Applications of Number Theory and Algebraic Geometry to Cryptography

Karl Rubin

Department of Mathematics UC Irvine

October 28, 2006 / Global KMS Day

Public key cryptography

Cryptography is used when one party (Alice) wants to send secret information to another party (Bob) over an insecure channel (like the Internet).

A traditional way to do this is for Alice and Bob to meet in advance and agree on a secret key or codebook, that can be used to encrypt and decrypt messages. This is not always practical.

In public key cryptography, Alice can encrypt a message for Bob using public (non-secret) information. Only Bob knows the private (secret) key required for decryption.

Public key cryptography

Let \mathbb{F}_p be the finite field with p elements, and \mathbb{F}_p^{\times} its multiplicative group.

Diffie-Hellman key agreement

- **1** Public information: a prime p and a generator g of \mathbb{F}_{p}^{\times}
- 2 Alice's secret information: an integer a, $1 \le a \le p-1$. Bob's secret information: an integer b, $1 \le b \le p-1$.
- Alice sends g^a to Bob, Bob sends g^b to Alice.
- 4 Alice and Bob each compute $g^{ab} = (g^b)^a = (g^a)^b$.

The eavesdropper (Eve) knows g, g^a , and g^b . Can Eve compute g^{ab} ?

Karl Rubin (UC Irvine)

Diffie-Hellman key agreement

Diffie-Hellman Problem

Given g, g^a , and g^b , compute g^{ab} .

Cleary, we can solve the Diffie-Hellman Problem if we can solve the Discrete Log Problem:

Discrete Log Problem

Given g and g^{λ} , compute λ .

What about the converse? Is the Diffie-Hellman Problem easier than the Discrete Log Problem?

Discrete logs in a general cyclic group

Suppose G is a finite cyclic group, and g is a generator. Given g^{λ} , one can compute λ , the discrete log:

Naïve method: in at most |G| steps

Pollard rho: in $O(\sqrt{|G|})$ steps

(If we can factor |G|, and ℓ is the largest prime factor, then Pollard rho works in $O(\sqrt{\ell})$ steps.)

To be "secure" from an eavesdropper, the number of steps required should be at least 2^{80} , so |G| should be divisible by a prime $\ell > 2^{160}$.

Discrete logs in \mathbb{F}_q^{\times}

Suppose q is a prime power. The best algorithms for computing discrete logs in \mathbb{F}_q^{\times} (index calculus: function field sieve, number field sieve) take

$$L_q(1/3,c) := e^{c \log(q)^{1/3} \log \log(q)^{2/3}}$$

steps. This is

- smaller than any power of q,
- larger than any power of log(q).

To be "secure", one should take $q > 2^{1024}$. Thus in secure Diffe-Hellman key agreement,

- the transmissions will be at least 1024 bits,
- the computations take place in a group of size > 2¹⁰²⁴.

Discrete logs in \mathbb{F}_q^{\times}

Compare this to the Discrete Log Problem in a general cyclic group, which requires only $|G| > 2^{160}$.

Are there better groups to use for cryptography?

We will look at

- algebraic tori,
- elliptic curves and abelian varieties.

The T₂ cryptosystem

Suppose p is a prime. Define a subgroup $G\subset \mathbb{F}_{p^2}^{\times}$ by

$$G := \{x \in \mathbb{F}_{p^2}^{\times} : x^{p+1} = 1\}.$$

Equivalently, if $\mathbb{F}_{\rho^2}=\mathbb{F}_{
ho}(\sqrt{D})$ then

$$G := \{a + b\sqrt{D} \in \mathbb{F}_{p^2}^{\times} : a^2 - Db^2 = 1\}.$$

The best known attack on the discrete log problem in G is the attack on all of $\mathbb{F}_{p^2}^{\times}$, namely $L_{p^2}(1/3,c)$. So G will be "secure" if $p>2^{512}$.

The T₂ cryptosystem

The map

$$a+b\sqrt{D} \mapsto \frac{1+a}{b}$$

is a bijection from $G - \{\pm 1\}$ to $\mathbb{F}_p - \{0\}$, with inverse

$$\alpha \mapsto \frac{\alpha + \sqrt{D}}{\alpha - \sqrt{D}}.$$

This allows us to *compress* elements of G, so that they can be transmitted using only $log_2(p)$ bits, instead of $log_2(p^2)$.

In other words, the group G is as secure as $\mathbb{F}_{p^2}^{\times}$, but uses only half the bandwidth for transmissions.

The T₂ cryptosystem

This is the " T_2 " cryptosystem of Rubin & Silverberg (2003).

Using a different map $G \to \mathbb{F}_p$, defined by

$$a + b\sqrt{D} \mapsto 2a$$

gives the "LUC" cryptosystem of Smith et al. (1993).

- advantage of LUC: some computations are easier
- advantage of T_2 : the map $G \to \mathbb{F}_p$ is (almost) a bijection
- advantage of T₂: it can be generalized, to achieve even greater efficiency

Definition

 \mathbf{G}_m is the algebraic group with the property that $\mathbf{G}_m(F) = F^{\times}$ for every field F.

Definition

If L/F is a finite extension, the Weil restriction of scalars Res^L_F \mathbf{G}_m is an algebraic group of dimension [L:F] with the property that

$$(\mathsf{Res}_F^L\mathbf{G}_m)(K) = (L \otimes_F K)^{\times}$$

for every field K containing F.

In particular $(\operatorname{Res}_F^L \mathbf{G}_m)(F) = L^{\times}$.

Definition

An algebraic group V over a field F is an *algebraic torus* if $V \cong \mathbf{G}_m^d$ over some finite extension K of F, for some d > 0.

Example

$$\operatorname{Res}_F^L \mathbf{G}_m \cong \mathbf{G}_m^{[L:F]}$$
 over L ,

so $\operatorname{Res}_F^L \mathbf{G}_m$ is an algebraic torus of dimension [L:F].

Fix a prime p. Then

$$(\mathsf{Res}_{\mathbb{F}_{
ho}}^{\mathbb{F}_{
ho^n}}\mathbf{G}_m)(\mathbb{F}_{
ho})\cong \mathbb{F}_{
ho^n}^{ imes}$$

If $d\mid n$ there is a norm map $N_{n/d}: \mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^n}}\mathbf{G}_m o \mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^d}}\mathbf{G}_m$ such that

$$(\mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^n}}\mathbf{G}_m)(\mathbb{F}_p) \stackrel{\sim}{\longrightarrow} \mathbb{F}_{p^n}^{\times}$$

$$\downarrow^{N_{n/d}} \qquad \qquad \downarrow^{N_{n/d}}$$

$$(\mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^d}}\mathbf{G}_m)(\mathbb{F}_p) \stackrel{\sim}{\longrightarrow} \mathbb{F}_{p^d}^{\times}$$

commutes.

Definition

$$\mathbf{T}_n := \ker \left(\mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^n}} \mathbf{G}_m \xrightarrow{\oplus N_{n/d}} \bigoplus_{d \mid n, d \neq n} \mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^d}} \mathbf{G}_m
ight).$$

- $T_1 = G_m$
- $\mathbf{T}_n(\mathbb{F}_p) \cong \{x \in \mathbb{F}_{p^n}^{\times} : N_{n/d}(x) = 1 \text{ for every } d \mid n, d \neq n\}$ = $\{x \in \mathbb{F}_{p^n}^{\times} : x^{\Phi_n(p)} = 1\}$ where Φ_n is the *n*-th cyclotomic polynomial (the monic polynomial

where Φ_n is the *n*-th cyclotomic polynomial (the monic polynomial of degree $\varphi(n)$ whose roots are the primitive *n*-th roots of unity; φ is the Euler φ function). Thus $|\mathbf{T}_n(\mathbb{F}_p)| = \Phi_n(p) \approx p^{\varphi(n)}$.

• $\mathbf{T}_2(\mathbb{F}_p) \cong \{x \in \mathbb{F}_{p^2}^{\times} : x^{p+1} = 1\}$ the group we saw earlier in the \mathbf{T}_2 cryptosystem.

Theorem

- Res $_{\mathbb{F}_p}^{\mathbb{F}_{p^n}}\mathbf{G}_m$ is isogenous over \mathbb{F}_p to $\oplus_{d|n}\mathbf{T}_d$
- **2** T_n is an algebraic torus of dimension $\varphi(n)$.

Conjecture (Voskresenskiĭ)

The algebraic torus \mathbf{T}_n is birationally isomorphic to $\mathbf{A}^{\varphi(n)}$ over \mathbb{F}_p .

Here $\mathbf{A}^{\varphi(n)}$ is $\varphi(n)$ -dimensional affine space, and birationally isomorphic means there are rational maps (quotients of polynomials) that give a bijection between "almost all" of \mathbf{T}_n and "almost all" of $\mathbf{A}^{\varphi(n)}$.

If Voskresenskii's Conjecture is true, then elements of $\mathbf{T}_n(\mathbb{F}_p)$ can be *compressed*, using the birational isomorphism $\mathbf{T}_n \stackrel{\sim}{\to} \mathbf{A}^{\varphi(n)}$ to represent elements of $\mathbf{T}_n(\mathbb{F}_p) \subset \mathbb{F}_{p^n}^{\times}$ with only $\varphi(n)$ elements of \mathbb{F}_p , rather than n elements of \mathbb{F}_p .

Thus for security we need

•
$$|\mathbf{T}_n(\mathbb{F}_p)| \approx p^{\varphi(n)} > 2^{160}$$

•
$$p^n > 2^{1024}$$

i.e.

$$log_2(p^{\varphi(n)}) > \max\{160, 1024 \frac{\varphi(n)}{n}\}.$$

Note: $\log_2(p^{\varphi(n)})$ is the number of bits that must be transmitted for each element of $\mathbf{T}_n(\mathbb{F}_p)$.

Minimum sizes of *p* to ensure security:

	1							
$\log_2(p) >$	1024	512	342	256	205	171	•••	35
$\frac{\frac{\varphi(n)}{p(n)}}{\log_2(p^{\varphi(n)})} >$	1	.50	.67	.50	.80	.33		.27
$\log_2(p^{\varphi(n)}) >$	1024	512	684	512	820	342		280

Voskresenskii's Conjecture

Conjecture (Voskresenskiĭ)

The algebraic torus T_n is birationally isomorphic to $\mathbf{A}^{\varphi(n)}$ over \mathbb{F}_p .

• Voskresenskii's Conjecture is trivially true when n = 1.

$$\mathbf{T}_1 = \mathbf{G}_m \hookrightarrow \mathbf{A}^1$$
 by the natural injection

• Voskresenskii's Conjecture is true when n = 2.

$$\mathbf{T}_2 = \{(x,y) : x^2 - Dy^2 = 1\} \to \mathbf{A}^1 \text{ by } (x,y) \mapsto (1+x)/y$$

This gives the T_2 -cryptosystem.

Voskresenskii's Conjecture

Theorem (Klyachko)

Voskresenskii's Conjecture is true if n is divisible by at most 2 distinct primes.

Recall:

	1							
$\log_2(p) >$	1024	512	342	256	205	171	•••	35
$\frac{\frac{\varphi(n)}{p}}{\log_2(p^{\varphi(n)})}$	1	.50	.67	.50	.80	.33		.27
$\log_2(p^{\varphi(n)}) >$	1024	512	684	512	820	342	•••	280

In particular, T_6 is birationally isomorphic to A^2 . This gives rise to the CEILIDH cryptosystem (Rubin & Silverberg 2003).

NUMB3RS, May 12, 2006

Voskresenskii's Conjecture

Using the trace map

$$\text{Tr}_{\mathbb{F}_{\rho^6}/\mathbb{F}_{\rho^2}}: \textbf{T}_6(\mathbb{F}_\rho) \to \mathbb{F}_{\rho^2} \cong \textbf{A}^2(\mathbb{F}_\rho)$$

instead of a birational isomorphism from \mathbf{T}_6 to \mathbf{A}^2 gives the XTR cryptosystem of Lenstra and Verheul (2000).

Voskresenskii's Conjecture

Open Question

Is T₃₀ birationally isomorphic to A⁸?

If so, this would give a new cryptosystem with more efficient transmission sizes.

Open Question

How secure is the Discrete Log Problem in $\mathbb{F}_{p^{30}}^{\times}$?

There are indications that the Discrete Log Problem in $\mathbb{F}_{\rho^{30}}^{\times}$ might be easier than the general Discrete Log Problem in $\mathbb{F}_{\ell}^{\times}$ with a prime $\ell \approx \rho^{30}$.

Summary of torus-based cryptography

- If there is a birational isomorphism $f: \mathbf{T}_n \to \mathbf{A}^{\varphi(n)}$, then f can be used to *compress* elements of $\mathbf{T}_n(\mathbb{F}_p) \subset \mathbb{F}_{p^n}^{\times}$.
- This compression reduces transmission size by a factor of $\varphi(n)/n$, while still relying on the security of the Discrete Log Problem in $\mathbb{F}_{p^n}^{\times}$.
- This can be done (explicitly) when
 - n = 1 (the "classical" case, no compression),
 - n = 2 (compression factor 1/2)
 - n = 6 (compression factor 1/3)
- The next useful case is n = 30 (compression factor $4/15 \approx .27$). It is not known if T_{30} is birationally isomorphic to A^8 .
- The next useful case after that would be n = 210 (compression factor $8/35 \approx .23$). But this may be impractical for other reasons.

Elliptic curves

An *elliptic curve* over \mathbb{F}_q is a curve defined by an equation

$$y^2 = x^3 + ax + b$$

with $a,b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$

(or a slightly more complicated equation if the characteristic of \mathbb{F}_q is 2 or 3).

The set of points $E(\mathbb{F}_q)$ (including the point at infinity) has a natural commutative group law.

Elliptic curve group law

Elliptic curve group law

The group law can also be written algebraically:

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, then $P_1 + P_2 = (x_3, y_3)$ where x_3, y_3 are given as follows:

- 2 set $x_3 := \lambda^2 x_1 x_2$,

Elliptic curve group law

Theorem (Hasse 1934)

$$q+1-2\sqrt{q}\leq |E(\mathbb{F}_q)|\leq q+1+2\sqrt{q}.$$

Therefore

$$|E(\mathbb{F}_q)| \approx q$$
.

Theorem (Schoof 1985)

There is a polynomial-time algorithm for computing $|E(\mathbb{F}_q)|$.

Discrete logs in $E(\mathbb{F}_q)$

One can use the groups $E(\mathbb{F}_q)$ for cryptography (Miller, Koblitz, 1985). A necessary condition for security is that the Discrete Log Problem in $E(\mathbb{F}_q)$ is hard.

The best algorithm for computing discrete logs in $E(\mathbb{F}_q)$ for a *general* elliptic curve E over \mathbb{F}_q takes $O(\sqrt{|E(\mathbb{F}_q)|}) = O(\sqrt{q})$ steps.

Many (but not all!) elliptic curves E over \mathbb{F}_q are believed to be secure.

It is important to know which *E* are not secure.

Example

If $|E(\mathbb{F}_q)| = q$, then computing discrete logs in $E(\mathbb{F}_q)$ is easy.

The Weil pairing

Suppose E is an elliptic curve over \mathbb{F}_q , and ℓ is a prime not dividing q. Let k be the order of q in \mathbb{F}_ℓ^\times , so \mathbb{F}_{q^k} is the smallest extension of \mathbb{F}_q containing μ_ℓ , the group of ℓ -th roots of unity in $\overline{\mathbb{F}}_q$.

Definition

$$E[\ell] := \{ P \in E(\bar{\mathbb{F}}_q) : \ell P = 0 \}.$$

Fact

- $E[\ell] \cong \mathbb{F}_{\ell}^2$
- If $|E(\mathbb{F}_q)|$ is divisible by ℓ but not by ℓ^2 , then $\mathbb{F}_q(E[\ell]) = \mathbb{F}_{q^k}$.

The Weil pairing

Theorem (Weil, Miller)

There is a nondegenerate skew-symmetric bilinear pairing

$$\langle \ , \ \rangle_{\ell} : \boldsymbol{E}[\ell] \times \boldsymbol{E}[\ell] \longrightarrow \boldsymbol{\mu}_{\ell}$$

that is computable in polynomial time.

Suppose $C \subset E(\mathbb{F}_q)$ is a subgroup of order ℓ .

The Weil pairing can be used to reduce the Discrete Log Problem in C to the Discrete Log Problem in $\mathbb{F}_{q^k}^{\times}$, where k is the order of $q \pmod{\ell}$ (Menezes, Okamoto & Vanstone 1993).

The Weil pairing

MOV reduction

- **1** Suppose $C \subset E(\mathbb{F}_q)$ is a subgroup of order ℓ , P is a generator of C, and $Q \in E[\ell] C$.
- 2 Define an injective homomorphism

$$f: C o \mathbb{F}_{q^k}^{ imes} \quad ext{by} \quad f(R) = \langle R, Q
angle_\ell \in \mu_\ell \subset \mathbb{F}_{q^k}^{ imes}.$$

3 Given $\{P, \lambda P\}$, compute

$$\{f(P), f(\lambda P)\} = \{g, g^{\lambda}\}\$$

where $g=\mathit{f}(P)$ is a generator of $\mu_\ell\subset \mathbb{F}_{q^k}^{ imes}.$

• Compute λ from $\{g, g^{\lambda}\}$, as a discrete log computation in $\mathbb{F}_{g^k}^{\times}$.

Example: $y^2 = x^3 - x$

Example

Let *E* be the elliptic curve $y^2 = x^3 - x$ and $q \equiv 3 \pmod{4}$. Then

- $\bullet |E(\mathbb{F}_q)| = q+1$
- If ℓ is a prime dividing q+1, then $q\equiv -1\pmod{\ell}$ so the order of $q\pmod{\ell}$ is 2.
- The Weil pairing reduces computation of discrete logs in $E(\mathbb{F}_q)$ to computation of discrete logs in $\mathbb{F}_{q^2}^{\times}$.

Thus to be secure in this case, we must have $q > 2^{512}$.

Example: $y^2 = x^3 - x$

Example

Let *E* be the elliptic curve $y^2 = x^3 - x$ and $p = 2^{163} + 16893$. Then

- $|E(\mathbb{F}_p)| = p + 6473158660473377637781611$
- $\ell = |E(\mathbb{F}_p)|/8$ is prime and $\ell > 2^{160}$
- The order of $p \pmod{\ell}$ is $\ell 1$.
- The Weil pairing reduces computation of discrete logs in $E(\mathbb{F}_p)$ to computation of discrete logs in $\mathbb{F}_{p^{\ell-1}}^{\times}$.

But $\ell>2^{160}$, so we can't even write down an element of $\mathbb{F}_{p^{\ell-1}}^{\times}$, and this "reduction" is useless. Cryptography in $E(\mathbb{F}_p)$ is secure against known attacks.

Pairing-based signatures

There are other applications of the Weil pairing.

Boneh-Lynn-Shacham signature scheme 2001

- Fix an elliptic curve E over \mathbb{F}_q , a subgroup $C \subset E(\mathbb{F}_q)$ of order ℓ , and a point $Q \in E[\ell] C$.
- 2 Alice chooses a secret integer a, $1 \le a \le \ell$.
- **3** Public information: q, E, ℓ, Q, aQ .
- 4 Alice encodes the message as a point $M \in C$.
- Alice sends the signed message (M, aM) to Bob.
- **6** Bob receives the pair (M, N). To verify the signature, Bob checks that

$$\langle M, aQ \rangle_{\ell} = \langle N, Q \rangle_{\ell}.$$

Since a is secret, only Alice can compute aM.

Embedding degrees

In order to use the Weil pairing, the integer k (the order of $q \pmod{\ell}$) cannot be too large.

Definition

The order k of q in $\mathbb{F}_{\ell}^{\times}$ is called the *embedding degree*.

 $(\mathbb{F}_{q^k}$ is the smallest extension of \mathbb{F}_q such that the subgroup $C\subset E(\mathbb{F}_q)$ of order ℓ embeds into $\mathbb{F}_{q^k}^{\times}$.)

For a random elliptic curve, $k \approx \ell$ which is very large.

We say that E is *pairing-friendly* if k is not too large (so that the Weil pairing is computable) and not too small (so that the Discrete Log Problem is not too easy).

Pairing-friendly elliptic curves

It is easy to find elliptic curves with embedding degree k=2. For example:

$$E: y^2 = x^3 - x, \quad q \equiv 3 \pmod{4}$$

 $E: y^2 = x^3 + 1, \quad q \equiv 2 \pmod{3}$

These are *supersingular* elliptic curves:

Definition

An elliptic curve E over \mathbb{F}_q is $\begin{cases} \text{supersingular} & \text{if } E[q] = 0, \\ \text{ordinary} & \text{if } E[q] \neq 0. \end{cases}$

Pairing-friendly elliptic curves

Possible embedding degrees for supersingular elliptic curves:

characteristic	embedding degrees
2	1, 2, 3, 4
3	1, 2, 3, 4 1, 2, 3, 6
≥ 5	1, 2

- supersingular curves are easy to construct
- embedding degrees are not too large
- maybe the embedding degrees are too small?

Pairing-friendly elliptic curves

- It is harder to find examples of ordinary (i.e., non-supersingular) elliptic curves with embedding degrees that are not too large.
- Elliptic curves with embedding degree greater than 6 but not too large would allow for shorter signatures with the same level of security.
- Methods for constructing such curves have been developed by Miyaji, Nakabayashi, Takano, Barreto, Lynn, Scott, Cocks, Pinch, Brezing, Weng, Naehrig, Freeman,

Abelian varieties

Definition

An abelian variety is a connected projective algebraic group.

- Elliptic curves are exactly the one-dimensional abelian varieties.
- The Jacobian of a curve of genus g is an abelian variety of dimension g.
- If A is an abelian variety over \mathbb{F}_q , the group $A(\mathbb{F}_q)$ can be used for cryptography in the same way as \mathbb{F}_q^{\times} or $E(\mathbb{F}_q)$ with an elliptic curve E.
- If A is an abelian variety, then (except for possibly finitely many primes ℓ) there is a Weil pairing

$$A[\ell] \times A[\ell] \rightarrow \mu_{\ell}$$
.

Pairing-friendly abelian varieties

Definition

If A is an abelian variety over \mathbb{F}_q , and ℓ is a prime dividing $|A(\mathbb{F}_q)|$, then

- ullet the *embedding degree* is again the order of q in $\mathbb{F}_\ell^{ imes}$,
- A is pairing friendly if the embedding degree is not too small and not too large,
- the security parameter is the embedding degree divided by the dimension of A.

Definition

An abelian variety over \mathbb{F}_q is *supersingular* if it is isogenous over $\overline{\mathbb{F}}_q$ to a product of supersingular elliptic curves.

Theorem (Galbraith; Choie, Jeong & Lee; Rubin & Silverberg)

The largest security parameters of simple supersingular abelian varieties are:

dimension		2	3	4	5	6
characteristic 2	4	6		5		6
characteristic 3	6	2	6	$7\frac{1}{2}$		7
characteristic 5	2	3		$3\frac{3}{4}$		3
characteristic 7	2	3	$4\frac{2}{3}$	3		7
characteristic 11		3		3	2	3
$characteristic \geq 13 \\$	2	3		3		3

(a blank entry means there are no simple supersingular abelian varietes of that dimension in that characteristic).

We construct supersingular abelian varieties with "optimal" security parameters in a way analogous to what we did with algebraic tori.

Recall the decomposition

$$\mathsf{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^n}} \mathbf{G}_m \, \sim \, \oplus_{d|n} \mathsf{T}_d$$

Abelian varieties

If E is an elliptic curve over \mathbb{F}_q , then the Weil restriction of scalars $\operatorname{Res}_{\mathbb{F}_2}^{\mathbb{F}_q^n} E$ is an abelian variety over \mathbb{F}_q of dimension n, and

$$(\mathsf{Res}_{\mathbb{F}_q}^{\mathbb{F}_{q^n}} E)(\mathbb{F}_q) \cong E(\mathbb{F}_{q^n}).$$

Theorem

Suppose E is an elliptic curve over \mathbb{F}_a . For every $d \geq 1$ there is an abelian variety \mathbf{E}_d over \mathbb{F}_a of dimension $\varphi(d)$ such that for every n,

- ullet $Res^{\mathbb{F}_{q^n}}_{\mathbb{F}_q}E\sim igoplus_{d\mid n}\mathbf{E}_d.$
- $\bullet \ \mathbf{E}_n(\mathbb{F}_q) \cong \{P \in E(\mathbb{F}_{q^n}) : \mathit{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_{q^d}}P = 0 \ \textit{for every } d \mid n, d \neq n\},$
- **E**_n is isogenous over \mathbb{F}_{q^n} to $E^{\varphi(n)}$.

Theorem (Rubin & Silverberg 2002)

Suppose

- E is a supersingular elliptic curve over \mathbb{F}_q ,
- the embedding degree of E is k,
- n is relatively prime to 2qk.

Then \mathbf{E}_n is a supersingular abelian variety over \mathbb{F}_q of dimension $\varphi(n)$, with security parameter $k \frac{n}{\varphi(n)}$.

Example

- take $q = 3^d$ with d odd
- take $E: y^2 = x^3 x \pm 1$
- $|E(\mathbb{F}_q)| = q \pm \sqrt{3q} + 1$, and the embedding degree is 6
- take *n* = 5

The theorem shows that

- E₅ is a supersingular abelian variety of dimension 4
- the security parameter of \mathbf{E}_n is $6 \cdot (5/\varphi(5)) = 7\frac{1}{2}$.

Best supersingular security parameters

dimension	1	2	3	4	5	6
characteristic 2		6		5		6
characteristic 3		2	6	$7\frac{1}{2}$		7
characteristic 5		3		$3\frac{3}{4}$		3
characteristic 7		3	$4\frac{2}{3}$	3		7
characteristic 11		3		3	2	3
characteristic \geq 13		3		3		3

•
$$q = 3^d$$
, d odd; $E: y^2 = x^3 - x \pm 1$; $n = 5$;

• E₅ has dimension 4 and security parameter $7\frac{1}{2}$.

Some remarks on efficiency

ullet $\mathbf{E}_n\subset\mathsf{Res}_{\mathbb{F}_q}^{\mathbb{F}_{q^n}}E$, so

$$\mathbf{E}_n(\mathbb{F}_q)\subset E(\mathbb{F}_{q^n}).$$

Therefore, even though \mathbf{E}_n is a higher dimensional abelian variety, all computations in $\mathbf{E}_n(\mathbb{F}_q)$ can be done with elliptic curve arithmetic.

Some remarks on efficiency

• Normally one would represent an element of $E(\mathbb{F}_{q^n})$ by its x-coordinate, which requires n elements of \mathbb{F}_q . But $\mathbf{E}_n(\mathbb{F}_q)$ is a proper subgroup of $E(\mathbb{F}_{q^n})$, and

$$|\mathbf{E}_n(\mathbb{F}_q)| \approx p^{\varphi(n)}.$$

Ideally one would like to represent an element of $\mathbf{E}_n(\mathbb{F}_q)$ by $\varphi(n)$ elements of \mathbb{F}_q . This *compression* would reduce transmission sizes by a factor of $\varphi(n)/n$.

- We can do this when n = 2, 3, or 5 (Rubin & Silverberg 2002).
- The case n=2 is not useful, because \mathbf{E}_2 is just the quadratic twist of E corresponding to the extension $\mathbb{F}_{q^2}/\mathbb{F}_q$, which is another elliptic curve.

Some remarks on efficiency

• We compress a point $P \in \mathbf{E}_n(\mathbb{F}_q) \subset E(\mathbb{F}_{q^n})$ by

$$P = (x, y) \mapsto x \mapsto (x_0, x_1, \dots, x_{n-1}) \mapsto (x_1, x_2, \dots, x_{n-1}) \\ \in E(\mathbb{F}_{q^n}) \qquad \in \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \qquad \in \mathbb{F}_{q^n}$$

- If *n* is prime, this achieves a compression factor of $\frac{n-1}{n} = \frac{\varphi(n)}{n}$.
- If n = 3 or 5, we can *decompress* to recover the original point P. (Almost: the compression map is not injective, it is 8-to-1 when n = 3, and 54-to-1 when n = 5, but one can send a few extra bits with each transmission to make the decompression unique.)

Summary

- Properly chosen elliptic curves may provide the same security as a multiplicative group, with substantially smaller transmission lengths. (This is because there is no known subexponential algorithm for computing discrete logs on a general elliptic curve.)
- If the embedding degree is small, the Weil pairing can be used to reduce elliptic curve discrete logs to multiplicative group discrete logs.
- If the embedding degree is not too big, the Weil pairing on an elliptic curve or abelian variety has useful cryptographic applications, such as identity-based cryptography, innovative signature schemes, private information retrieval, non-interactive zero knowledge proofs,

Applications of Number Theory and Algebraic Geometry to Cryptography

Karl Rubin

Department of Mathematics UC Irvine

October 28, 2006 / Global KMS Day

