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Public key cryptography

Cryptography is used when one party (Alice) wants to send secret
information to another party (Bob) over an insecure channel (like the
Internet).

A traditional way to do this is for Alice and Bob to meet in advance and
agree on a secret key or codebook, that can be used to encrypt and
decrypt messages. This is not always practical.

In public key cryptography, Alice can encrypt a message for Bob using
public (non-secret) information. Only Bob knows the private (secret)
key required for decryption.
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Public key cryptography

Let Fp be the finite field with p elements, and F×p its multiplicative
group.

Diffie-Hellman key agreement
1 Public information: a prime p and a generator g of F×p

2 Alice’s secret information: an integer a, 1 ≤ a ≤ p − 1.
Bob’s secret information: an integer b, 1 ≤ b ≤ p − 1.

3 Alice sends ga to Bob, Bob sends gb to Alice.

4 Alice and Bob each compute gab = (gb)a = (ga)b.

The eavesdropper (Eve) knows g, ga, and gb. Can Eve compute gab?
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Diffie-Hellman key agreement

Diffie-Hellman Problem
Given g, ga, and gb, compute gab.

Cleary, we can solve the Diffie-Hellman Problem if we can solve the
Discrete Log Problem:

Discrete Log Problem

Given g and gλ, compute λ.

What about the converse? Is the Diffie-Hellman Problem easier than
the Discrete Log Problem?
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Discrete logs in a general cyclic group

Suppose G is a finite cyclic group, and g is a generator. Given gλ, one
can compute λ, the discrete log:

Naïve method: in at most |G| steps

Pollard rho: in O(
√
|G|) steps

(If we can factor |G|, and ` is the largest prime factor, then Pollard rho
works in O(

√
`) steps.)

To be “secure” from an eavesdropper, the number of steps required
should be at least 280, so |G| should be divisible by a prime ` > 2160.
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Discrete logs in F×q

Suppose q is a prime power. The best algorithms for computing
discrete logs in F×q (index calculus: function field sieve, number field
sieve) take

Lq(1/3, c) := ec log(q)1/3 log log(q)2/3

steps. This is
smaller than any power of q,
larger than any power of log(q).

To be “secure”, one should take q > 21024.
Thus in secure Diffe-Hellman key agreement,

the transmissions will be at least 1024 bits,
the computations take place in a group of size > 21024.
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Discrete logs in F×q

Compare this to the Discrete Log Problem in a general cyclic group,
which requires only |G| > 2160.

Are there better groups to use for cryptography?

We will look at
algebraic tori,
elliptic curves and abelian varieties.
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The T2 cryptosystem

Suppose p is a prime. Define a subgroup G ⊂ F×p2 by

G := {x ∈ F×p2 : xp+1 = 1}.

Equivalently, if Fp2 = Fp(
√

D) then

G := {a + b
√

D ∈ F×p2 : a2 − Db2 = 1}.

The best known attack on the discrete log problem in G is the attack on
all of F×p2 , namely Lp2(1/3, c). So G will be “secure” if p > 2512.
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The T2 cryptosystem

The map

a + b
√

D 7→ 1 + a
b

is a bijection from G − {±1} to Fp − {0}, with inverse

α 7→ α +
√

D
α−

√
D

.

This allows us to compress elements of G, so that they can be
transmitted using only log2(p) bits, instead of log2(p

2).

In other words, the group G is as secure as F×p2 , but uses only half the
bandwidth for transmissions.
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The T2 cryptosystem

This is the “T2” cryptosystem of Rubin & Silverberg (2003).

Using a different map G → Fp, defined by

a + b
√

D 7→ 2a

gives the “LUC” cryptosystem of Smith et al. (1993).

advantage of LUC: some computations are easier

advantage of T2: the map G → Fp is (almost) a bijection

advantage of T2: it can be generalized, to achieve even greater
efficiency
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Algebraic tori

Definition
Gm is the algebraic group with the property that Gm(F ) = F× for every
field F .

Definition
If L/F is a finite extension, the Weil restriction of scalars ResL

F Gm is an
algebraic group of dimension [L : F ] with the property that

(ResL
F Gm)(K ) = (L⊗F K )×

for every field K containing F .

In particular (ResL
F Gm)(F ) = L×.
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Algebraic tori

Definition
An algebraic group V over a field F is an algebraic torus if V ∼= Gd

m
over some finite extension K of F , for some d ≥ 0.

Example

ResL
F Gm ∼= G[L:F ]

m over L,

so ResL
F Gm is an algebraic torus of dimension [L : F ].
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Algebraic tori

Fix a prime p. Then

(Res
Fpn

Fp
Gm)(Fp) ∼= F×pn

If d | n there is a norm map Nn/d : Res
Fpn

Fp
Gm → Res

Fpd

Fp
Gm such that

(Res
Fpn

Fp
Gm)(Fp)

∼ //

Nn/d
��

F×pn

Nn/d

��

(Res
Fpd

Fp
Gm)(Fp)

∼ // F×pd

commutes.
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Algebraic tori

Definition

Tn := ker
(

Res
Fpn

Fp
Gm

⊕Nn/d−−−−→
⊕

d |n,d 6=n
Res

Fpd

Fp
Gm

)
.

T1 = Gm

Tn(Fp) ∼= {x ∈ F×pn : Nn/d(x) = 1 for every d | n, d 6= n}
= {x ∈ F×pn : xΦn(p) = 1}

where Φn is the n-th cyclotomic polynomial (the monic polynomial
of degree ϕ(n) whose roots are the primitive n-th roots of unity; ϕ
is the Euler ϕ function). Thus |Tn(Fp)| = Φn(p) ≈ pϕ(n).

T2(Fp) ∼= {x ∈ F×p2 : xp+1 = 1}
the group we saw earlier in the T2 cryptosystem.
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Algebraic tori

Theorem

1 Res
Fpn

Fp
Gm is isogenous over Fp to ⊕d |nTd

2 Tn is an algebraic torus of dimension ϕ(n).

Conjecture (Voskresenskiı̆)

The algebraic torus Tn is birationally isomorphic to Aϕ(n) over Fp.

Here Aϕ(n) is ϕ(n)-dimensional affine space, and birationally
isomorphic means there are rational maps (quotients of polynomials)
that give a bijection between “almost all” of Tn and “almost all” of Aϕ(n).
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Algebraic tori

If Voskresenskiı̆’s Conjecture is true, then elements of Tn(Fp) can be
compressed, using the birational isomorphism Tn −→∼ Aϕ(n) to represent
elements of Tn(Fp) ⊂ F×pn with only ϕ(n) elements of Fp, rather than n
elements of Fp.

Thus for security we need
|Tn(Fp)| ≈ pϕ(n) > 2160

pn > 21024

i.e.

log2(pϕ(n)) > max{160, 1024ϕ(n)
n }.

Note: log2(p
ϕ(n)) is the number of bits that must be transmitted for

each element of Tn(Fp).
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Algebraic tori

Minimum sizes of p to ensure security:

n 1 2 3 4 5 6 ··· 30
log2(p) > 1024 512 342 256 205 171 ··· 35

ϕ(n)
n 1 .50 .67 .50 .80 .33 ··· .27

log2(p
ϕ(n)) > 1024 512 684 512 820 342 ··· 280

Karl Rubin (UC Irvine) Number Theory and Cryptography October 2006 KMS Day 17 / 51



Voskresenskiı̆’s Conjecture

Conjecture (Voskresenskiı̆)

The algebraic torus Tn is birationally isomorphic to Aϕ(n) over Fp.

Voskresenskiı̆’s Conjecture is trivially true when n = 1.

T1 = Gm ↪→ A1 by the natural injection

Voskresenskiı̆’s Conjecture is true when n = 2.

T2 = {(x , y) : x2 − Dy2 = 1} → A1 by (x , y) 7→ (1 + x)/y

This gives the T2-cryptosystem.
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Voskresenskiı̆’s Conjecture

Theorem (Klyachko)
Voskresenskiı̆’s Conjecture is true if n is divisible by at most 2 distinct
primes.

Recall:

n 1 2 3 4 5 6 ··· 30
log2(p) > 1024 512 342 256 205 171 ··· 35

ϕ(n)
n 1 .50 .67 .50 .80 .33 ··· .27

log2(p
ϕ(n)) > 1024 512 684 512 820 342 ··· 280

In particular, T6 is birationally isomorphic to A2. This gives rise to the
CEILIDH cryptosystem (Rubin & Silverberg 2003).
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Voskresenskiı̆’s Conjecture

Using the trace map

TrFp6/Fp2
: T6(Fp) → Fp2 ∼= A2(Fp)

instead of a birational isomorphism from T6 to A2 gives the XTR
cryptosystem of Lenstra and Verheul (2000).
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Voskresenskiı̆’s Conjecture

Open Question

Is T30 birationally isomorphic to A8?

If so, this would give a new cryptosystem with more efficient
transmission sizes.

Open Question
How secure is the Discrete Log Problem in F×p30?

There are indications that the Discrete Log Problem in F×p30 might be
easier than the general Discrete Log Problem in F×` with a prime
` ≈ p30.
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Summary of torus-based cryptography

If there is a birational isomorphism f : Tn → Aϕ(n), then f can be
used to compress elements of Tn(Fp) ⊂ F×pn .

This compression reduces transmission size by a factor of ϕ(n)/n,
while still relying on the security of the Discrete Log Problem in
F×pn .

This can be done (explicitly) when
n = 1 (the “classical” case, no compression),
n = 2 (compression factor 1/2)
n = 6 (compression factor 1/3)

The next useful case is n = 30 (compression factor 4/15 ≈ .27). It
is not known if T30 is birationally isomorphic to A8.

The next useful case after that would be n = 210 (compression
factor 8/35 ≈ .23). But this may be impractical for other reasons.

Karl Rubin (UC Irvine) Number Theory and Cryptography October 2006 KMS Day 23 / 51



Elliptic curves

An elliptic curve over Fq is a curve defined by an equation

y2 = x3 + ax + b

with a, b ∈ Fq and 4a3 + 27b2 6= 0

(or a slightly more complicated equation if the characteristic of Fq is 2
or 3).

The set of points E(Fq) (including the point at infinity) has a natural
commutative group law.
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Elliptic curve group law

y2 = x3 − x

P1

P2

P1 + P2
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Elliptic curve group law

The group law can also be written algebraically:

If P1 = (x1, y1) and P2 = (x2, y2), then P1 + P2 = (x3, y3) where x3, y3
are given as follows:

1 set λ :=

{
(y2 − y1)/(x2 − x1) if P1 6= P2,
(3x2

1 + a)/2y1 if P1 = P2,
2 set x3 := λ2 − x1 − x2,
3 set y3 := λ(x1 − x3)− y1.
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Elliptic curve group law

Theorem (Hasse 1934)

q + 1− 2
√

q ≤ |E(Fq)| ≤ q + 1 + 2
√

q.

Therefore
|E(Fq)| ≈ q.

Theorem (Schoof 1985)
There is a polynomial-time algorithm for computing |E(Fq)|.
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Discrete logs in E(Fq)

One can use the groups E(Fq) for cryptography (Miller, Koblitz, 1985).
A necessary condition for security is that the Discrete Log Problem in
E(Fq) is hard.

The best algorithm for computing discrete logs in E(Fq) for a general
elliptic curve E over Fq takes O(

√
|E(Fq)|) = O(

√
q) steps.

Many (but not all!) elliptic curves E over Fq are believed to be secure.

It is important to know which E are not secure.

Example
If |E(Fq)| = q, then computing discrete logs in E(Fq) is easy.
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The Weil pairing

Suppose E is an elliptic curve over Fq, and ` is a prime not dividing q.
Let k be the order of q in F×` , so Fqk is the smallest extension of Fq

containing µ`, the group of `-th roots of unity in F̄q.

Definition
E [`] := {P ∈ E(F̄q) : `P = 0}.

Fact
E [`] ∼= F2

`

If |E(Fq)| is divisible by ` but not by `2, then Fq(E [`]) = Fqk .
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The Weil pairing

Theorem (Weil, Miller)
There is a nondegenerate skew-symmetric bilinear pairing

〈 , 〉` : E [`]× E [`] −→ µ`

that is computable in polynomial time.

Suppose C ⊂ E(Fq) is a subgroup of order `.

The Weil pairing can be used to reduce the Discrete Log Problem in C
to the Discrete Log Problem in F×qk , where k is the order of q (mod `)

(Menezes, Okamoto & Vanstone 1993).
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The Weil pairing

MOV reduction
1 Suppose C ⊂ E(Fq) is a subgroup of order `, P is a generator of

C, and Q ∈ E [`]− C.

2 Define an injective homomorphism

f : C → F×qk by f (R) = 〈R, Q〉` ∈ µ` ⊂ F×qk .

3 Given {P, λP}, compute

{f (P), f (λP)} = {g, gλ}

where g = f (P) is a generator of µ` ⊂ F×qk .

4 Compute λ from {g, gλ}, as a discrete log computation in F×qk .
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Example: y2 = x3 − x

Example

Let E be the elliptic curve y2 = x3 − x and q ≡ 3 (mod 4). Then

|E(Fq)| = q + 1

If ` is a prime dividing q + 1, then q ≡ −1 (mod `) so the order of
q (mod `) is 2.

The Weil pairing reduces computation of discrete logs in E(Fq) to
computation of discrete logs in F×q2 .

Thus to be secure in this case, we must have q > 2512.
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Example: y2 = x3 − x

Example

Let E be the elliptic curve y2 = x3 − x and p = 2163 + 16893. Then

|E(Fp)| = p + 6473158660473377637781611

` = |E(Fp)|/8 is prime and ` > 2160

The order of p (mod `) is `− 1.

The Weil pairing reduces computation of discrete logs in E(Fp) to
computation of discrete logs in F×p`−1 .

But ` > 2160, so we can’t even write down an element of F×p`−1 , and this
“reduction” is useless. Cryptography in E(Fp) is secure against known
attacks.
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Pairing-based signatures

There are other applications of the Weil pairing.

Boneh-Lynn-Shacham signature scheme 2001
1 Fix an elliptic curve E over Fq, a subgroup C ⊂ E(Fq) of order `,

and a point Q ∈ E [`]− C.
2 Alice chooses a secret integer a, 1 ≤ a ≤ `.
3 Public information: q, E , `, Q, aQ.
4 Alice encodes the message as a point M ∈ C.
5 Alice sends the signed message (M, aM) to Bob.
6 Bob receives the pair (M, N). To verify the signature, Bob checks

that
〈M, aQ〉` = 〈N, Q〉`.

Since a is secret, only Alice can compute aM.
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Embedding degrees

In order to use the Weil pairing, the integer k (the order of q (mod `))
cannot be too large.

Definition
The order k of q in F×` is called the embedding degree.

(Fqk is the smallest extension of Fq such that the subgroup C ⊂ E(Fq)

of order ` embeds into F×qk .)

For a random elliptic curve, k ≈ ` which is very large.

We say that E is pairing-friendly if k is not too large (so that the Weil
pairing is computable) and not too small (so that the Discrete Log
Problem is not too easy).
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Pairing-friendly elliptic curves

It is easy to find elliptic curves with embedding degree k = 2. For
example:

E : y2 = x3 − x , q ≡ 3 (mod 4)

E : y2 = x3 + 1, q ≡ 2 (mod 3)

These are supersingular elliptic curves:

Definition

An elliptic curve E over Fq is

{
supersingular if E [q] = 0,

ordinary if E [q] 6= 0.
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Pairing-friendly elliptic curves

Possible embedding degrees for supersingular elliptic curves:

characteristic embedding degrees
2 1, 2, 3, 4
3 1, 2, 3, 6

≥ 5 1, 2

supersingular curves are easy to construct

embedding degrees are not too large

maybe the embedding degrees are too small?
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Pairing-friendly elliptic curves

It is harder to find examples of ordinary (i.e., non-supersingular)
elliptic curves with embedding degrees that are not too large.

Elliptic curves with embedding degree greater than 6 but not too
large would allow for shorter signatures with the same level of
security.

Methods for constructing such curves have been developed by
Miyaji, Nakabayashi, Takano, Barreto, Lynn, Scott, Cocks, Pinch,
Brezing, Weng, Naehrig, Freeman, . . . .
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Abelian varieties

Definition
An abelian variety is a connected projective algebraic group.

Elliptic curves are exactly the one-dimensional abelian varieties.

The Jacobian of a curve of genus g is an abelian variety of
dimension g.

If A is an abelian variety over Fq, the group A(Fq) can be used for
cryptography in the same way as F×q or E(Fq) with an elliptic
curve E .

If A is an abelian variety, then (except for possibly finitely many
primes `) there is a Weil pairing

A[`]× A[`] → µ`.
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Pairing-friendly abelian varieties

Definition
If A is an abelian variety over Fq, and ` is a prime dividing |A(Fq)|, then

the embedding degree is again the order of q in F×` ,
A is pairing friendly if the embedding degree is not too small and
not too large,
the security parameter is the embedding degree divided by the
dimension of A.

Definition
An abelian variety over Fq is supersingular if it is isogenous over F̄q to
a product of supersingular elliptic curves.
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Supersingular abelian varieties

Theorem (Galbraith; Choie, Jeong & Lee; Rubin & Silverberg)
The largest security parameters of simple supersingular abelian
varieties are:

dimension 1 2 3 4 5 6
characteristic 2 4 6 5 6
characteristic 3 6 2 6 71

2 7
characteristic 5 2 3 33

4 3
characteristic 7 2 3 42

3 3 7
characteristic 11 2 3 3 2 3

characteristic ≥ 13 2 3 3 3

(a blank entry means there are no simple supersingular abelian
varietes of that dimension in that characteristic).
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Supersingular abelian varieties

We construct supersingular abelian varieties with “optimal” security
parameters in a way analogous to what we did with algebraic tori.

Recall the decomposition

Res
Fpn

Fp
Gm ∼ ⊕d |nTd
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Abelian varieties

If E is an elliptic curve over Fq, then the Weil restriction of scalars

Res
Fqn

Fq
E is an abelian variety over Fq of dimension n, and

(Res
Fqn

Fq
E)(Fq) ∼= E(Fqn).

Theorem
Suppose E is an elliptic curve over Fq. For every d ≥ 1 there is an
abelian variety Ed over Fq of dimension ϕ(d) such that for every n,

Res
Fqn

Fq
E ∼

⊕
d |n

Ed .

En(Fq) ∼= {P ∈ E(Fqn) : TrFqn /Fqd
P = 0 for every d | n, d 6= n},

En is isogenous over Fqn to Eϕ(n).
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Supersingular abelian varieties

Theorem (Rubin & Silverberg 2002)
Suppose

E is a supersingular elliptic curve over Fq,
the embedding degree of E is k,
n is relatively prime to 2qk.

Then En is a supersingular abelian variety over Fq of dimension ϕ(n),
with security parameter k n

ϕ(n) .
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Supersingular abelian varieties

Example

take q = 3d with d odd
take E : y2 = x3 − x ± 1
|E(Fq)| = q ±

√
3q + 1, and the embedding degree is 6

take n = 5

The theorem shows that
E5 is a supersingular abelian variety of dimension 4
the security parameter of En is 6 · (5/ϕ(5)) = 71

2 .
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Supersingular abelian varieties

Best supersingular security parameters

dimension 1 2 3 4 5 6
characteristic 2 4 6 5 6
characteristic 3 6 2 6 71

2 7
characteristic 5 2 3 33

4 3
characteristic 7 2 3 42

3 3 7
characteristic 11 2 3 3 2 3

characteristic ≥ 13 2 3 3 3

q = 3d , d odd; E : y2 = x3 − x ± 1; n = 5;
E5 has dimension 4 and security parameter 71

2 .
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Some remarks on efficiency

En ⊂ Res
Fqn

Fq
E , so

En(Fq) ⊂ E(Fqn).

Therefore, even though En is a higher dimensional abelian variety,
all computations in En(Fq) can be done with elliptic curve
arithmetic.
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Some remarks on efficiency

Normally one would represent an element of E(Fqn) by its
x-coordinate, which requires n elements of Fq. But En(Fq) is a
proper subgroup of E(Fqn), and

|En(Fq)| ≈ pϕ(n).

Ideally one would like to represent an element of En(Fq) by ϕ(n)
elements of Fq. This compression would reduce transmission
sizes by a factor of ϕ(n)/n.
We can do this when n = 2, 3, or 5 (Rubin & Silverberg 2002).
The case n = 2 is not useful, because E2 is just the quadratic twist
of E corresponding to the extension Fq2/Fq, which is another
elliptic curve.
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Some remarks on efficiency

We compress a point P ∈ En(Fq) ⊂ E(Fqn) by

P= (x , y)7→ x 7→ (x0, x1, . . . , xn−1)7→ (x1, x2, . . . , xn−1)
∈ E(Fqn) ∈ Fqn × Fqn ∈ Fqn ∈ (Fq)n ∈ (Fq)n−1

If n is prime, this achieves a compression factor of n−1
n = ϕ(n)

n .

If n = 3 or 5, we can decompress to recover the original point P.
(Almost: the compression map is not injective, it is 8-to-1 when
n = 3, and 54-to-1 when n = 5, but one can send a few extra bits
with each transmission to make the decompression unique.)

Karl Rubin (UC Irvine) Number Theory and Cryptography October 2006 KMS Day 49 / 51



Summary

Properly chosen elliptic curves may provide the same security as
a multiplicative group, with substantially smaller transmission
lengths. (This is because there is no known subexponential
algorithm for computing discrete logs on a general elliptic curve.)

If the embedding degree is small, the Weil pairing can be used to
reduce elliptic curve discrete logs to multiplicative group discrete
logs.

If the embedding degree is not too big, the Weil pairing on an
elliptic curve or abelian variety has useful cryptographic
applications, such as identity-based cryptography, innovative
signature schemes, private information retrieval, non-interactive
zero knowledge proofs, . . . .
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