
Sum of Squares and Di�erence Calculus

John Treuer

November 21, 2016

1 Introduction:

One of mathematics most famous stories is of the legendary mathematician Gauss
as an elementary school student. One day, Gauss’s teacher wanted to take a nap
instead of teach his class. To keep his students busy while he slept, he asked them to
sum the first 100 numbers. After only a few seconds of work, young Gauss surprised
his teacher by approaching him with the correct answer.

Gauss had written S = 1 + 2 + · · · + 100 on one line and S = 100 + 99 + · · · + 1
directly underneath. Adding the two lines, Gauss got

S = 1 + 2 + · · · + 100
+ S = 100 + 99 + · · · + 1

2S = 101 + 101 + · · · + 101

So 2S = 101 · 100. Thus, S = 5050.

Tonight, using Gauss’s clever semi-visual proof as motivation, we will use triangles
to prove that q

n

k=1 k

2 = n(n+1)(2n+1)
6 . Afterwards, we will develop techniques from

di�erence calculus that will allow us to quickly compute both q
n

k=1 k

2 and q
n

k=1 k

3.

2 An Introduction to Sigma Notation

Tonight you will need to use S-notation to evaluate sums. This first section intro-
duces that notation. If you feel comfortable with S-notation, then feel free to skip
to the next section.
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Let a1, a2, ..., a

n

be an ordered list of numbers. The subscript on the a tells us where
that number appears in the list. For example, a5 is the fifth number in the list
because the subscript on the a is 5.

Usually you will also be given a formula for the k

th number in the list. For ex-
ample we can let a

k

= k for any number k between 1 and n (so the k

th number in
the list is equal to k.) In that case, if k = 1, then a1 = 1, if k = 2, then a2 = 2,
if k = 3, then a3 = 3, and so on. So the list a1, a2, ...a

n

becomes 1, 2, ...n. Let’s do
another example.

Example 2.1 Let a

k

= k

2. What are the numbers a1, a2, a3, a4, a5.

From the formula, a1 = 12 = 1, a2 = 22 = 4, a3 = 9, a4 = 16 and a5 = 25.

Problem 2.2 Let a

k

= k/2, b

k

= 1, c

k

= a

k

+ b

k

. What are the numbers
a1, a2, a3, a4? How about b1, b2, b3, b4 and c1, c2, c3, c4?

S is the Greek letter Sigma and S-notation provides us with a concise way to write
sums. Given an ordered list a1, a2, a3, ...a

n

, q
n

k=m

a

k

tells us to add the numbers in
the list starting with a

m

and ending with a

n

. Let’s do several examples.

Example 2.3 Consider the list a1, a2, a3, a4, a5 where a

k

= k. What is q5
k=1 a

k

?
q5

k=1 a

k

tells us to add the first through fifth numbers in our list. So

5ÿ

k=1
a

k

= a1 + a2 + a3 + a4 + a5

= 1 + 2 + 3 + 4 + 5
= 15.
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Problem 2.4 Consider the list a1, a2, a3, a4. What is q4
k=1 a

k

when a

k

= k

2? How
about when a

k

= 1? a

k

= k + 2?

To make our notation shorter, if we have a formula for a

k

we will often replace the
a

k

next to the S with the formula.

For example, instead of saying q5
k=1 a

k

when a

k

= k, we just say q5
k=1 k.

Example 2.5 Compute q4
k=1 k

2.

In this example, our list is a1, a2, a3, a4 with a

k

= k

2. So,

5ÿ

k=1
k

2 = 12 + 22 + 32 + 42 = 30.

because a1 = 12, a2 = 22, a3 = 32, a

4 = 42 and a

k

= k

2.

Problem 2.6 Compute q3
k=1 k

2, q4
k=1 1, q7

k=1 k, and q4
k=2 2k + 1.
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Problem 2.7 Gauss showed that for any number n > 1 that q
n

k=1 k = n(n+1)
2 .

What is q10
k=1 k? q50

k=1 k? q100
k=1 k?

3 A Triangular Argument that

q
n

k=1 k

2 = n(n+1)(2n+1)
6

Let’s start by considering the Table 1 shown below:

k 0 1 2 3 4 5 6 7

k2 0 1 4 16 49

(k+1)2 - k2 1 3 5 13

Table 1

Problem 3.1 Fill in the blank entries in Table 1 with the correct values.
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Now, notice that

22 = 4 = 1 + 3
32 = 9 = 1 + 3 + 5
42 = 16 = 1 + 3 + 5 + 7.

Do you see where those numbers appear in the above table? Every number in the
second row is the sum of the numbers in the third row that are to the left of it.
That’s interesting. Let’s present the information in the table in a di�erent way.

Problem 3.2 Fill in the missing values in the triangle below. For each row, how
many numbers are there to the right of the "=" sign? Let k be any whole number.
For the k

th row, can you write down a formula for the last blank in the row in terms
of the variable k? (This will help you fill in the last blank.)

12 = 1

22 = 1 + 3

32 = 1 + 3 + 5

42 = + + 5 +

52 = + + + +

n2 = 1 + 3 + 5 + 7 + 9 +11 + · · · +

· · · · · ·

···
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Problem 3.3 From the last row of the triangle, we have that n

2 = 1+ 3+ 5+ · · ·+
(2n ≠ 1). Rewrite that equation in S-notation.

Great! We showed visually that n

2 =
q

n

k=1(2k ≠ 1). Let’s see if we can show
that formula another way. Take another look at the last row of Table 1. The last
row consists of consecutive odd numbers.

Problem 3.4 From Table 1, why does it appear that (k + 1)2 ≠ k

2 = 2k + 1?

Problem 3.5 Verify using algebra that (k + 1)2 ≠ k

2 = 2k + 1. Also show that
k

2 ≠ (k ≠ 1)2 = 2k ≠ 1.

So we have that q
n

k=1(2k ≠ 1) =
q

n

k=1 k

2 ≠ (k ≠ 1)2. Let’s see if we can show
algebraically that this equals n

2. This is a little tricky so let’s do an example first to
show how we might prove it.

Example 3.6 Suppose n = 5. Show that q5
k=1 k

2 ≠ (k ≠ 1)2 = 52.
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Notice that
5ÿ

k=1
k

2 ≠ (k ≠ 1)2 = (12 ≠ 02) + (22 ≠ 12) + (32 ≠ 22) + (42 ≠ 32) + (52 ≠ 42)

= �12 ≠ 02 +��22 ≠��12 +��32 ≠��22 +��42 ≠��32 + 52 ≠��42

= 52 ≠ 02

= 52.

See how most of the terms in the middle canceled? That was a nice simplification.
Now let’s see if we can generalize this for any number n.

Problem 3.7 Using the previous example as a guide, compute q7
k=1 k

2 ≠ (k ≠ 1)2.
Show that q

n

k=1 k

2 ≠ (k ≠ 1)2 = n

2. Conclude that q
n

k=1(2k ≠ 1) = n

2.

So far we have shown that n

2 =
nÿ

k=1
2k ≠ 1. This formula will be very useful later.

Now let’s turn to something else.

Consider Triangle 1, 2 and 3 shown in the other packet. The triangles have n

numbers along the base and n numbers along the height.

Problem 3.8 How many numbers are there in these triangles? Is it the same as the
area of an n ◊ n right triangle? If not, why are they di�erent?
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Problem 3.9 What is the sum of all of the numbers in Triangle 1? Write your
answer in S-notation. How about Triangle 2 and Triangle 3?

Let’s define what it means to add two triangles. If we have two triangles T1 and
T2 that are the same size, then we say that T1 + T2 is the triangle where each entry
is the sum of the corresponding entries of T1 and T2. For example,

1

3 +

2

4 2 =

3

9 55

2 0 1 6 7 0 8 7 1

1

1 1 +

2

2 2 =

3

3 31

1 1 1

2

2 2 2 3 3 3

and
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Problem 3.10 What is the sum of the following triangles?

3

4 5

6 7 1

+

0

0 1

2 2 6

Problem 3.11 Recall that Triangle 1, Triangle 2 and Triangle 3 are the three tri-
angles shown in the other packet. What is Triangle 1 + Triangle 2 + Triangle 3?
Draw the triangle.

Let Triangle 4 be the n ◊ n right triangle with 2n+ 1 in each entry as shown below:
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2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1 2n+1

···

2n+1

2n+1 2n+1

· · ·

· · ·

· · ·
· · ·

2n+1

2n+1

Triangle 4

Problem 3.12 What is the sum of all of the numbers in Triangle 4?

In problem 3.11, you should have found that sum of Triangle 1, 2, and 3 is
Triangle 4, and in problem 3.9 you found that the sum of the numbers in Triangle
1 is q

n

k=1 k

2. Since Triangle 2 and Triangle 3 are rearrangements of Triangle 1, the
sum of the numbers in each of those triangles is also q

n

k=1 k

2.

Problem 3.13 Conclude that q
n

k=1 k

2 = n(n+1)(2n+1)
6 .
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That proof was pretty clever and coming up with clever proofs is rewarding.
However, this proof doesn’t provide us with a general way to easily compute q

n

k=1 k

m

where m > 2. In the next section, we will develop techniques of di�erence calculus
that will make it much easier to compute q

n

k=1 k

m where m is 1, 2, 3 or bigger.

4 Di�erence Calculus and the Sum of Squares and

Sum of Cubes

Definition 4.1 For any number x and any non-negative integer m, define x

m by

x

m = x(x ≠ 1) · · · (x ≠ m + 1).

In English, we say that x

m is “x to the m falling.”

For example,
52 = 5(5 ≠ 1) = 20.

Problem 4.2 Show that 53 = 60 and 54 = 120. Also calculate (≠3)2, (≠3)3 and
(≠3)4.

In the previous problem you may have noticed that 52
< 53

< 54. It seems as though
if m < n, then 5m

< 5n. Is that true?

Problem 4.3 Show that this is not always true. That is, give an example of two
numbers m and n so that m < n but 5m

> 5n.
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You also may have noticed in problem 4.2 that (≠3)2 and (≠3)4 are positve while
(≠3)3 is negative. So I’m going to conjecture that if k

m is negative, then k < 0 and
m is odd. Is that conjecture true?

Problem 4.4 Show that the conjecture “if k

m is negative, then k < 0 and m is odd”
is false. Show that if we also require that k be an integer, then the conjecture is true.

Nicely done. Here are a few more problems to get used to the falling powers.

Problem 4.5 What is x

1?

Problem 4.6 Write k

2 and k

3 as sums of falling powers.
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We will now introduce the definition of the di�erence operator D which will be
essential to computing q

n

k=1 k

2 and q
n

k=1 k

3.

Definition 4.7 Define the di�erence operator D by

Df(x) = f(x + 1) ≠ f(x).

Let’s do a couple of examples to get used to this definition.

Example 4.8 Now let’s suppose that g(x) = x. What is Dg(x).

Dg(x) = Dx = (x + 1) ≠ x = 1.

Example 4.9 Let’s suppose that f(x) = x

2. What is Df(x)? Well,

Df(x) = (x + 1)2 ≠ x

2 = x

2 + 2x + 1 ≠ x

2 = 2x + 1,

so Df(x) = 2x + 1.

Problem 4.10 Suppose that h(x) = x

2. Then Dh(x) = (x + 1)2 ≠ x

2. Show that
Dh(x) = 2x. Rewrite 2x in terms of falling powers.

Problem 4.11 Let j(x) = x

3. Show that Dj(x) = 3x(x ≠ 1). Rewrite 3x(x ≠ 1) in
terms of falling powers.
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In the previous two problems you showed that

Dx

2 = 2x

1

Dx

3 = 3x

2.
If you do a few more calculations then you can show that

Dx

4 = 4x

3

and
Dx

5 = 5x

4.
There seems to be a pattern here.

Problem 4.12 Show that for any number m that Dx

m = mx

m≠1.

At this point, it is not clear how the di�erence operator and the falling powers re-
late to q

n

k=1 k

2 and q
n

k=1 k

3. So let’s do a few examples to illustrate the relationship
between D and S.
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Example 4.13 Let’s calculate q4
x=2 Df(x).

Since Df(x) = f(x + 1) ≠ f(x),

4ÿ

x=2
Df(x) =

4ÿ

x=2
f(x + 1) ≠ f(x)

= f(2 + 1) ≠ f(2) + f(3 + 1) ≠ f(3) + f(4 + 1) ≠ f(4)
= f(3) ≠ f(2) + f(4) ≠ f(3) + f(5) ≠ f(4)
= ���

f(3) ≠ f(2) +���
f(4) ≠���

f(3) + f(5) ≠���
f(4)

= f(5) ≠ f(2).

That simplified nicely. Now it is your turn to try something similar.

Problem 4.14 Using the previous example as a guide, show that q5
x=1 Df(x) =

f(6) ≠ f(1). Let a be any number. Show that q
a+4
x=a

Df(x) = f(a + 5) ≠ f(a).

Notice that in both the previous example and problem, after you expanded the sum,
all of the middle terms canceled each other out. That’s important because it can
help us get a general formula relating q and D.
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Problem 4.15 Let a and b be two numbers so that a < b. Show that

bÿ

x=a

Df(x) = f(b + 1) ≠ f(a).

It’s almost as if the boxed formula says that the S-operator undoes the D-operator.
Cool. Let’s practice using the boxed formula.

Problem 4.16 Use the boxed formula in the previous problem to find a formula forq
b

k=a

2k (Do not use the geometric series formula).

Now let’s connect the discussion of D and S to x

m. In Problem 4.12, you showed
that Dx

n+1 = (n + 1)xn. Thus,

Dx

n+1

n + 1 = x

n.

So,
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bÿ

x=a

x

n =
bÿ

x=a

Dx

n+1

n + 1 =
1

n + 1

bÿ

x=a

Dx

n+1.

Problem 4.17 Using the previously boxed formula what does this sum equal?

Good job. In summary, the two important formulas that you need to remember are
bÿ

x=a

Df(x) = f(b + 1) ≠ f(a) and
bÿ

x=a

x

n =
1

n + 1(b + 1)n+1 ≠ 1
n + 1a

n+1.

Now that you know the two formulas written above, you are now ready to give
formulas for q

n

k=1 k

2 and q
n

k=1 k

3.

Problem 4.18 Using the two boxed formulas show that
100ÿ

k=1
k = 5050 and

nÿ

k=1
k =

n(n + 1)
2 .
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Problem 4.19 Give formulas in terms of n for q
n

k=1 k

2 and q
n

k=1 k

3.

4.1 Challenge Problem

Problem 4.20 Find the number of ways to represent 1050 as a sum of consecutive
positive integers. (1050 by itself counts as one way.)
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5 Connections to Calculus

For those who are currently taking or have taken di�erential/integral (regular) cal-
culus, many connections can be made between that and di�erence calculus. The
di�erence operator D and the derivative d

dx

are analogous and have similar power
rules.

Dx

m = mx

m≠1 and d

dx

x

m = mx

m≠1.

In di�erential/integral calculus the derivative and the integral are inverse operations
that satisfy two fundamental theorems of calculus, one fundamental theorem for
indefinite integrals and one for definite integrals. Tonight we derived a the funda-
mental theorem of di�erence calculus which is analogous to calculus’s fundamental
theorem for definite integrals; it is the boxed equation that relates D and S. For
more information on di�erence calculus, see the references.
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