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Summary

A homogeneous, isotropic plate occupies the region 0 � x1 � ∞, |x2| � a, |x3| � h, where
the semi-thickness h = h(x2). The ratio h(x2)/a is supposed to be everywhere sufficiently
small so that the classical theory of bending of thin plates (of non-uniform thickness) applies.
The short end of the plate at x1 = 0 is clamped while the long sides are free. This cantilever
plate is now loaded at x1 = +∞ by an applied twisting moment, by a bending moment or by
flexure. We solve these problems for the case in which h varies exponentially with x2. We
use the projection method which overcomes the difficulty that the boundary conditions lead to
severe oscillating singularities in the corners (0, ±a).

Our numerical results show that the values of M11, V1 on x1 = 0 bear little resemblance to
those of the corresponding Saint-Venant ‘solutions’, which do not fully satisfy the boundary
conditions at the clamped end. Indeed, very large values of these resultants are found at
points near the ‘thick’ corner which could affect the integrity of the plate in actual engineering
applications. We also determine the values of certain weighted integrals of M11, V1. These
constants determine the effect of the clamping at ‘large’ distances (greater than 4a, say) from
the clamped end.

As a further application, we consider the corresponding plate of finite length 2L . Provided
that the aspect ratio L/a is 2 or more, we give accurate approximate solutions for the torsion and
flexure of a finite plate clamped at both ends. The flexure problem for the finite plate enables
us to calculate the position of the ‘centre of shear’ according to Reissner’s definition. This has
not previously been possible due to the complicated nature of the underlying boundary-value
problem. In the limit as L/a → ∞, the shear centre lies at x2 = m B

1 a, where m B
1 is one of the

weighted integrals in the bending problem.

1. Introduction

A beam is an elastic body bounded by a cylindrical surface (the lateral surface) and two planes
normal to the lateral surface (the end sections). If one end section is fixed, the lateral surface
is traction free, and a loading is applied at the other end section, then the beam is said to be
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cantilevered. The shear centre of a cantilevered beam is conventionally defined as the point in
the end section of the beam such that a transverse load applied at that point produces ‘torsionless
bending’ of the beam (that is, bending without twisting). However, since the cross-sections of a
beam under flexure are all deformed differently, the whole notion of torsionless bending is rather
amorphous and different definitions of this concept lead to different positions for the shear centre;
see (1, section 53). In addition to this ambiguity, most elementary determinations of the shear
centre do not take proper account of the boundary conditions at the ends of the beam. It may be
correctly argued that only the resultant forces and moments of the stress distribution at the loaded
end are significant away from that end; however, it transpires that the boundary conditions at the
fixed end affect the position of the shear centre even in the limit as the length of the beam tends
to infinity. Since these displacement boundary conditions make the whole boundary-value problem
for the beam difficult to solve, it can be said that there has not yet been a definitive solution of the
shear centre problem.

Probably the most satisfactory formulation of the shear centre problem is due to Reissner (see (2)
and the references therein) where the boundary conditions at both ends of the beam may be
prescribed in terms of displacements. This formulation results in a clearly defined boundary-value
problem in elasticity theory and, since both end sections now suffer only rigid displacements, the
requirement that the ‘loaded’ end should undergo torsionless bending is perfectly well defined. The
corresponding plate theory formulation of the shear centre problem when the beam is a rectangular
plate of non-uniform thickness can be found in (3) and some approximate determinations for the
shear centre using this formulation were obtained in (4, 5). However, even for thin plates, there is
considerable difficulty in solving the necessary boundary-value problems accurately.

In the present work we use Reissner’s formulation to treat the shear centre problem for the
special case in which the cantilever beam is a thin plate whose thickness varies in the chordwise
direction. Since the plate is assumed to be symmetrical about its mid-plane, it suffices to determine
the chordwise coordinate of the shear centre. The location of the shear centre is found to depend
only on the outer asymptotic solution of the boundary-value problem for the cantilevered plate.
This outer solution is determined, to within exponentially small terms, by the method of decaying
residual states (6). This reduces the problem to the solution of three canonical problems for the
corresponding semi-infinite cantilevered plate; these canonical problems of torsion, bending and
flexure can then be solved by the projection method (7 to 9), which properly takes into account the
severe oscillating singularities that occur at the corners of the plate. There are, however, some new
complications that did not appear previously: (i) the thickness profile of the plate is not symmetrical
about the centreline (otherwise the problem would be trivial) and (ii) the Papkovich–Fadle (PF)
eigenfunctions for a plate strip of non-uniform thickness are much more difficult to obtain than in
the uniform thickness case.

The method of solution is illustrated for a plate of exponentially varying thickness profile. Once
the three canonical problems have been solved by the projection method, certain weighted integrals
of the bending moment and transverse shear resultant at the clamped end can be evaluated. The
values of these weighted integrals are all that is needed when the method of decaying residual
states is applied to determine the position of the shear centre. Comparisons are made with existing
approximate solutions due to Gu and Wan (4). Although none of these approximate methods is
capable of predicting the physically important behaviour of the solution near the clamped ends,
they do give surprisingly accurate values for the position of the shear centre.
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2. Description of the canonical problems

2.1 General theory of thin plates with varying thickness

Let the region {(x1, x2, x3) : (x1, x2) ∈ A, |x3| � h}, where h = h(x1, x2), be occupied by a
homogeneous, isotropic, linearly elastic material with Young’s modulus E and Poisson’s ratio ν. We
refer to such a body as a (symmetrical) elastic plate of varying thickness. The symmetry of the plate
about the the mid-plane x3 = 0 means that any small deformation is the sum of a small deformation
symmetrical about x3 = 0 and a second small deformation anti-symmetrical about x3 = 0. We are
concerned in this paper with small deformations of the second kind. These correspond to ‘bending’
of the plate (rather than ‘stretching’) and will ultimately be characterized by w(x1, x2), the small
transverse deflection of the mid-plane x3 = 0; see (10) and the references therein.

The shear resultants Q j and moment resultants M jk (1 � j, k � 2) are defined in terms of the
three-dimensional stress field τ (x1, x2, x3) in the plate by

Q j (x1, x2) =
∫ h

−h
τ j3(x1, x2, x3) dx3 and M jk(x1, x2) =

∫ h

−h
x3 τ jk(x1, x2, x3) dx3.

When the faces of the plate on x3 = ±h are free of tractions and body forces are absent, these
resultants satisfy the usual equilibrium equations

Q j = M1 j,1 + M2 j,2, (1)

Q1,1 + Q2,2 = 0, (2)

where j = 1, 2.
If the plate is ‘thin’ then the moment resultants M jk are related to w, the small transverse

deflection of the mid-plane, by the constitutive relations (11)

M11 = −D(w,11 + νw,22), M22 = −D(w,22 + νw,11), (3)

M12 = M21 = −D(1 − ν)w,12, (4)

where D(x1, x2) is the local flexural rigidity, given by

D = 2
3 Eh3/(1 − ν2). (5)

These are the same formulae as in the classical theory of thin plates of constant thickness, except
that now h = h(x1, x2). However, the formulae for Q j in terms of w differ from the constant
thickness formulae since they now involve the derivatives of D with respect to x1 and x2.

With our particular application in mind, we now take h (and therefore D) to depend only on the
coordinate x2. In this case, the Q j are given by

Q1 = −D(w,111 + νw,122) − (1 − ν)[Dw,12],2, (6)

Q2 = −D(1 − ν)w,112 − [D(w,22 + νw,11)],2, (7)

while the corresponding effective transverse shear resultants Vj are given by

V1 = Q1 + M12,2 = −D(w,111 + νw,122) − 2(1 − ν)[Dw,12],2, (8)

V2 = Q2 + M21,1 = −2D(1 − ν)w,112 − [D(w,22 + νw,11)],2. (9)
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Fig. 1 The semi-infinite cantilever plate with chordwise varying thickness

On substituting the formulae (6), (7) into the equilibrium equation (2), we obtain the governing
equation satisfied by w(x1, x2), namely

D[w,1111 + 2w,1122 + w,2222] + 2D,2[w,222 + w,112] + D,22[w,22 + νw,11] = 0, (10)

for plates whose thickness depends only on the coordinate x2.

2.2 The cantilever plate with chordwise varying thickness

Consider now the semi-infinite strip plate shown in Fig. 1 which occupies the region 0 � x1 < ∞,
|x2| � a, |x3| � h(x2). We suppose that the ratio h/a is everywhere sufficiently small so that the
thin plate theory given above applies. The end of the plate is clamped so that w(x1, x2) satisfies

w(0, x2) = 0, (11)

w,1(0, x2) = 0 (12)

(|x2| � a). However the sides of the plate are traction-free so that the Kirchhoff contracted boundary
conditions hold, namely

M22(x1, ±a) = 0, (13)

V2(x1, ±a) = 0 (14)

(0 < x1 < ∞). In terms of w, these boundary conditions take the form

w,22 + νw,11 = 0, (15)

[w,22 + (2 − ν)w,11],2 = 0, (16)

after using (15) to simplify (14). The boundary conditions on w are thus identical to those in the
constant thickness case.

This ‘cantilever’ plate is now loaded at x1 = +∞ by one of the following force systems:
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(i) torsion with prescribed twisting moment T ,
(ii) (pure) bending with prescribed bending moment M,

(iii) flexure with transverse load F .

(For the purposes of this paper, it is convenient to use the term ‘flexure’ to mean a combination
of transverse load and bending moment so that the applied bending moment at x1 = 0 is zero. We
also suppose that the flexural force has no resultant twisting moment about the axis Ox1.)

Some restriction must also be placed on the behaviour of w(x1, x2) near the corner points (0, ±a)

in order to exclude ‘unphysical’ solutions. We require that the plate should have bounded strain
energy near these corners. The precise nature of the corner singularities that are permitted in the
constant thickness case has been discussed in (9, Appendix B), and the singularities that occur in
the variable thickness case have the same leading terms. These singularities have a profound effect
on the solution process.

The problem to be solved in each case is to determine the deflection (and the corresponding shear
and moment resultants) in the plate, and especially to determine the unknown resultants V1(0, x2),
M11(0, x2) at the clamped end x1 = 0.

2.3 The cantilever plate with chordwise exponentially varying thickness

The three problems described above are well-posed boundary-value problems for the transverse
displacement w(x1, x2). However, the governing equation (10) will generally have coefficients that
depend on x2 and this presents analytical difficulty. However, for the case in which h(x2) has the
exponential form

†

h(x2) = h0e2δx2/3a, (17)

where h0, δ are positive constants, the flexural rigidity D has the exponential form

D(x2) = D0e2δx2/a, (18)

where D0 is a positive constant. In this case, the governing equation (10) reduces to

[w,1111 + 2w,1122 + w,2222] + 4
δ

a
[w,222 + w,112] + 4

(
δ

a

)2

[w,22 + νw,11] = 0, (19)

an equation with constant coefficients. This equation is still different from that in the constant
thickness case (δ = 0) and has its own difficulties, but these can be overcome.

3. The PF-eigenfuctions

From now on we assume that the plate thickness varies exponentially as in (17). Also, we take
a = 1 (without losing generality), so that the plate has width 2; the solution for the case of general
width can be deduced by scaling.

Our solution method requires the explicit determination of the PF-eigenfunctions for the

†
The factor 2/3 is introduced for later convenience.
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corresponding infinite strip problem with the governing equation (19) and the boundary
conditions (15), (16) on x2 = ±1, −∞ < x1 < ∞. These eigenfunctions have the form

wλ(x1, x2) = e−λx1 Eλ(x2), (20)

where the (complex) eigenvalues λ and corresponding functions Eλ are to be determined. The
designation PF indicates that these eigenfunctions are analogous to the well-known Papkovich–
Fadle eigenfunctions of plane strain theory. On substituting (20) into equation (19), we find that the
function Eλ satisfies

Eλ
′′′′ + 4δEλ

′′′ + (2λ2 + 4δ2)Eλ
′′ + 4δλ2 E ′

λ + λ2(λ2 + 4νδ2)Eλ = 0. (21)

Although this equation has constant coefficients, its explicit solution would require us to find
analytic expressions for the roots of a quartic equation whose coefficients depend on the eigenvalue
λ. However, if we make the prior change of dependent variable

W (x1, x2) = eδx2w(x1, x2), (22)

then W satisfies

W,1111 + 2W,1122 + W,2222 + 2δ2(2ν − 1)W,11 − 2δ2W,22 + δ4W = 0 (23)

and the boundary conditions on x2 = ±1 become

W,22 − 2δW,2 + δ2W + νW,11 = 0, (24)

W,222 − 3δW,22 + 3δ2W,2 − δ3W + (2 − ν)[W,112 − δW,11] = 0. (25)

The virtue of this transformation is that (23) is now an equation in which odd derivatives are absent.
If we now seek the PF-eigenfunctions in the form

W (x1, x2) = e−λx1 Fλ(x2), (26)

then Fλ satisfies

Fλ
′′′′ + 2(λ2 − δ2)F ′′

λ + [λ4 + 2δ2(2ν − 1)λ2 + δ4]Fλ = 0 (27)

with the boundary conditions

Fλ
′′ − 2δFλ

′ + (δ2 + νλ2)Fλ = 0, (28)

Fλ
′′′ − 3δFλ

′′ + (3δ2 + (2 − ν)λ2)F ′
λ − δ(δ2 + (2 − ν)λ2)Fλ = 0 (29)

on x2 = ±1.
Now equation (27) has solutions of the form

Fλ = eµx2 (30)

provided that µ satisfies

µ4 + 2(λ2 − δ2)µ2 + [λ4 + 2δ2(2ν − 1)λ2 + δ4] = 0, (31)
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which, owing to the transformation (22), is a quadratic equation in the variable µ2. This equation
has the solutions

µ2 = δ2 − λ2 ± 2iν1/2δλ. (32)

When the four µ values µ1, . . . , µ4 are distinct, the four functions generated by (30) form a basis
set of solutions of the equation (27). Its general solution then has the form

Fλ(x2) = c1eµ1x2 + c2eµ2x2 + c3eµ3x2 + c4eµ4x2 , (33)

where c1, . . . , c4 are arbitrary constants. For the sake of definiteness we take

µ1 = [δ2 − λ2 + 2iν1/2δλ]1/2, (34)

µ2 = [δ2 − λ2 − 2iν1/2δλ]1/2, (35)

µ3 = −µ1, µ4 = −µ2, (36)

where the choice of branches in (34), (35) will turn out to be immaterial.
We now require that the expression (33) satisfy the four boundary conditions (28), (29). (It should

be noted that the required solutions have no particular symmetry about the centreline x2 = 0 so that
these four conditions are truly independent.) This leads to a homogeneous system of algebraic linear
equations of the form Ac = 0, where

c = [c1, c2, c3, c4]T (37)

and A is a 4 × 4 matrix whose elements are known functions of λ, δ, ν. A non-trivial solution for c
will exist if and only if det A = 0. After extensive algebra, this condition reduces to

cosh 2µ1 cosh 2µ2 + λ2 − kδ2

µ1µ2
sinh 2µ1 sinh 2µ2 − 1 = 0, (38)

where µ1, µ2 are defined by (34), (35), and k = (1 + 14ν + 17ν2)/(1 − ν)2.
Equation (38) is the eigenvalue equation satisfied by λ. The function on the left is, in fact, an

entire function of complex λ and is independent of any choice of branches in the definitions of µ1,
µ2. It is also an even function of λ and is real when λ is real. The roots must therefore appear in
real (or pure imaginary) pairs, or in complex sets of four; (λ = 0 is not a root.)

We determined the roots of (38) numerically by starting with the roots for the constant thickness
case, corresponding to δ = 0. These are the non-zero roots of the equation:

sin2 2λ =
(

1 − ν

3 + ν

)2

(2λ)2; (39)

see (9, Appendix D). The parameter δ was assigned a small positive value and the corresponding
roots of (38) determined by a complex Newton iteration, using as starting values the roots of
(39). The process of incrementing δ was successively repeated (at each stage using the previous
set of roots as the starting values in a Newton iteration) until the required value of δ was attained
and the corresponding roots determined. We also determined the asymptotic form of (38) as
|λ| → ∞, and proved analytically that there must be 4m − 2 roots of (38) lying in the complex
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domain −mπ/2 < �(λ) < mπ/2 for any sufficiently large integer m. This was consistent with the
number of roots found by our numerical method and confirmed that no roots had been missed.

For each λ satisfying (38), the matrix A was found to have rank three. It follows that the
corresponding solution vector cλ is unique to within normalization and that the eigenfunction
corresponding to the eigenvalue λ is given by (20), where

Eλ(x2) = e−δx2

4∑
j=1

cλ
j exp{µ j (λ)x2}. (40)

It remains to dispose of the possibility that the {µ j } are not all distinct
‡
. This would occur (i) if

µ2
1 = µ2

2, or (ii) if either of µ1, µ2 were zero. In the first case, this would imply that λ = 0 which
only gives rise to a trivial rigid body deflection. In the second case, suppose that µ1 = 0. This
would imply that

λ = iν1/2δ ± δ(1 − ν)1/2. (41)

However, λ must also satisfy a determinantal equation similar to (38). We found that the λ values
in (41) did not satisfy this second equation.

4. Solution method for the canonical problems

The torsion, bending and flexure problems for the cantilever strip plate with exponentially varying
thickness were solved by the ‘method of projection’, which is described in detail in (7, 9). We give
here a summary of the method. Some new difficulties did arise because the required solutions no
longer have any particular symmetry about the centreline x2 = 0.

Suppose that w(x1, x2) is the solution for the deflection in (say) the torsion problem, with
associated moment resultants M jk and effective shear resultants Vj . Suppose further that wλ,
Mλ

jk , V λ
j are the corresponding quantities belonging to the PF-eigenfunction with eigenvalue λ,

obtained in section 3. Then it follows from an application of the reciprocity formula obtained
in (9, Appendix C), that

∫ 1

−1
[V1w

λ − M11w,λ1 ]x1=0 dx2 = 0, (42)

provided that the eigenvalue λ has positive real part (so that wλ, Mλ
jk , V λ

j are exponentially
decreasing as x1 → +∞). This countably infinite set of values of λ will be denoted by �. In
terms of the function Eλ defined by (39), equation (42) becomes

∫ 1

−1
[V1(0, x2)Eλ(x2) + M11(0, x2)λEλ(x2)] dx2 = 0 (43)

for all λ ∈ �. Formula (43) is a set of identities satisfied by the important unknown resultants V1,
M11 at the clamped end x1 = 0.

Gregory and Gladwell (7,8) have devised a method, called the method of projection, to determine

‡
The {µ j } are certainly not distinct when Poisson’s ratio ν = 0. We exclude this degenerate case from the outset.
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the functions V1(0, x2), M11(0, x2) directly from a system of identities such as (43). Gregory, Gu
and Wan (9) improved this method and extended it to accommodate the oscillating singularities
present at the corners of a uniform plate with a clamped end and free sides. In the present case, the
variable thickness of the plate makes no difference to the asymptotic form of the leading Williams
eigenfunction (12) in each of the corners. This is because the highest-order terms in the governing
equation (19) do not involve δ and so are the same as in the uniform plate case. In particular, the
leading Williams eigenfunction for the corner at (0, 1) has resultants on x1 = 0 of the form

V1(0, x2) ∼ K1(1 − x2)
α+iβ, (44)

M11(0, x2) ∼ K2(1 − x2)
1+α+iβ (45)

as x2 → 1−, where α, β, K1/K2 depend only on ν (the exponents α, β are real, but K1/K2
is complex in general). Numerical values of α, β are given in (9, Appendix B, Table 2) for
ν = 1/4, 1/3, 1/2. In the torsion problem then, the asymptotic forms of V1(0, x2), M11(0, x2) as
x2 → 1− must be some (complex) linear combinations of (44), (45) and their complex conjugates.

We now define new unknowns V̂1(x2), M̂11(x2) by

V1(0, x2) = (1 − x2
2)α V̂1(x2), (46)

M11(0, x2) = (1 − x2
2)1+α M̂11(x2), (47)

in terms of which (43) can be written as∫ 1

−1
{(1 − x2

2)α V̂1(x2)Eλ(x2) + (1 − x2
2)1+α M̂11(x2)λEλ(x2)} dx2 = 0 (48)

for all λ ∈ �. When β = 0 (which is true when ν is very small), the transformation (46), (47)
removes the leading term of the corner singularities so that V̂1, M̂11 are at least C[−1, 1]. This
greatly simplifies their subsequent determination. For all ‘practical’ values of ν, however, β > 0
and so V̂1, M̂11 still contain part of the corner singularity. They are no longer unbounded, but behave
like linear combinations of

cos[β ln(1 − x2
2)] and sin[β ln(1 − x2

2)] (49)

as x2 → ±1, and so have infinitely many oscillations of non-vanishing amplitude near x2 = ±1.
This makes their numerical determination very difficult.

In the method of projection the identities (48) are regarded as orthogonality relations. Let
p(x2), q(x2) be complex-valued two-component vector functions defined almost everywhere on
[−1, 1]. Define the inner-product

〈p, q〉α =
∫ 1

−1
{(1 − x2

2)α p1q1 + (1 − x2
2)1+α p2q2} dx2 (50)

with associated norm ‖p‖α = {〈p, p〉α}1/2. Then Hα ≡ {p : ‖p‖α < ∞} is a Hilbert space under
the inner product (50). Since α > −1 in our application, it follows that

û =
(

V̂1

M̂11

)
∈ Hα, Eλ =

(
Eλ

λEλ

)
∈ Hα, (51)
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and the identities (48) can be written as the orthogonality relations

〈̂u, Eλ〉α = 0 (52)

for all λ ∈ �. In addition to (52), û satisfies〈̂
u,

(
0
1

) 〉
α

=
〈̂
u,

(
1
0

) 〉
α

= 0, (53)

which implies that there is no applied bending moment or shearing force, and〈̂
u,

(
x2
0

) 〉
α

= T , (54)

which implies that the applied twisting moment is T .
Let D be the linear subspace of Hα spanned by

{Eλ},
(

0
1

)
,

(
1
0

)
(55)

(λ ∈ �) and let D be its closure. Then since it may be shown that the orthogonal complement of
D in Hα is one-dimensional (see (7)), it follows that û is uniquely determined by the orthogonality
relations (52), (53) and the normalization equation (54).

The theory developed in (7, 9) now applies to the determination of the unknown vector function
û(x2). In particular, a sequence of approximations convergent to û can be constructed as in (7,
sections 3, 4), the details of which will not be repeated here. This procedure begins by selecting
‘any’ element h of Hα not lying in D. In practice, however, this initial element has to be carefully
chosen so as to accelerate the convergence of the approximation process. Essentially h is chosen
so as to mimic the singular behaviour known to be present in û(x2) at x2 = ±1; see (44), (45).
This enables h − û to be expanded in a series of smooth functions that converges rapidly. In the
uniform thickness case we could exploit the symmetry of the solutions about the centreline x2 = 0
to simplify the choice of h, but in the present case no such symmetry exists and we must allow a
correspondingly general h.

Consider the ‘singular’ complex vectors hSS, hSA given by
§

hSS =

2

K1

K2
(1 − x2

2)iβ

(1 − x2
2)iβ


 , hSA =


2

K1

K2
x2(1 − x2

2)iβ

x2(1 − x2
2)iβ


 , (56)

where K1/K2, β, which depend only on ν, are defined in (44), (45). Then, by a generalization of
the argument used in (9, p. 119), h is selected from linear combinations of the form

h = a�(hSS) + b�(hSS) + c�(hSA) + d�(hSA) + ehR, (57)

where a, b, c, d , e are constants, and hR is some ‘regular’ element of Hα (polynomial in x2, for

§
The factor 2 in the upper components compensates for the fact that the actual behaviour of V1, M11 near x2 = 1 involves

(1 − x2)α , (1 − x2)1+α , whereas, in the definitions (46), (47) we use (1 − x2
2 )α , (1 − x2

2 )1+α .
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example). The ‘optimum’ choice of the constants a, . . . , e is not known beforehand and must be
determined as part of the solution process. The normalization equation (54) gives one relation
between the constants, but four more are needed. These can be provided by requiring that

û − a�(hSS) − b�(hSS) − c�(hSA) − d�(hSA) = 0 (58)

at the corner points x2 = ±1. This is equivalent to the statement that the second Williams
eigenfunction in each of the corners (0, ±1) is of order o(1) as x2 → ±1 compared to the leading
eigenfunction. We imposed the four conditions (58) on our approximate solution to determine the
constants a, . . . , e approximately. By choosing h to be this ‘optimum’ linear combination, we found
a remarkable improvement in the speed of convergence of our numerical procedure. This enabled
us to determine û accurately at low computational cost.

The bending and flexure problems are solved in an almost identical manner. Only (53) and (54)
are altered to take account of the different loadings.

5. Results for the canonical problems

For the problems under consideration, the corner singularities have a complex exponent (except
for very small values of ν). These problems were solved by the projection method described in
sections 3, 4 which yields numerical values for V̂1(x2), M̂11(x2). The physical quantities V1(0, x2),
M11(0, x2) can then be found from (46), (47). Note that, because of the boundary condition (12), the
moment resultant M12(0, x2) ≡ 0, so that the transverse shear resultant Q1 and effective transverse
shear resultant V1 are equal at the clamped end x1 = 0.

Figures 2 to 4 show graphs of (non-dimensionalized) V̂1(x2) and M11(0, x2) for the three
canonical problems of torsion, bending and flexure. (We prefer to show graphs of V̂1 rather than
V1 because V1 is unbounded as x2 → ±a.) All these graphs were calculated using N = 60. We
also calculated the numerical values using N = 80. This made almost no difference to the graphs
and suggested that our final values were correct to about three decimal places. Although our graphs
do not convey this impression, it is actually true that M11(0, ±a) = 0 in each case. Likewise the
infinitely many undamped oscillations of V̂1(x2) near x2 = ±a are also invisible. The graphs bear
little resemblance to those of V1 and M11 in the Saint-Venant solutions for the corresponding plate
of infinite length. This is because these ‘solutions’ do not include the boundary layer at the clamped
end x1 = 0 and could hardly be expected to represent the true solution there. In particular, all of
the (non-zero) Saint-Venant stress resultants have the same sign on whole interval −a � x2 � a,
unlike those of the true solutions.

5.1 The singularities of V1 at x2 = ±a

Care should be exercised before attributing direct physical significance to the values of V1(0, x2),
M11(0, x2) near x2 = ±a. The entire solution given here is in the context of the classical theory of
thin plates, which is an approximate representation of three-dimensional elasticity, valid when h/a
is small. In particular, it cannot be expected to represent the three-dimensional theory in regions
lying within a distance of order O(h) from a corner. In a more complete theory, the classical
solution would be supplemented by ‘corner boundary layers’ with respect to which the classical
theory would be the ‘outer’ solution. Nevertheless since

V1(0, x2) = (1 − x2
2)α V̂1(x2), (59)
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Fig. 2 Torsion problem: values of a2T −1V̂1(x2) and aT −1 M11(0, x2) against x2/a for the plate with
thickness profile h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

Fig. 3 Bending problem: values of a2M−1V̂1(x2) and aM−1 M11(0, x2) against x2/a for the plate with
thickness profile h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

where the exponent α is negative, large values of V1 are actually attainable for physically realistic
values of h/a. Figures 5 to 7 show values of V1(0, x2) for x2 near +a (that is, near the ‘thick’ corner)
in the torsion, bending and flexure problems respectively. All these figures show very large values
of V1(0, x2) for x2 near a. Whether these values are actually attainable depends on the extent of the
corner boundary layer which in turn depends on the value of h/a at the corner. Figure 5 indicates
that, in the torsion problem, values of V1 of about 18T /a2 will be attained provided that the corner
boundary layer is negligible at a distance a/20 from the corner; this could certainly happen in
engineering applications. The mean value of this quantity in the Saint-Venant torsion ‘solution’ is
T /a2. From Figs 6, 7, the corresponding values of V1 in the bending and flexure problems are about
10M/a2 and 5F/a respectively.

The same sort of behaviour is not evident at x2 = −a. The reason is that, although the singularity
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Fig. 4 Flexure problem: values of aF−1V̂1(x2) and F−1 M11(0, x2) against x2/a for the plate with
thickness profile h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

Fig. 5 Torsion problem: values of a2T −1V1(0, x2) for x2 near +a for the plate with thickness profile
h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

at x2 = −a is present, it has a very small coefficient because the plate is much thinner there. Thus
its numerical effect is much smaller than at the ‘thick’ corner.

5.2 Weighted integrals of V1(0, x2), M11(0, x2)

Of particular importance are certain weighted integrals of V1(0, x2), M11(0, x2). These integrals
determine the behaviour of the solutions at ‘large’ distances from the clamped end. They are defined
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Fig. 6 Bending problem: values of a2M−1V1(0, x2) for x2 near +a for the plate with thickness profile
h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

Fig. 7 Flexure problem: values of aF−1V1(0, x2) for x2 near +a for the plate with thickness profile
h = h0 exp(2x2/3a) and Poisson’s ratio 1/3

by

vT
j = a1− jT −1

∫ a

−a
x j

2 V T
1 (0, x2) dx2, mT

j = a− jT −1
∫ a

−a
x j

2 MT
11(0, x2) dx2, (60)

vB
j = a1− jM−1

∫ a

−a
x j

2 V B
1 (0, x2) dx2, m B

j = a− jM−1
∫ a

−a
x j

2 M B
11(0, x2) dx2, (61)

vF
j = a− jF−1

∫ a

−a
x j

2 V F
1 (0, x2) dx2, m F

j = a−1− jF−1
∫ a

−a
x j

2 M F
11(0, x2) dx2, (62)

where the suffixes T , B, F refer to the torsion, bending and flexure problems respectively, and j is a
positive integer; these quantities are dimensionless and depend only upon ν and the plate thickness
profile. They are readily calculated once V1(0, x2), M11(0, x2) have been found, and some of their
values are listed in Table 1. As might be expected, these integrated quantities are found more
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Table 1 Values of the constants m X
1 , m X

2 , vX
2 correct to four decimal places for the plate with

thickness profile h = h0e2x2/3a and Poisson’s ratio ν = 1/4, 1/3, 1/2

ν = 1/4 ν = 1/3 ν = 1/2

mT
1 −0·3278 −0·3470 −0·3944

mT
2 −0·2206 −0·2344 −0·2688

vT
2 0·9633 0·9655 0·9733

m B
1 0·5596 0·5646 0·5711

m B
2 0·4348 0·4210 0·3825

vB
2 0·3049 0·4030 0·6049

m F
1 0·2025 0·2211 0·2636

m F
2 0·0980 0·0975 0·0963

vF
2 0·1360 0·1889 0·2881

accurately than are the values of the corresponding integrands; with N = 80 they are correct to
about six decimal places.

There are valuable checks that can be made on our numerical solutions for the tension, bending
and flexure problems. By applying the reciprocity formula in (9, Appendix C) to each pair of
solutions, it is readily established that, for any plate thickness profile, the constants mT

1 , . . . , vF
2

must be related by the three identities

m B
1 + ν

1 + ν
vT

2 = K , m F
1 − ν

1 + ν
mT

2 + K mT
1 = 0, (63)

m B
2 + vF

2 + KvT
2 = 2(1 + 3ν)

∫ a
−a x2

2 D(x2) dx2

a2(1 + ν)
∫ a
−a D(x2) dx2

, (64)

where

K = (1 + 3ν)
∫ a
−a x2 D(x2) dx2

a(1 + ν)
∫ a
−a D(x2) dx2

. (65)

None of these identities was used in the calculation of the solutions, or in the evaluation of the
weighted integrals in Table 1, but they were found to be satisfied by our numerical values correct to
at least six decimal places.

6. Additional deflection as x1 → ∞
In each of the torsion, bending and flexure problems, the deflection of the plate as x1 → ∞
approaches that of the corresponding Saint-Venant state, except for an additional rigid body
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deflection. This rigid body deflection, which represents the sole effect of the clamped end condition
when x1/a is large, cannot be found independently and must be determined along with the rest of
the solution. To be precise, for any plate thickness profile h(x2), the deflection functions wT , wB ,
wF in the torsion, bending and flexure problems have the form

wT (x1, x2) = T
4〈D〉(1 − ν)

[
x1x2

a
+ �T x2 + �T x1 + aW T

]
, (66)

wB(x1, x2) = M
4〈D〉(1 − ν2)

[
νx2

2 − x2
1

a
+ �B x2 + �B x1 + aW B

]
, (67)

wF (x1, x2) = Fa

12〈D〉(1 − ν2)

[
3νx1x2

2 − x3
1 − 3K a(1 + ν)x1x2

a2

+ �F x2 + �F x1 + aW F
]

(68)

as x1 → ∞, with exponentially small error. Here, 〈D〉 is the mean flexural rigidity, given by

〈D〉 = (2a)−1
∫ a

−a
D(x2) dx2, (69)

and the dimensionless constant K is defined by (65). The additional rigid body deflections are
associated with the dimensionless constants �T , �T , . . . , W F , which depend only on ν and the
plate thickness profile. By further applications of the reciprocal formula given in (9, Appendix C),
these constants may be expressed in terms of the weighted integrals defined by (60) to (62). After
extensive algebra, and use of (63) and (64), the results simplify to

�T = mT
1 , �T = −m B

1 , W T = m F
1 , (70)

�B = −νvT
2 , �B = νvB

2 , W B = −νvF
2 , (71)

�F = 3νmT
2 − K mT

1 , �F = −3νm B
2 + K m B

1 , W F = 3νm F
2 − K m F

1 . (72)

These formulae hold for any plate thickness profile. For the particular case of the exponential
profile, some values of the required weighted integrals are given in Table 1.

7. Flexure of a plate of finite length and the centre of shear

Let the plate now occupy the region |x1| � L , |x2| � a, |x3| � h(x2) and suppose that its ends at
x1 = ±L are held in rigid clamps. Suppose now that the clamps suffer displacements of ±δ in the
x3-direction (with no rotation) so that the plate is under flexure. What resultant transverse forces ±F
and twisting moments ±T must be applied by the clamps? If the plate was of constant thickness,
or had a thickness profile h(x2) that was an even function of x2, these twisting moments would be
zero by symmetry. In general, however, they are not zero and this important fact is associated with
the notion of ‘centre of shear’.

We will treat the finite plate by regarding each of its ends as the end of an appropriate semi-infinite
plate. This procedure is not exact since the elastic fields generated from each end will have an effect
at the opposite end. However, by examining the numerical value

¶
of the leading PF-eigenvalue

¶
The figure given refers to the case in which h(x2) = h0e2x2/3a . The value of ν makes little difference.
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obtained in section 3, one may estimate that the relative error induced is about (0·025)L/a . Thus,
even for a square plate with aspect ratio L/a = 1, the error induced is about 2·5 per cent, and when
L/a = 2 the error is about 0·06 per cent.

Since the symmetry of the plate and the end conditions require that w(x1, x2) be an odd
function of x1, the interior deflection function w I (x1, x2) (which excludes contributions decaying
exponentially from each end) must have the form

w I (x1, x2) = A(3νx1x2
2 − x3

1) + Bx1x2 + Cx1. (73)

It follows that w+, the contribution to w that decays away exponentially from the end at x1 = −L ,
takes the boundary values

w+(−L , x2) = A(3νLx2
2 − L3) + B(Lx2) + C(L) − δ, (74)

w+
,1(−L , x2) = −A(3νx2

2 − 3L2) − B(x2) − C . (75)

However, if this boundary data is to correspond to an exponentially decaying state then it must
satisfy the three necessary conditions∫ a

−a
[V X

1 (0, x2)w
+(−L , x2) − M11(0, x2)w

+
,1(−L , x2)] dx2 = 0, (76)

where V X
1 , M X

11 (X = T, B, F) refer to the torsion, bending and flexure problems for the
corresponding semi-infinite plate; see (42) and (9, Appendix C). On substituting (74), (75) into (76),
these equations reduce to

A′(3νvT
2 + 3νmT

2 ε) + B ′(1 + mT
1 ε) = 0,

A′(−3 + 3νvB
2 ε + 3νm B

2 ε2) + B ′(m B
1 ε2) + C ′ = 0,

A′(−1 + 3νvF
2 ε2 + 3νm F

2 ε3) + B ′(m F
1 ε3) + C ′ = 1.

(77)

Here A′, B ′, C ′ are scaled versions of A, B, C defined by A = δA′/L3, B = aδB ′/L3, C = δC ′/L ,
the plate aspect ratio ε is defined by

ε = a/L , (78)

and the constants mT
1 , . . . , vF

2 are the weighted integrals defined by (60) to (62). Equations (77) are
sufficient to determine the interior solution w I (x1, x2) and hence the required resultant transverse
force F and twisting moment T . The individual expressions for F and T are algebraically
complicated but, when expanded in powers of the aspect ratio ε (= a/L), we find that F is given by

δ = FL3

12〈D〉(1 − ν2)a
[2 − 3νvB

2 ε + 3ν(vF
2 − m B

2 + vT
2 m B

1 )ε2 + O(ε3)] as ε → 0. (79)

The ratio T /F is however given exactly by (77)1 as

T
F = K a − νa

1 + ν

(
vT

2 + mT
2 ε

1 + mT
1 ε

)
, (80)

where K is given by (65). On making use of the identities (63) (true for any thickness profile), this
can be written simply as

T
F =

(
m B

1 − m F
1 ε

1 + mT
1 ε

)
a. (81)
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7.1 The centre of shear

The quantity T /F is the x2-coordinate of the position of the shear centre of the plate, according to
Reissner’s definition (3,5). The shear centre, also called the centre of flexure, is sometimes vaguely
defined as the point in the end section of a cantilever beam such that a transverse load applied at that
point produces ‘torsionless bending’ (that is, bending without twisting). However, since the cross-
sections of a beam under flexure are all differently deformed, the notion of torsionless bending is not
actually well defined. Away from the ends of the beam, the elastic field may be approximated by the
interior solution, which is a linear combination of the Saint-Venant flexure and torsion solutions for
the corresponding infinite beam. As a possible definition of torsionless bending, one could require
that (in this interior region) the mean local twist over each cross-section should vanish. When
restricted to a beam which is a plate of non-uniform thickness, this condition leads to the value Y (1)

S
for the x2-coordinate of the shear centre, given by

Y (1)
S = (1 + 3ν)

∫ a
−a x2 D(x2) dx2

(1 + ν)
∫ a
−a D(x2) dx2

− 2νYC

1 + ν
, (82)

where YC is the x2-coordinate of the centroid of the cross-section. The same value is obtained by
imposing the alternative condition that the local twist at the centroid should vanish. On the other
hand, if one requires that the shear centre be determined by the condition that the local twist should
vanish at itself, then the shear centre is located at Y (2)

S , given by

Y (2)
S =

∫ a
−a x2 D(x2) dx2∫ a
−a D(x2) dx2

, (83)

a position independent of ν. Interestingly, the same value is predicted by classical beam theory;
see, for example, (4). The values of Y (1)

S , Y (2)
S coincide when ν = 0 but are obviously different in

general, the difference between them rising with ν. For a plate with exponentially varying thickness
h = h0e2x2/3a , Y (1)

S rises from 0·54a when ν = 0 to 0·75a when ν = 0·5 while Y (2)
S remains at the

constant value 0·54a.
Both of the above ‘positions’ for the shear centre are, however, based upon rather arbitrary criteria

and neither is directly related to the solution of any practically important boundary-value problem
for the beam. In particular, in neither case are the actual boundary conditions at the fixed end of
the beam taken into account. However, Reissner (3, 5) has proposed a more rational definition of
the shear centre position YS , namely the value of T /F in the flexure problem described at the start
of this section. This has the distinct advantage that the meaning of the shear centre is clear and
unambiguous; it is the position of the effective resultant force required to displace the clamps in the
manner prescribed. On the other hand, its practical determination requires the solution of a difficult
boundary-value problem that, until now, could only be treated approximately. However, as a result
of our earlier calculation, we find that

YS =
(

m B
1 − m F

1 ε

1 + mT
1 ε

)
a, (84)

where the aspect ratio ε = a/L and the dimensionless constants mT
1 , m B

1 , m F
1 are defined by (60)

to (62). In particular, in the important limit as L/a → ∞,

YS → m B
1 a, (85)
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Fig. 8 The true position of the shear centre YS (squares) compared with Y (1)
S (solid line) and Y (2)

S (dashed
line) as functions of Poisson’s ratio ν, for the plate with thickness profile h = h0e2x2/3a

which (curiously) depends only on the solution of the bending problem for the semi-infinite plate.
Numerical values of m B

1 for ν = 1/4, 1/3, 1/2 are given in Table 1.
The value of YS given by (84) is a function of a/L and ν and coincides with the common value

of Y (1)
S and Y (2)

S when ν = 0. However, YS is not strongly dependent on either variable. When
ν = 1/2, the value of YS when a/L = 1 is about seven per cent less than its value when a/L = 0.
Likewise, when a/L = 0, the value of YS rises by about six per cent as ν increases from 0 to 0.5.
Thus, for typical values of ν, the true YS happens to be much closer to the constant Y (2)

S than to the

variable Y (1)
S , which considerably overestimates the true value. This is shown in Fig. 8.

Our exact method can also be used to check on the accuracy of the results of Gu and Wan (4),
who determined the shear centre for plates of non-uniform thickness by approximate solutions
of the displacement boundary-value problem described in section 7. They used three different
approximate methods: generalized beam theory with a quadratic approximation, the same with a
cubic approximation, and a finite element method. Since their results refer to a plate with thickness
profile h = h0ex2/a for 0 � x2 � a, a separate set of calculations had to be done for the purpose
of this comparison. It was found that both of the beam theory results were in error by about one
per cent, while the finite element results were accurate to about four decimal places. The success
of the finite element method might seem surprising in view of the corner singularities, but Gu and
Wan calculated the shear centre from values predicted by the finite element method in the interior
of the plate, not at the ends. Provided this precaution is taken, the corner singularities clearly do
not prevent the finite element method from yielding an accurate value for the shear centre. It should
be remembered, however, that none of these approximate methods is effective for calculating the
physically important behaviour of the solution at the clamped ends (Figs 2 to 7).

8. Torsion of a plate of finite length

In the finite plate problem discussed in the last section, suppose now that the clamped ends at
x1 = ±L are rotated through angles ±α respectively about the x1-axis, so that the plate is under
torsion. What resultant twisting moments ±T must be applied to the clamps? Once again the
deflection function w(x1, x2) must be an odd function of x1 and the corresponding interior solution
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w I (x1, x2) must have the form (73). The coefficients A, B, C are also determined in a similar
manner. The complete solution is algebraically complicated but, when expanded in powers of the
aspect ratio ε, we find that T is given by

α = T L

4〈D〉(1 − ν)a

[
1 + mT

1 ε + 3ν

2
m B

1 vT
2 ε2 + O(ε3)

]
(86)

as the aspect ratio ε → 0.
Interestingly, the interior solution for the deflection is not w I = αx1x2/L , even at leading order.

This is because of a small flexural contribution. The actual formula is

w I (x1, x2) = αx1

L

[
x2 + am B

1

2

(
1 − x2

1

L2

)
+ aO(ε)

]
as ε → 0. (87)
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