the above problem. For convenience, we use the following notations:

H = ∇REΘ(R) = 2
L∑

l=1

∑
i, j

σi j(θl)pT
i (piR − q j)θlθ

T
l

A = HRT − RHT

R ← Y(τ) =

(
I +

τ

2
A
)−1 (

1 −
τ

2
A
)

R (35)

To make the maximal use of the computed ‖H‖2 and RT H at each iteration s, we determine a step size τs that makes
significant descent while still guarantees the convergence of the overall iterations. We also apply nonmonotone curvi-
linear search with an initial step size determined by the Barzilai-Borwein formulas, which were developed originally
for Rn in [73, 74]. At iteration k, the step size is computed as

τs,1 =
Tr(DT

s−1DT
s−1)

|Tr(DT
s−1Ws−1)|

or τs,2 =
|Tr(DT

s−1Ws−1)|

Tr(WT
s−1Ws−1)

, (36)

where Ds−1 := Rs − Rs−1 and Ws−1 = AsRs − As−1Rs−1. The final value for τk is a fraction (up to 1, inclusive) of τs,1

or τs,2 determined by the nonmonotone search in Lines 6 and 7 of Algorithm 3, which enforce a trend of descent in
the objective value but do not require strict descent at each iteration. More details and the proof of convergence of this
algorithm can be found in [72].

Assembling the above parts, we arrive at Algorithm 3, in which ε is a stopping parameter, and ρ, δ, and ξ are
curvilinear search parameters, which can be set to typical values as 10−4, 0.1 and 0.85, respectively.

Remark 3. 1. The major difference between the model of minimizing RSWD (27) and the general non-convex

model (12) is that there is no explicit permutation involved in the RSWD. The correspondence or registration
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Algorithm 3: Curvilinear search algorithm for (28)
Input: P,Q
Output: R, σ̄

1 Initialize R0, σ0
l and randomly choose L directions {θ1, · · · , θL} ⊂ S n−1

2 while “not converge” do
3 s← 0.
4 while ‖∇EΘ(Rk+1,s)‖ > ε do
5 Compute τs ← τs,1δ

h or τs ← τs,2δ
h, where h is the smallest nonnegative integer satisfying

EΘ(Ys(τs)) ≤ Cs + ρτsE′Θ(Ys(0)).
6 Rk+1,s+1 ← Ys(τs).

7 Qs+1 ← ξQs + 1 and Cs+1 ←
ξQsCs + EΘ(Rk+1,s+1)

Qs+1
.

8 s← s + 1.

9 Solve each σk+1(θl) = min
σ

∑
i j

σi j

(
piRkθT

l − q jθ
T
l

)2
by the sorting method given in Corollary 1.

10 R = Rk, σ̄ =
1
L

L∑
l=1

σk(θl)

results from a post processing in the form of a distribution. In other words, suppose the above algorithm stops

at Rk ∈ O(n) and {σk(θl)}Ll=1, the average transport plan σ̄ =
1
L

L∑
l=1

σk(θl) satisfies σ̄~1 = µP, σ̄T~1 = µQ and

σ̄ ≥= 0, which indicates that σ̄ ∈ ADM(µP, µQ). We define Πσ̄ = diag(µ−1
P1
, · · · , µ−1

P`P
)σ̄ as a correspondence

between P and Q in the distribution sense.

2. As another advantage of the RSWD, the computation of σ(θ) along each projection is independent, which can

be further sped up by using parallel computating. Thus, the algorithm has great potential to handle point clouds

of large sizes. However, the realization of parallel computing is beyond the topic of this paper. We will discuss

more along this direction in our future work.

4.4 An empirical point clouds registration algorithm

Inspired by the explanation of the correspondence in the distribution sense, we propose the following empirical algo-
rithm to approximate the general non-convex model problem (12) proposed in Section 3. We approximate σk in the
second step of algorithm 1 by averaging the optimal permutation matrices in each direction.

Algorithm 4: An empirical algorithm for (12)
Input: P,Q
Output: R, σ

1 Initialize R0, σ0, and randomly choose L directions {θ1, · · · , θL} ⊂ S n−1.
2 while “not converge” do
3 Rk = arg min

R∈O(n)

∑
i, j

σk−1
i j ‖piR − q j‖

2
2 = UVT , where SVD(PTσk−1Q) = UDVT .

4 σk =
1
L

L∑
l=1

σθl , where each σθl = arg min
σ∈ADM(µP

θl ,R
,µQ
θl

)

∑
i j

σi j

(
piRkθT

l − q jθ
T
l

)2
solved by the sorting method

given in Corollary 1
5 R = Rk, σ = σk.
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The above algorithm has several advantages listed as follows:

1. Rk at each step can be directly solved by SVD decomposition, which is more efficient than iteratively solving
problem (34) in algorithm 3. Thus, we can expect this empirical algorithm will be more efficient than the
registration algorithm using RSWD.

2. The approximation of σk at each step make the model (12) computationally tractable. Similarly to what we
discussed about algorithm 3, the second step in algorithm 4, which is the main computation cost, is easily
parallelizable. This property has great benefit for handling registration of point clouds of large sizes.

4.5 Multi-scale registration

As a great advantage of ιn
M

: M → Rn, ιn
M

(u) =

φ1(u)

λd/4
1

, · · · ,
φn(u)

λd/4
n

, LB eigenmap ιn
M

provides a natural multiscale

characterization of the manifoldM with global information. This observation leads to a simple and natural multi-scale
registration algorithm which enjoys robustness, efficiency and accuracy. First, we choose a sequence of numbers of LB
eigenfunctions to construct LB eigenmap for point clouds {ui ∈ M}

`M
i=1 and {vi ∈ N}

`N
i=1. Efficient and robust registration

on coarse scale can be obtained from LB eigenmap with the first few leading LB eigenvalues and corresponding
eigenfunctions. Then registration at finer and finer scales can be achieved effectively by using LB eigenmap with
more and more LB eigenvalues and corresponding eigenfunctions using available coarser scale registration as the
initial guess. More precisely, let 3 = n0 < · · · < n j < · · · < nJ be a given sequence of numbers. We write Pn j ={
ι
n j

M
(ui)

}`M
i=1

and Qn j =
{
ι
n j

N
(vi)

}`N
i=1

as the LB eigenmap of these two point clouds induced from their leading n j LB
eigenvalues and corresponding eigenfunctions. For convenience, we also write (R, σ) = PCRegs((P, µM), (Q, µN ))
for an registration algorithm with input P,Q and output R, σ. In particularly, we can choose PCRegs(·, ·) as either
algorithm 3 or algorithm 4. Then, we propose the following multi-scale registration algorithm.

Algorithm 5: Multi-scale registration

1 Initialize (R0, σ0) = PCRegs((Pn0 , µM), (Qn0 , µN ))
2 for j = 1:J do
3 (R j, σ j) = PCRegs((Pn j , µM), (Qn j , µN )) using σ j−1 as an initial guess.

4 ΠPQ = diag(µ−1
P1
, · · · , µ−1

P`P
)σJ

5 Numerical results

In this section, numerical tests are presented to illustrate the proposed methods for point clouds registration. First, we
compare the computation efficiency of Algorithm 3, Algorithm 4 and also indicate the capability of the proposed algo-
rithm for fixing the ambiguities of LB eigen-system for point cloud registration. Second, we illustrate the effectiveness
of the proposed methods for mapping point clouds with different density distribution. Finally, we demonstrate that
the simple and natural multi-scale registration algorithm 5 can improve both efficiency and accuracy. All numerical
experiments are implemented by MATLAB in a PC with a 16G RAM and a 2.7 GHz CPU.

In our first example, we test the proposed algorithm 3 and algorithm 4 for registration of point clouds with the
same number of points. Two point clouds sampled from two approximately isometric surfaces are given as input data.
Note that the registration results obtained from both algorithms are correspondences in the distribution sense, which
are represented as matrices whose row sum is 1. We convert the correspondence matrix to pointwise correspondence
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David2 to David1 Dog2 to Dog1

(a) (b)

(c) (d)

Figure 5: The first row: registration using the first 5 eigenvalues and corresponding eigenfunctions by algorithm 3
with µP = µQ = 1/N. The second row: the resulting 5 × 5 rotation matrices for point clouds registration using the first
5 nontrivial LB eigenfunctions.

only for visualization purpose by simply choosing the index of the maximal value for each row of the correspondence
matrix. The first row of Figure 5 plots registration results using the first 5 nontrivial LB eigenvalues and corresponding
eigenfunctions. The registration result is quite satisfactory visually. Meanwhile, as a by-product of the algorithms,
we can obtain the optimal rigid transformation matrix for registering the two point clouds after LB eigenmap, which
in fact shows the ambiguity of the LB eigenmap. As we illustrated in Figure 3, a rotation matrix for aligning LB

embedding of two dog point clouds with the first 4 LB eigenfunctions should be close to


1
−1

1
−1

. In fact,

this is consistent with our computation result illustrated in Figure 5 (d). Similarly, Figure 5 (c). reports the rotation
matrix for two David point clouds registration. Moreover, we also list computation time of both algorithms in Table
1, which clearly shows the efficiency of our algorithms.

As an advantage of the proposed registration methods based on the optimal transport theory, our methods can also
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Point clouds Size (N) methods
Time consumption (s)

n = 5 n = 10 n = 20 n = 30 n = 50
L = 1000 L = 1500 L = 2000 L = 3000 L = 5000

David point
clouds 3400 Alg. 3 5.23 26.40 64.11 93.66 168.46

Alg. 4 13.91 18.36 23.92 34.39 55.10
Dog point
clouds 3400 Alg. 3 17.40 42.50 60.32 92.20 167.04

Alg. 4 13.89 18.18 22.85 32.25 53.89

Table 1: Comparison of computation for algorithm 3 and 4.

handle registration for data with different density distributions. In Figure 6, we report the second experiment results
for registration of point clouds with possible different density distribution using the proposed methods, where µP, µQ

are chosen as the density distribution of the given data which can be approximated by computing the area of Voronoi
cell of each point from its local mesh construction. Our results show that the proposed methods can handle registration
problem for point clouds with different density distribution. In summary, our computation results suggest that the
proposed registration methods successfully address the ambiguity introduced from the LB eigenmap, provide efficient
non-rigid point cloud registration and has great potential to handle non-rigid registration between two general point
clouds with possible different density distributions.

In our third experiment, we demonstrate the capability of the proposed multi-scale registration algorithm 5. A nice
property of our muli-scale algorithm is that it is not necessary to obtain perfect registration results at coarse scale,
which can significantly speed up the whole registration process with even 200 LB eigenfunctions used as the finest
level. In order to have a better quantitative assessment of the registration quality especially at the fine scale, rather than
using typical eyeball norm or visual inspection, we propose a connectively transformation test as follows.

Let P = {p1, · · · , pN} and Q = {q1, · · · , qN} be two set of points sampled from the source surface M and target
surface N . Let f be a map from P to Q such that f (pi) = qσ(i). We impose a triangle mesh connectivity structure
T =

{
Ts = [ps1 ps2 ps3 ]

}
s

on the source point cloud P such that {P,T } forms a triangle mesh representation of M.
Naturally, the imposed connectivity can be transformed to the target point cloud using the obtained registration result.
In other words, we consider f (T ) =

{
f (Ts) = [ f (ps1 ) f (ps2 ) f (ps3 )]

}
s

as an induced connectively on Q from f . It
is certainly true that {Q, f (T )} is not necessary a good triangle mesh representation of N for an arbitrary f . On the
other hand, if f provides a good correspondence or registration, then {Q, f (T )} can provide a reasonable triangle mesh
representation of N . Namely, one can observe a regular triangle mesh representation of N without having cross-over
triangles. The more accurate registration we have, the smoother surface we can reconstruct using {Q, f (T )}.

In Figure 7 and Figure 8, we show the reconstructions from the transformed connectivity obtained from the in-
termediate registration results in the multi-scale registration process using algorithm 3 and algorithm 4 respectively.
In our example, we choose a sequence of numbers {3, 5, 10, 20, 30, 50, 80, 120, 150, 200} for LB eigenembedding. We
only run 2 iterations using the proposed registration algorithms at each level. It is clearly seen that the registration
results at the first few levels only capture coarse level information. However, more and more detailed information
can be captured with more and more LB eigenfunctions. Thus, we can see finer and finer structure from surface re-
constructions. Although we only run 2 iterations without exactly solving the registration problem at each level, we
observe that the multi-scale registration process can gradually correct the registration error and finally lead to very
accurate registration results. In Tabel 2, we report the computation time using algorithm 3 and algorithm 4 for each
level respectively.

22



methods
Time consumption (s)

n1 = 5 n2 = 10 n3 = 20 n4 = 30 n5 = 50 n6 = 80 n7 = 120 n8 = 150 n9 = 200
L = 500 L = 800 L = 1000 L = 1500 L = 3000 L = 6000 L = 10000 L = 15000 L = 20000

Alg. 3 0.61 1.21 1.50 2.26 4.75 9.58 16.50 26.23 38.42
Alg. 4 0.45 .70 0.83 1.23 2.30 4.76 7.68 11.67 15.60

Table 2: Comparison of computation time using algorithm 3 and algorithm 4 for multi-scale registration.

6 Conclusion

In this work a multi-scale non-rigid point cloud registration model and computational algorithms are proposed. The
key ideas in our approach are:

1. Use LB eigenmap, which is invariant under isometric transformation and scaling, to give an intrinsic multi-scale
representation of the original point clouds in the embedding space.

2. Develop effective registration models and computational algorithms for the new point clouds after LB eigenmap
using non-convex optimization that can remove ambiguities introduced by LB eigenmap. In particular, robust
sliced-Wasserstein distance (RSWD) is proposed and proved to be a well defined metric and computationally
efficient for point clouds.

3. Employ a natural multi-scale procedure that can achieve efficiency, accuracy and robustness.

Numerical tests demonstrate promising results for our methods. There are a few interesting projects based on the
current work we will pursue in the future. We will investigate possibilities to incorporate local or other features in the
LB eigenmap and the measure, for instance affine invariant Gaussian curvature proposed in [75]. We will also study
shape classification by using machine learning techniques based on LB eigenmap and RSWD. Last but not least, we
will explore point cloud registration and classification in high dimensional data analysis.

References

[1] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models -their training and application. Computer

Vision and Image Understanding, 61(1):38–59, 1995.

[2] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search engine for 3D
models. ACM Trans. Graph., 22(1):83–105, 2003.

[3] P. M. Thompson, K. M. Hayashi, G. I. de Zubicaray, A. L. Janke, S. E. Rose, J. Semple, D. H. Herman, M. S.
Hong, S. S. Dittmer, D. M. Doddrell, and A. W. Toga. Dynamics of gray matter loss in Alzheimer disease. J.

Neurosci., 23(3):994–1005, 2003.

[4] X. Gu, Y. Wang, T. F. Chan, P. Thompson, and S. T. Yau. Genus zero surface conformal mapping and its
application to brain surface mapping. IEEE Transaction on Medical Imaging, 23:949–958, 2004.

[5] Tong Lin and Hongbin Zha. Riemannian manifold learning. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 30(5):796–809, 2008.

[6] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape distributions. ACM Trans.

Graph., 21(4):807–832, 2002.

23



[7] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recognition using shape contexts.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(4):509–522, 2002.

[8] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 25(10):1285–1295, 2003.

[9] H. Ling and D. W. Jacobs. Shape classification using the inner-distance. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 29(2):286–299, 2007.

[10] J. W. Tangelder and R. C. Veltkamp. A survey of content based 3d shape retrieval methods. Multimedia Tools

and Applications, 39(3):441–471, 2008.

[11] M. Ben-Chen and C. Gotsman. Characterizing shape using conformal factors. Proceedings of Eurographics

Workshop on Shape Retrieval, Crete, April, 2008.

[12] F. Luo. Geodesic length functions and Teichmüller spaces. J. Differetial Geometry, 48, 1998.

[13] M. Jin, F. Luo, S. Yau, and X. GU. Computing geodesic spectra of surfaces. Proc. ACM Symposium on Solid

and Physical Modeling, pages 387–393, 2007.

[14] M. Jin, W. Zeng, F. Luo, and X. Gu. Computing teichmüller shape space. IEEE Transaction on Visualization

and Computer Graphics, 15(3):504–517, 2009.

[15] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Graduate studies in mathematics, AMS, 33,
2001.

[16] F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point
cloud data. Found. Comput. Math., 5(3):313–347, 2005.

[17] F. Mémoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of Point Based

Graphics, Prague, Czech Republic, pages 81–90, 2007.

[18] F. Mémoli. Gromov-hausdorff distances in euclidean spaces. Workshop on Non-Rigid Shape Analysis and

Deformable Image Alignment (CVPR workshop, NORDIA’08), 2008.

[19] F. Mémoli. A spectral notion of Gromov-Wasserstein distances and related methods. Journal of Applied and

Computational Harmonic Analysis, 363–401, 2011.

[20] S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, 2004.

[21] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21(5–30), 2006.

[22] A. M. Bronstein, M. M. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro. A gromov-hausdorff framework
with diffusion geometry for topologically-robust non-rigid shape matching. Int. Jour. Comput. Vis., 89(2-3):266–
286, 2010.

[23] M. Reuter, F.E. Wolter, and N. Peinecke. Laplace-Beltrami spectra as Shape-DNA of surfaces and solids.
Computer-Aided Design, 38:342–366, 2006.

[24] B. Levy. Laplace-beltrami eigenfunctions: Towards an algorithm that understands geometry. IEEE International

Conference on Shape Modeling and Applications, invited talk, 2006.

24



[25] B. Vallet and B. Levyvy. Spectral geometry processing with manifold harmonics. Computer Graphics Forum

(Proceedings Eurographics), 2008.

[26] S. Dong, P-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quadrangulation. ACM SIG-

GRAPH, 2006.

[27] Y. Shi, R. Lai, S. Krishna, N. Sicotte, I. Dinov, and A. W. Toga. Anisotropic Laplace-Beltrami eigenmaps:
Bridging Reeb graphs and skeletons. In Proc. MMBIA, 2008.

[28] M. Reuter. Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigen-
functions. International Journal of Computer Vision, doi:10.1007/s11263-009-0278-1, 2009.

[29] Y. Shi, R. Lai, J. Morra, I. Dinov, P. Thompson, and A. W. Toga. Robust surface reconstruction via laplace-
beltrami eigen-projection and boundary deformation. IEEE Trans. Medical Imaging, 29(12):2009–2022, 2010.

[30] P. W. Jones, M. Maggioni, and R. Schul. Manifold parametrizations by eigenfunctions of the laplacian and heat
kernels. Proceedings of the National Academy of Sciences, 105(6):1803–1808, 2008.

[31] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provabley informative multi-scale signature baded on heat
diffusion. Eurographics Symposium on Geometry Processing, 2009.

[32] M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recognition. CVPR,
2010.

[33] P. Bérard, G. Besson, and S. Gallot. Embedding riemannian manifolds by their heat kernel. Geom. Funct. Anal.,
4(4):373–398, 1994.

[34] R. M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representation. Eurographics

Symposium on Geometry Processing, 2007.

[35] I. Chavel. Eigenvalues in Riemannian Geometry. Academic press. INC, 1984.

[36] R. Schoen and S.-T. Yau. Lectures on Differential Geometry. International Press, 1994.

[37] J. Jost. Riemannian geometry and geometric analysis. Springer, 3rd edition, 2001.

[38] M. Kac. Can one hear the shape of a drum? Am Math Mon, 73(4):1–23, 1966.

[39] J. Milnor. Eigenvalues of the laplace operator on certain manifolds. Proc. Nat. Acad. Sci. U.S.A., 51:542, 1964.

[40] T. Sunada. Riemannian coverings and isospectral manifolds. Ann. of Math., 121(1):169–186, 1985.

[41] M. H. Protter. Can one hear the shape of a drum? revisited. SIAM Rev, 29(2):185–197, 1987.

[42] C. Gordon, D. Webb, and S. Wolpert. One cannot hear the shape of a drum. Bull. Am. Math.Soc., 27(1):134–138,
1992.

[43] K. Uhlenbeck. Generic properties of eigenfunctions. Amer. J. of Math., 98(4):1059–1078, 1976.

[44] A. Qiu, D. Bitouk, and M. I. Miller. Smooth functional and structural maps on the neocortex via orthonormal
bases of the Laplace-Beltrami operator. IEEE Trans. Med. Imag., 25(10):1296–1306, 2006.

25



[45] Y. Shi, R. Lai, K. Kern, N. Sicotte, I. Dinov, and A. W. Toga. Harmonic surface mapping with Laplace-Beltrami
eigenmaps. In Proc. MICCAI, 2008.

[46] R. Lai, Y. Shi, I. Dinov, T. F. Chan, and A. W. Toga. Laplace-beltrami nodal counts: a new signature for 3d shape
analysis. In Proc. ISBI, pages 694–697, 2009.

[47] R. Lai, Y. Shi, K. Scheibel, S. Fears, R. Woods, A. W. Toga, and T. F. Chan. Metric-induced optimal embedding
for intrinsic 3D shape analysis. CVPR, 2010.

[48] J. Liang, R. Lai, T. Wong, and H. Zhao. Geometric understanding of point clouds using laplace-beltrami operator.
CVPR, 2012.

[49] G. Taubin. Geometric signal processing on polygonal meshes. EUROGRAPHICS, 2000.
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Figure 6: Registration results between point clouds with different density distribution. Left column: registration
results obtained by algorithm 3 using the first 10 nontrivial LB eigenvalues and corresponding eigenfunctions. Right
Column: registration results obtained by algorithm 4 using the first 10 nontrivial LB eigenvalues and corresponding
eigenfunctions.
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Figure 7: Connectively transformation test of multi-scale registration using algorithm 3.
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Figure 8: Connectively transformation test of multi-scale registration using algorithm 4.
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