Applications of Number Theory and Algebraic Geometry to Cryptography

Karl Rubin

Department of Mathematics UC Irvine

October 28, 2006 / Global KMS Day

Public key cryptography

Cryptography is used when one party (Alice) wants to send secret information to another party (Bob) over an insecure channel (like the Internet).

A traditional way to do this is for Alice and Bob to meet in advance and agree on a secret key or codebook, that can be used to encrypt and decrypt messages. This is not always practical.

In public key cryptography, Alice can encrypt a message for Bob using public (non-secret) information. Only Bob knows the private (secret) key required for decryption.

Public key cryptography

Let \mathbb{F}_{p} be the finite field with p elements, and \mathbb{F}_{p}^{\times}its multiplicative group.

Diffie-Hellman key agreement

(1) Public information: a prime p and a generator g of \mathbb{F}_{p}^{\times}
(2) Alice's secret information: an integer $a, 1 \leq a \leq p-1$. Bob's secret information: an integer $b, 1 \leq b \leq p-1$.
(3) Alice sends g^{a} to Bob, Bob sends g^{b} to Alice.
(4) Alice and Bob each compute $g^{a b}=\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b}$.

The eavesdropper (Eve) knows g, g^{a}, and g^{b}. Can Eve compute $g^{a b}$?

Diffie-Hellman key agreement

Diffie-Hellman Problem

Given g, g^{a}, and g^{b}, compute $g^{a b}$.

Cleary, we can solve the Diffie-Hellman Problem if we can solve the Discrete Log Problem:

Discrete Log Problem
Given g and g^{λ}, compute λ.

What about the converse? Is the Diffie-Hellman Problem easier than the Discrete Log Problem?

Discrete logs in a general cyclic group

Suppose G is a finite cyclic group, and g is a generator. Given g^{λ}, one can compute λ, the discrete log:

Naïve method: in at most $|G|$ steps
Pollard rho: in $O(\sqrt{|G|})$ steps
(If we can factor $|G|$, and ℓ is the largest prime factor, then Pollard rho works in $O(\sqrt{\ell})$ steps.)

To be "secure" from an eavesdropper, the number of steps required should be at least 2^{80}, so $|G|$ should be divisible by a prime $\ell>2^{160}$.

Discrete logs in \mathbb{F}_{q}^{\times}

Suppose q is a prime power. The best algorithms for computing discrete logs in \mathbb{F}_{q}^{\times}(index calculus: function field sieve, number field sieve) take

$$
L_{q}(1 / 3, c):=e^{c \log (q)^{1 / 3} \log \log (q)^{2 / 3}}
$$

steps. This is

- smaller than any power of q,
- larger than any power of $\log (q)$.

To be "secure", one should take $q>2^{1024}$.
Thus in secure Diffe-Hellman key agreement,

- the transmissions will be at least 1024 bits,
- the computations take place in a group of size $>2^{1024}$.

Discrete logs in \mathbb{F}_{q}^{\times}

Compare this to the Discrete Log Problem in a general cyclic group, which requires only $|G|>2^{160}$.

Are there better groups to use for cryptography?
We will look at

- algebraic tori,
- elliptic curves and abelian varieties.

The \mathbf{T}_{2} cryptosystem

Suppose p is a prime. Define a subgroup $G \subset \mathbb{F}_{p^{2}}^{\times}$by

$$
G:=\left\{x \in \mathbb{F}_{p^{2}}^{\times}: x^{p+1}=1\right\} .
$$

Equivalently, if $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\sqrt{D})$ then

$$
G:=\left\{a+b \sqrt{D} \in \mathbb{F}_{p^{2}}^{\times}: a^{2}-D b^{2}=1\right\} .
$$

The best known attack on the discrete log problem in G is the attack on all of $\mathbb{F}_{p^{2}}^{\times}$, namely $L_{p^{2}}(1 / 3, c)$. So G will be "secure" if $p>2^{512}$.

The \mathbf{T}_{2} cryptosystem

The map

$$
a+b \sqrt{D} \mapsto \frac{1+a}{b}
$$

is a bijection from $G-\{ \pm 1\}$ to $\mathbb{F}_{p}-\{0\}$, with inverse

$$
\alpha \mapsto \frac{\alpha+\sqrt{D}}{\alpha-\sqrt{D}} .
$$

This allows us to compress elements of G, so that they can be transmitted using only $\log _{2}(p)$ bits, instead of $\log _{2}\left(p^{2}\right)$.

In other words, the group G is as secure as $\mathbb{F}_{p^{2}}^{\times}$, but uses only half the bandwidth for transmissions.

The \mathbf{T}_{2} cryptosystem

This is the " \mathbf{T}_{2} " cryptosystem of Rubin \& Silverberg (2003).
Using a different map $G \rightarrow \mathbb{F}_{p}$, defined by

$$
a+b \sqrt{D} \mapsto 2 a
$$

gives the "LUC" cryptosystem of Smith et al. (1993).

- advantage of LUC: some computations are easier
- advantage of \mathbf{T}_{2} : the map $G \rightarrow \mathbb{F}_{p}$ is (almost) a bijection
- advantage of \mathbf{T}_{2} : it can be generalized, to achieve even greater efficiency

Algebraic tori

Definition

\mathbf{G}_{m} is the algebraic group with the property that $\mathbf{G}_{m}(F)=F^{\times}$for every field F.

Definition

If L / F is a finite extension, the Weil restriction of scalars $\operatorname{Res}_{F}^{L} \mathbf{G}_{m}$ is an algebraic group of dimension $[L: F]$ with the property that

$$
\left(\operatorname{Res}_{F}^{L} \mathbf{G}_{m}\right)(K)=\left(L \otimes_{F} K\right)^{\times}
$$

for every field K containing F.

In particular $\left(\operatorname{Res}_{F}^{L} \mathbf{G}_{m}\right)(F)=L^{\times}$.

Algebraic tori

Definition

An algebraic group V over a field F is an algebraic torus if $V \cong \mathbf{G}_{m}^{d}$ over some finite extension K of F, for some $d \geq 0$.

Example

$$
\operatorname{Res}_{\digamma}^{L} \mathbf{G}_{m} \cong \mathbf{G}_{m}^{[L \cdot F]} \quad \text { over } L,
$$

so $\operatorname{Res}_{F}^{L} \mathbf{G}_{m}$ is an algebraic torus of dimension [$\left.L: F\right]$.

Algebraic tori

Fix a prime p. Then

$$
\left(\operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p} n} \mathbf{G}_{m}\right)\left(\mathbb{F}_{p}\right) \cong \mathbb{F}_{p^{n}}^{\times}
$$

If $d \mid n$ there is a norm map $N_{n / d}: \operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{\mathbb{P}^{n}}} \mathbf{G}_{m} \rightarrow \operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p} d} \mathbf{G}_{m}$ such that

$$
\begin{aligned}
& \left(\operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p} n} \mathbf{G}_{m}\right)\left(\mathbb{F}_{p}\right) \xrightarrow{\sim} \mathbb{F}_{p^{n}}^{\times} \\
& N_{n / d} \downarrow \downarrow N \\
& \left(\operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p^{d}}} \mathbf{G}_{m}\right)\left(\mathbb{F}_{p}\right) \xrightarrow{\sim} \mathbb{F}_{p^{d}}^{\times}
\end{aligned}
$$

commutes.

Algebraic tori

Definition

$$
\mathbf{T}_{n}:=\operatorname{ker}\left(\operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{P^{n}}} \mathbf{G}_{m} \xrightarrow{\oplus N_{n / d}} \underset{d \mid n, d \neq n}{\oplus} \operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p^{d}}} \mathbf{G}_{m}\right) .
$$

- $\mathbf{T}_{1}=\mathbf{G}_{m}$
- $\mathbf{T}_{n}\left(\mathbb{F}_{p}\right) \cong\left\{x \in \mathbb{F}_{p^{n}}^{\times}: N_{n / d}(x)=1\right.$ for every $\left.d \mid n, d \neq n\right\}$

$$
=\left\{x \in \mathbb{F}_{p^{n}}^{\times}: x^{\Phi_{n}(p)}=1\right\}
$$

where Φ_{n} is the n-th cyclotomic polynomial (the monic polynomial of degree $\varphi(n)$ whose roots are the primitive n-th roots of unity; φ is the Euler φ function). Thus $\left|\mathbf{T}_{n}\left(\mathbb{F}_{p}\right)\right|=\Phi_{n}(p) \approx p^{\varphi(n)}$.

- $\mathbf{T}_{2}\left(\mathbb{F}_{p}\right) \cong\left\{x \in \mathbb{F}_{p^{2}}^{\times}: x^{p+1}=1\right\}$
the group we saw earlier in the \mathbf{T}_{2} cryptosystem.

Algebraic tori

Theorem

(1) $\operatorname{Res}_{\mathbb{F}_{p}} \mathbb{F}_{p} \mathbf{G}_{m}$ is isogenous over \mathbb{F}_{p} to $\oplus_{d \mid n} \mathbf{T}_{d}$
(2) \mathbf{T}_{n} is an algebraic torus of dimension $\varphi(n)$.

Conjecture (Voskresenskiï)

The algebraic torus \mathbf{T}_{n} is birationally isomorphic to $\mathbf{A}^{\varphi(n)}$ over \mathbb{F}_{p}.

Here $\mathbf{A}^{\varphi(n)}$ is $\varphi(n)$-dimensional affine space, and birationally isomorphic means there are rational maps (quotients of polynomials) that give a bijection between "almost all" of \mathbf{T}_{n} and "almost all" of $\mathbf{A}^{\varphi(n)}$.

Algebraic tori

If Voskresenskii's Conjecture is true, then elements of $\mathbf{T}_{n}\left(\mathbb{F}_{p}\right)$ can be compressed, using the birational isomorphism $\mathbf{T}_{n} \xrightarrow{\sim} \mathbf{A}^{\varphi(n)}$ to represent elements of $\mathbf{T}_{n}\left(\mathbb{F}_{p}\right) \subset \mathbb{F}_{p^{n}}^{\times}$with only $\varphi(n)$ elements of \mathbb{F}_{p}, rather than n elements of \mathbb{F}_{p}.

Thus for security we need

- $\left|\mathbf{T}_{n}\left(\mathbb{F}_{p}\right)\right| \approx p^{\varphi(n)}>2^{160}$
- $p^{n}>2^{1024}$
i.e.

$$
\log _{2}\left(p^{\varphi(n)}\right)>\max \left\{160,1024 \frac{\varphi(n)}{n}\right\} .
$$

Note: $\log _{2}\left(p^{\varphi(n)}\right)$ is the number of bits that must be transmitted for each element of $\mathbf{T}_{n}\left(\mathbb{F}_{p}\right)$.

Algebraic tori

Minimum sizes of p to ensure security:

n	1	2	3	4	5	6	\cdots	30
$\log _{2}(p)>$	1024	512	342	256	205	171	\cdots	35
$\frac{\varphi(n)}{n}$	1	.50	.67	.50	.80	.33	\cdots	.27
$\log _{2}\left(p^{\varphi(n)}\right)>$	1024	512	684	512	820	342	\cdots	280

Voskresenskiï's Conjecture

Conjecture (Voskresenskiï)

The algebraic torus \mathbf{T}_{n} is birationally isomorphic to $\mathbf{A}^{\varphi(n)}$ over \mathbb{F}_{p}.

- Voskresenskiï's Conjecture is trivially true when $n=1$.

$$
\mathbf{T}_{1}=\mathbf{G}_{m} \hookrightarrow \mathbf{A}^{1} \text { by the natural injection }
$$

- Voskresenskiī's Conjecture is true when $n=2$.

$$
\mathbf{T}_{2}=\left\{(x, y): x^{2}-D y^{2}=1\right\} \rightarrow \mathbf{A}^{1} \text { by }(x, y) \mapsto(1+x) / y
$$

This gives the \mathbf{T}_{2}-cryptosystem.

Voskresenskiï's Conjecture

Theorem (Klyachko)

Voskresenskii's Conjecture is true if n is divisible by at most 2 distinct primes.

Recall:

n	1	2	3	4	5	6	\cdots	30
$\log _{2}(p)>$	1024	512	342	256	205	171	\cdots	35
$\frac{\varphi(n)}{n}$	1	.50	.67	.50	.80	.33	\cdots	.27
$\log _{2}\left(p^{\varphi(n)}\right)>$	1024	512	684	512	820	342	\cdots	280

In particular, \mathbf{T}_{6} is birationally isomorphic to \mathbf{A}^{2}. This gives rise to the CEILIDH cryptosystem (Rubin \& Silverberg 2003).

NUMB3RS, May 12, 2006

Voskresenskiï's Conjecture

Using the trace map

$$
\operatorname{Tr}_{\mathbb{F}_{p^{6}} / \mathbb{F}_{p^{2}}}: \mathbf{T}_{6}\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{F}_{p^{2}} \cong \mathbf{A}^{2}\left(\mathbb{F}_{p}\right)
$$

instead of a birational isomorphism from \mathbf{T}_{6} to \mathbf{A}^{2} gives the XTR cryptosystem of Lenstra and Verheul (2000).

Voskresenskiï's Conjecture

Open Question
 Is \mathbf{T}_{30} birationally isomorphic to \mathbf{A}^{8} ?

If so, this would give a new cryptosystem with more efficient transmission sizes.

Open Question

How secure is the Discrete Log Problem in $\mathbb{F}_{p^{30}}^{\times}$?

There are indications that the Discrete Log Problem in $\mathbb{F}_{p^{30}}^{\times}$might be easier than the general Discrete Log Problem in $\mathbb{F}_{\ell}^{\times}$with a prime $\ell \approx p^{30}$.

Summary of torus-based cryptography

- If there is a birational isomorphism $f: \mathbf{T}_{n} \rightarrow \mathbf{A}^{\varphi(n)}$, then f can be used to compress elements of $\mathbf{T}_{n}\left(\mathbb{F}_{p}\right) \subset \mathbb{F}_{p^{n}}^{\times}$.
- This compression reduces transmission size by a factor of $\varphi(n) / n$, while still relying on the security of the Discrete Log Problem in $\mathbb{F}_{p^{n}}^{\times}$.
- This can be done (explicitly) when
- $n=1$ (the "classical" case, no compression),
- $n=2$ (compression factor $1 / 2$)
- $n=6$ (compression factor $1 / 3$)
- The next useful case is $n=30$ (compression factor $4 / 15 \approx .27$). It is not known if \mathbf{T}_{30} is birationally isomorphic to \mathbf{A}^{8}.
- The next useful case after that would be $n=210$ (compression factor $8 / 35 \approx .23$). But this may be impractical for other reasons.

Elliptic curves

An elliptic curve over \mathbb{F}_{q} is a curve defined by an equation

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{F}_{q}$ and $4 a^{3}+27 b^{2} \neq 0$
(or a slightly more complicated equation if the characteristic of \mathbb{F}_{q} is 2 or 3).

The set of points $E\left(\mathbb{F}_{q}\right)$ (including the point at infinity) has a natural commutative group law.

Elliptic curve group law

$$
y^{2}=x^{3}-x
$$

Elliptic curve group law

The group law can also be written algebraically:

If $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ where x_{3}, y_{3} are given as follows:
(1) set $\lambda:= \begin{cases}\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) & \text { if } P_{1} \neq P_{2}, \\ \left(3 x_{1}^{2}+a\right) / 2 y_{1} & \text { if } P_{1}=P_{2},\end{cases}$
(2) set $x_{3}:=\lambda^{2}-x_{1}-x_{2}$,
(3) set $y_{3}:=\lambda\left(x_{1}-x_{3}\right)-y_{1}$.

Elliptic curve group law

Theorem (Hasse 1934)

$$
q+1-2 \sqrt{q} \leq\left|E\left(\mathbb{F}_{q}\right)\right| \leq q+1+2 \sqrt{q} .
$$

Therefore

$$
\left|E\left(\mathbb{F}_{q}\right)\right| \approx q .
$$

Theorem (Schoof 1985)

There is a polynomial-time algorithm for computing $\left|E\left(\mathbb{F}_{q}\right)\right|$.

Discrete logs in $E\left(\mathbb{F}_{q}\right)$

One can use the groups $E\left(\mathbb{F}_{q}\right)$ for cryptography (Miller, Koblitz, 1985). A necessary condition for security is that the Discrete Log Problem in $E\left(\mathbb{F}_{q}\right)$ is hard.

The best algorithm for computing discrete logs in $E\left(\mathbb{F}_{q}\right)$ for a general elliptic curve E over \mathbb{F}_{q} takes $O\left(\sqrt{\left|E\left(\mathbb{F}_{q}\right)\right|}\right)=O(\sqrt{q})$ steps.

Many (but not all!) elliptic curves E over \mathbb{F}_{q} are believed to be secure.
It is important to know which E are not secure.

Example

If $\left|E\left(\mathbb{F}_{q}\right)\right|=q$, then computing discrete logs in $E\left(\mathbb{F}_{q}\right)$ is easy.

The Weil pairing

Suppose E is an elliptic curve over \mathbb{F}_{q}, and ℓ is a prime not dividing q. Let k be the order of q in $\mathbb{F}_{\ell}^{\times}$, so $\mathbb{F}_{q^{k}}$ is the smallest extension of \mathbb{F}_{q} containing $\boldsymbol{\mu}_{\ell}$, the group of ℓ-th roots of unity in $\overline{\mathbb{F}}_{q}$.

Definition

$E[\ell]:=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right): \ell P=0\right\}$.

Fact

- $E[\ell] \cong \mathbb{F}_{\ell}^{2}$
- If $\left|E\left(\mathbb{F}_{q}\right)\right|$ is divisible by ℓ but not by ℓ^{2}, then $\mathbb{F}_{q}(E[\ell])=\mathbb{F}_{q^{k}}$.

The Weil pairing

Theorem (Weil, Miller)

There is a nondegenerate skew-symmetric bilinear pairing

$$
\langle,\rangle_{\ell}: E[\ell] \times E[\ell] \longrightarrow \mu_{\ell}
$$

that is computable in polynomial time.

Suppose $C \subset E\left(\mathbb{F}_{q}\right)$ is a subgroup of order ℓ.
The Weil pairing can be used to reduce the Discrete Log Problem in C to the Discrete Log Problem in $\mathbb{F}_{q^{k}}^{\times}$, where k is the order of $q(\bmod \ell)$ (Menezes, Okamoto \& Vanstone 1993).

The Weil pairing

MOV reduction

(1) Suppose $C \subset E\left(\mathbb{F}_{q}\right)$ is a subgroup of order ℓ, P is a generator of C, and $Q \in E[\ell]-C$.
(2) Define an injective homomorphism

$$
f: C \rightarrow \mathbb{F}_{q^{k}}^{\times} \quad \text { by } \quad f(R)=\langle R, Q\rangle_{\ell} \in \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{\times} .
$$

(3) Given $\{P, \lambda P\}$, compute

$$
\{f(P), f(\lambda P)\}=\left\{g, g^{\lambda}\right\}
$$

where $g=f(P)$ is a generator of $\mu_{\ell} \subset \mathbb{F}_{q^{k}}^{\times}$.
(9) Compute λ from $\left\{g, g^{\lambda}\right\}$, as a discrete \log computation in $\mathbb{F}_{q^{k}}^{\times}$.

Example: $y^{2}=x^{3}-x$

Example

Let E be the elliptic curve $y^{2}=x^{3}-x$ and $q \equiv 3(\bmod 4)$. Then

- $\left|E\left(\mathbb{F}_{q}\right)\right|=q+1$
- If ℓ is a prime dividing $q+1$, then $q \equiv-1(\bmod \ell)$ so the order of $q(\bmod \ell)$ is 2.
- The Weil pairing reduces computation of discrete logs in $E\left(\mathbb{F}_{q}\right)$ to computation of discrete logs in $\mathbb{F}_{q^{2}}^{\times}$.

Thus to be secure in this case, we must have $q>2^{512}$.

Example: $y^{2}=x^{3}-x$

Example

Let E be the elliptic curve $y^{2}=x^{3}-x$ and $p=2^{163}+16893$. Then

- $\left|E\left(\mathbb{F}_{p}\right)\right|=p+6473158660473377637781611$
- $\ell=\left|E\left(\mathbb{F}_{p}\right)\right| / 8$ is prime and $\ell>2^{160}$
- The order of $p(\bmod \ell)$ is $\ell-1$.
- The Weil pairing reduces computation of discrete logs in $E\left(\mathbb{F}_{p}\right)$ to computation of discrete logs in $\mathbb{F}_{p^{\ell-1}}^{\times}$.

But $\ell>2^{160}$, so we can't even write down an element of $\mathbb{F}_{p^{\ell-1}}^{\times}$, and this "reduction" is useless. Cryptography in $E\left(\mathbb{F}_{p}\right)$ is secure against known attacks.

Pairing-based signatures

There are other applications of the Weil pairing.

Boneh-Lynn-Shacham signature scheme 2001

(1) Fix an elliptic curve E over \mathbb{F}_{q}, a subgroup $C \subset E\left(\mathbb{F}_{q}\right)$ of order ℓ, and a point $Q \in E[\ell]-C$.
(2) Alice chooses a secret integer $a, 1 \leq a \leq \ell$.
(3) Public information: $q, E, \ell, Q, a Q$.
(4) Alice encodes the message as a point $M \in C$.
(5) Alice sends the signed message ($M, a M$) to Bob.
(6) Bob receives the pair (M, N). To verify the signature, Bob checks that

$$
\langle M, a Q\rangle_{\ell}=\langle N, Q\rangle_{\ell}
$$

Since a is secret, only Alice can compute $a M$.

Embedding degrees

In order to use the Weil pairing, the integer k (the order of $q(\bmod \ell))$ cannot be too large.

Definition

The order k of q in $\mathbb{F}_{\ell}^{\times}$is called the embedding degree.
($\mathbb{F}_{q^{k}}$ is the smallest extension of \mathbb{F}_{q} such that the subgroup $C \subset E\left(\mathbb{F}_{q}\right)$ of order ℓ embeds into $\mathbb{F}_{q^{k}}^{\times}$.)

For a random elliptic curve, $k \approx \ell$ which is very large.
We say that E is pairing-friendly if k is not too large (so that the Weil pairing is computable) and not too small (so that the Discrete Log Problem is not too easy).

Pairing-friendly elliptic curves

It is easy to find elliptic curves with embedding degree $k=2$. For example:

$$
\begin{array}{lll}
E: y^{2}=x^{3}-x, & q \equiv 3 & (\bmod 4) \\
E: y^{2}=x^{3}+1, & q \equiv 2 & (\bmod 3)
\end{array}
$$

These are supersingular elliptic curves:

Definition

An elliptic curve E over \mathbb{F}_{q} is $\begin{cases}\text { supersingular } & \text { if } E[q]=0, \\ \text { ordinary } & \text { if } E[q] \neq 0 .\end{cases}$

Pairing-friendly elliptic curves

Possible embedding degrees for supersingular elliptic curves:

characteristic	embedding degrees
2	$1,2,3,4$
3	$1,2,3,6$
≥ 5	1,2

- supersingular curves are easy to construct
- embedding degrees are not too large
- maybe the embedding degrees are too small?

Pairing-friendly elliptic curves

- It is harder to find examples of ordinary (i.e., non-supersingular) elliptic curves with embedding degrees that are not too large.
- Elliptic curves with embedding degree greater than 6 but not too large would allow for shorter signatures with the same level of security.
- Methods for constructing such curves have been developed by Miyaji, Nakabayashi, Takano, Barreto, Lynn, Scott, Cocks, Pinch, Brezing, Weng, Naehrig, Freeman,

Abelian varieties

Definition

An abelian variety is a connected projective algebraic group.

- Elliptic curves are exactly the one-dimensional abelian varieties.
- The Jacobian of a curve of genus g is an abelian variety of dimension g.
- If A is an abelian variety over \mathbb{F}_{q}, the group $A\left(\mathbb{F}_{q}\right)$ can be used for cryptography in the same way as \mathbb{F}_{q}^{\times}or $E\left(\mathbb{F}_{q}\right)$ with an elliptic curve E.
- If A is an abelian variety, then (except for possibly finitely many primes ℓ) there is a Weil pairing

$$
A[\ell] \times A[\ell] \rightarrow \mu_{\ell} .
$$

Pairing-friendly abelian varieties

Definition

If A is an abelian variety over \mathbb{F}_{q}, and ℓ is a prime dividing $\left|A\left(\mathbb{F}_{q}\right)\right|$, then

- the embedding degree is again the order of q in $\mathbb{F}_{\ell}^{\times}$,
- A is pairing friendly if the embedding degree is not too small and not too large,
- the security parameter is the embedding degree divided by the dimension of A.

Definition

An abelian variety over \mathbb{F}_{q} is supersingular if it is isogenous over $\overline{\mathbb{F}}_{q}$ to a product of supersingular elliptic curves.

Supersingular abelian varieties

Theorem (Galbraith; Choie, Jeong \& Lee; Rubin \& Silverberg)

The largest security parameters of simple supersingular abelian varieties are:

dimension	1	2	3	4	5	6
characteristic 2	4	6		5		6
characteristic 3	6	2	6	$7 \frac{1}{2}$		7
characteristic 5	2	3		$3 \frac{3}{4}$		3
characteristic 7	2	3	$4 \frac{2}{3}$	3		7
characteristic 11	2	3		3	2	3
characteristic ≥ 13	2	3		3		3

(a blank entry means there are no simple supersingular abelian varietes of that dimension in that characteristic).

Supersingular abelian varieties

We construct supersingular abelian varieties with "optimal" security parameters in a way analogous to what we did with algebraic tori.

Recall the decomposition

$$
\operatorname{Res}_{\mathbb{F}_{p}}^{\mathbb{F}_{p}} \mathbf{G}_{m} \sim \oplus_{d \mid n} \mathbf{T}_{d}
$$

Abelian varieties

If E is an elliptic curve over \mathbb{F}_{q}, then the Weil restriction of scalars
$\operatorname{Res}_{\mathbb{F}_{q}}^{\mathbb{F}_{q} n} E$ is an abelian variety over \mathbb{F}_{q} of dimension n, and

$$
\left(\operatorname{Res}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{n}}} E\right)\left(\mathbb{F}_{q}\right) \cong E\left(\mathbb{F}_{q^{n}}\right)
$$

Theorem

Suppose E is an elliptic curve over \mathbb{F}_{q}. For every $d \geq 1$ there is an abelian variety \mathbf{E}_{d} over \mathbb{F}_{q} of dimension $\varphi(d)$ such that for every n,

- $\operatorname{Res}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{n}}} E \sim \underset{d \mid n}{\bigoplus} \mathbf{E}_{d}$.
- $\mathbf{E}_{n}\left(\mathbb{F}_{q}\right) \cong\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): \operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q^{d}}} P=0\right.$ for every $\left.d \mid n, d \neq n\right\}$,
- \mathbf{E}_{n} is isogenous over $\mathbb{F}_{q^{n}}$ to $E^{\varphi(n)}$.

Supersingular abelian varieties

Theorem (Rubin \& Silverberg 2002)

Suppose

- E is a supersingular elliptic curve over \mathbb{F}_{q},
- the embedding degree of E is k,
- n is relatively prime to $2 q k$.

Then \mathbf{E}_{n} is a supersingular abelian variety over \mathbb{F}_{q} of dimension $\varphi(n)$, with security parameter $k \frac{n}{\varphi(n)}$.

Supersingular abelian varieties

Example

- take $q=3^{d}$ with d odd
- take $E: y^{2}=x^{3}-x \pm 1$
- $\left|E\left(\mathbb{F}_{q}\right)\right|=q \pm \sqrt{3 q}+1$, and the embedding degree is 6
- take $n=5$

The theorem shows that

- E_{5} is a supersingular abelian variety of dimension 4
- the security parameter of \mathbf{E}_{n} is $6 \cdot(5 / \varphi(5))=7 \frac{1}{2}$.

Supersingular abelian varieties

Best supersingular security parameters

dimension	1	2	3	4	5	6
characteristic 2	4	6		5		6
characteristic 3	6	2	6	$7 \frac{1}{2}$		7
characteristic 5	2	3		$3 \frac{3}{4}$		3
characteristic 7	2	3	$4 \frac{2}{3}$	3		7
characteristic 11	2	3		3	2	3
characteristic ≥ 13	2	3		3		3

- $q=3^{d}, d$ odd; $E: y^{2}=x^{3}-x \pm 1 ; n=5$;
- E_{5} has dimension 4 and security parameter $7 \frac{1}{2}$.

Some remarks on efficiency

- $\mathbf{E}_{n} \subset \operatorname{Res}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{n}}} E$, so

$$
\mathbf{E}_{n}\left(\mathbb{F}_{q}\right) \subset E\left(\mathbb{F}_{q^{n}}\right)
$$

Therefore, even though \mathbf{E}_{n} is a higher dimensional abelian variety, all computations in $\mathbf{E}_{n}\left(\mathbb{F}_{q}\right)$ can be done with elliptic curve arithmetic.

Some remarks on efficiency

- Normally one would represent an element of $E\left(\mathbb{F}_{q^{n}}\right)$ by its x-coordinate, which requires n elements of \mathbb{F}_{q}. But $E_{n}\left(\mathbb{F}_{q}\right)$ is a proper subgroup of $E\left(\mathbb{F}_{q^{n}}\right)$, and

$$
\left|\mathbf{E}_{n}\left(\mathbb{F}_{q}\right)\right| \approx p^{\varphi(n)}
$$

Ideally one would like to represent an element of $\mathbf{E}_{n}\left(\mathbb{F}_{q}\right)$ by $\varphi(n)$ elements of \mathbb{F}_{q}. This compression would reduce transmission sizes by a factor of $\varphi(n) / n$.

- We can do this when $n=2$, 3, or 5 (Rubin \& Silverberg 2002).
- The case $n=2$ is not useful, because \mathbf{E}_{2} is just the quadratic twist of E corresponding to the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$, which is another elliptic curve.

Some remarks on efficiency

- We compress a point $P \in \mathbf{E}_{n}\left(\mathbb{F}_{q}\right) \subset E\left(\mathbb{F}_{q^{n}}\right)$ by

$$
\begin{aligned}
& P=(x, y) \mapsto x \mapsto\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
& \in E\left(\mathbb{F}_{q^{n}}\right) \quad \in \mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}} \quad \in \mathbb{F}_{q^{n}}
\end{aligned}
$$

- If n is prime, this achieves a compression factor of $\frac{n-1}{n}=\frac{\varphi(n)}{n}$.
- If $n=3$ or 5 , we can decompress to recover the original point P. (Almost: the compression map is not injective, it is 8 -to-1 when $n=3$, and 54-to-1 when $n=5$, but one can send a few extra bits with each transmission to make the decompression unique.)

Summary

- Properly chosen elliptic curves may provide the same security as a multiplicative group, with substantially smaller transmission lengths. (This is because there is no known subexponential algorithm for computing discrete logs on a general elliptic curve.)
- If the embedding degree is small, the Weil pairing can be used to reduce elliptic curve discrete logs to multiplicative group discrete logs.
- If the embedding degree is not too big, the Weil pairing on an elliptic curve or abelian variety has useful cryptographic applications, such as identity-based cryptography, innovative signature schemes, private information retrieval, non-interactive zero knowledge proofs,

Applications of Number Theory and Algebraic Geometry to Cryptography

Karl Rubin

Department of Mathematics UC Irvine

October 28, 2006 / Global KMS Day

