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CHAPTER 1

Functional analysis and convex geometry

Geometric functional analysis studies high dimensional linear structures. Some examples of such
structures are Euclidean and Banach spaces, convex sets and linear operators in high dimensions. A
central question of geometric functional analysis is: what do typical n-dimensional structures look
like when n grows to infinity? One of the main tools of geometric functional analysis is the theory of
concentration of measure, which offers a geometric view on the limit theorems of probability theory.
Geometric functional analysis thus bridges three areas – functional analysis, convex geometry and
probability theory. The course is a systematic introduction to the main techniques and results of
geometric functional analysis.

1. Preliminaries on Banach spaces and linear operators

We begin by briefly recalling some basic notions of functional analysis. A norm defined on a
linear vector space X is a function ‖ · ‖ : X → R that satisfies

(1) nonnegativity: ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = 0;
(2) homogeneity: ‖λx‖ = |λ|‖x‖ for all λ ∈ R and for all x ∈ X;
(3) triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A Banach space is a complete normed space. We now recall some examples of classical Banach
spaces.

Examples 1.1. 1. The space of continuous functions C[0, 1] consists of the functions f : [0, 1]→
R that are continuous. It is a Banach space with respect to the sup-norm

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

2. For 1 ≤ p < ∞, the space of p-integrable functions Lp[0, 1] consists of the functions f :
[0, 1] → R such that |f |p is Lebesgue integrable on [0, 1]. It is a Banach space with respect to the
norm

‖f‖p =
(∫ 1

0
|f(t)|p dt

)1/p
.

3. The space of essentially bounded functions L∞[0, 1] consists of all Lebesgue measurable
functions f : [0, 1]→ R such that

‖f‖∞ = esssup
t∈[0,1]

|f(t)| = inf
f=g a.e.

sup
t∈[0,1]

|g(t)| <∞.

It is a Banach space with respect to this norm.
4. For 1 ≤ p < ∞, The space of p-summable sequences `p consists of all sequences of real

numbers x = (xi) such that the series
∑

i |xi|p converges. It is a Banach space with respect to the
norm

‖x‖p =
( ∞∑
i=1

|xi|p
)1/p

.
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5. The space of bounded sequences `∞ consists of all sequences of real numbers x = (xi) such
that

‖x‖∞ = sup
i∈N
|xi|.

It is a Banach space with respect to this norm.
6. Every Hilbert space H is a Banach space with the norm ‖x‖ =

√
〈x, x〉, where 〈·, ·〉 denotes

the inner product on H.

Let X,Y be Banach spaces. A linear operator is a map T : X → Y that satisfies T (ax+ by) =
aT (x) + bT (y) for all x, y ∈ X and a, b ∈ R. In particular, if Y = R, then T is called a linear
functional. A linear operator T : X → Y is bounded if there exists some M > 0 such that
‖Tx‖ ≤M‖x‖ for every x ∈ X. The infimum of such numbers M is called the norm of T :

‖T‖ = sup
x∈X\{0}

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖.

A linear operator T is continuous if and only if it is bounded.
A linear operator T : X → Y is called an isomorphism if it is bijective and both T and T−1 are

bounded. The Open Mapping Theorem actually implies that if T is bijective and bounded then so
it T−1. An isomorphism T is called an isometry if ‖T‖ = ‖T−1‖ = 1, or equivalently if ‖Tx‖ = ‖x‖
for all x ∈ X. Banach spaces X and Y are called isomorphic (resp. isometric) if there exists an
isomorphism (resp. isometry) T : X → Y . Any two finite dimensional Banach spaces of the same
dimension are isomorphic, but not necessarily isometric.

Many arguments in functional analysis are based on duality. It provides a convenient tool:
when two objects are in dual relation, one can study one of them and deduce properties of the
other one using duality. If X is a normed space, then its dual space X∗ consists of all continuous
linear functionals on X, equipped with the operator norm. The dual space X∗ is always a Banach
space. The dual spaces of some classical spaces can be described via the known representation
theorems.

Examples 1.2. 1. (Lp[0, 1])∗ = Lq[0, 1] for p, q ∈ (1,∞) such that 1/p+ 1/q = 1, and also for
p = 1, q =∞. Specifically, every continuous linear functional F ∈ (Lp[0, 1])∗ has the form

F (f) =
∫ 1

0
f(t)g(t) dt, f ∈ Lp[0, 1]

for some function g ∈ Lq[0, 1].
2. (`p)∗ = `q for the same pairs p, q as in the previous example. Specifically, every continuous

linear functional F ∈ (`p)∗ has the form

F (x) =
∞∑
i=1

xiyi, x ∈ Lp[0, 1]

for some function y ∈ Lq[0, 1].
3. Riesz representation theorem states for every Hilbert space H one has H∗ = H. Specifically,

every continuous linear functional F ∈ H∗ has the form

F (x) = 〈x, y〉, x ∈ H
for some vector y ∈ H.

Duality is also defined for linear operators T : X → Y . For a linear operator T : X → Y , the
adjoint operator is a linear operator T ∗ : Y ∗ → X∗ defined by (T ∗f)(x) = f(Tx) for all f ∈ Y ∗
and x ∈ X. If T is bounded then so is T ∗, and we have ‖T ∗‖ = ‖T‖.
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There are two natural classes of Banach spaces associated with a Banach space X: closed linear
subspaces E ⊆ X (with the norm induced from X) and quotient spaces X/E. The quotient space
is defined using the following equivalence relation on X: x ∼ y iff x − y ∈ E. The quotient space
X/E then consists of the equivalence classes

[x] = {y ∈ X : y ∼ x} = {x+ e : e ∈ E}.

X/E is a Banach space equipped with the norm

‖[x]‖ = inf
y∈[x]
‖y‖ = distX(0, [x]) = inf

e∈E
‖x− e‖.

Figure 1 illustrates the concept of quotient space.

Figure 1. Quotient space X/E

Subspaces and quotient spaces are in duality relation. Recall that the annihilator of E ⊂ X
is a subspace in X∗ defined as E⊥ = {f ∈ X∗ : f(e) = 0 ∀e ∈ E}. The next proposition says
that the dual of a subspace is isometric to a quotient space (of the dual space), and the dual of a
quotient space is isometric to a subspace (of the dual space).

Proposition 1.3 (Duality between subspaces and quotients). Let E ⊂ X be a linear subspace.
Then

(i) E∗ is isometric to X∗/E⊥;
(ii) (X/E)∗ is isometric to E⊥.

For the proof, see [5, Exercise 9.10.25].

As we said, geometric functional analysis studies finite-dimensional normed spaces. Such spaces
are always complete, and all their linear subspaces are closed. All n-dimensional Banach spaces are
isomorphic to each other (but not isometric!) All linear operators on such spaces are bounded.

Classical examples of finite dimenisonal spaces are the n-dimensional versions of the spaces `p,
which are denoted by `np . Thus `np is the linear vector space Rn equipped with the norm

‖x‖p =
( n∑
i=1

|xi|p
)1/p

if 1 ≤ p <∞; ‖x‖∞ = max
i≤n
|xi|.

2. A correspondence between Banach spaces and convex bodies

A set K in Rn is called convex if it contains the interval joining any two points in K. A vector
x is called a convex combination of points x1, . . . , xm in Rn if it has the form

x =
m∑
i=1

λixi where λi ≥ 0,
m∑
i=1

λi = 1.

A set K is convex if and only if it contains all convex combinations of any set of points from K.
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Convex sets can be constructed from arbitrary sets by taking convex hulls. The convex hull of
a set A in Rn is the minimal convex set containing A, denoted conv(A). Equivalently, conv(A) is
the set of all convex combinations of points from A.

Recall that a convex set K in Rn is called symmetric if K = −K (i.e. x ∈ K implies −x ∈ K).
A bounded convex set with nonempty interior is called a convex body.

Let X be an n-dimensional Banach space. Choosing a bijective map X → Rn, we can identify
X with the linear vector space Rn equipped with some norm ‖ · ‖, thus often writing

X = (Rn, ‖ · ‖)
for an arbitrary n-dimensional Banach space X. The following simple proposition establishes a
correspondence between finite-dimensional Banach spaces and symmetric convex bodies in Rn.

Proposition 2.1 (Banach spaces and symmetric convex bodies). 1. Let X = (Rn, ‖ · ‖) be a
Banach space. Then its unit ball BX is a symmetric convex body in Rn.

2. Let K be a symmetric convex body in Rn. Then K is the unit ball of some normed space
X = (Rn, ‖ · ‖). Indeed, consider the Minkowski functional of K defined for all x ∈ Rn as

‖x‖K = inf
{
t > 0 :

x

t
∈ K

}
.

Then ‖ · ‖K defines a norm on Rn, and K is the unit ball of the Banach space (Rn, ‖ · ‖K).
proof?

Figure 2 illustrates the definition of Minkowski functional.

Figure 2. Minkowski functional

The correspondence between Banach spaces and convex bodies established in Proposition 2.1
is a simple but extremely useful tool. It allows one to use arguments from convex geometry in
functional analysis and vice versa. This correspondence is especially useful for the classical spaces
`np . Their unit balls, denoted by Bn

p , are easy to describe geometrically.

Examples 2.2. 1. The unit ball of the n-dimensional Euclidean space `n2 is the unit Euclidean
ball in Rn.

2. The unit ball of `n1 is the so-called cross-polytope in Rn. The cross-polytope is the symmetric
convex hull of the canonical basis vectors ei in Rn and their opposites: Bn

1 = conv(±ei : i =
1, . . . , n).

3. The unit ball Bn
∞ of `n∞ is the cube in Rn with center at the origin and side 2.

Figure 3 illustrates the shapes of the balls Bn
1 , Bn

2 and Bn
∞ in dimension n = 2.

The concepts of subspaces and quotient spaces can also be interpreted in the language of convex
geometry. Using Proposition 2.1, one can easily show that subspaces of Banach spaces correspond
to sections of convex bodies, and quotient spaces correspond to projections of convex bodies.
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Figure 3. Unit balls of `np in dimension n = 2

Proposition 2.3 (Subspaces and quotient spaces). Let X = (Rn, ‖ · ‖) be a Banach space, and
let K = BX denote is unit ball. Consider a subspace E of X. Then:

1. The unit ball of E is the section K ∩ E;
2. The unit ball of the quotient space X/E is isometrically equivalent to the orthogonal projection

of K onto E⊥, denoted PE⊥(K).

The concept of dual space corresponds in convex geometry to the concept of polar set. Given
a subset K of Rn, the polar set K◦ is defined as

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K}.

Consider a Banach space X = (Rn, ‖ · ‖). By Riesz representation theorem, every linear functional
f ∈ X∗ has the form f(x) = 〈x, y〉 =

∑n
i=1 xiyi for some y ∈ Rn. Then the unit ball of X∗ is

BX∗ = {y ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈ BX} = (BX)◦.

In words, the unit ball of the dual space X∗ is the polar of the unit ball of X.

Examples 2.4. 1. Recall the duality relation (`n1 )∗ = `n∞. This is a finite dimensional version of
the duality considered in Example 1.2. The corresponding polarity relation is (Bn

1 )◦ = Bn
∞, which

says that the polar of a cross-polytope is a cube.
2. Similarly, (Bn

2 )◦ = Bn
2 , i.e. the polar of a Euclidean ball is a Euclidean ball.

3. If E is an ellipsoid with semiaxes a1, . . . , an > 0 then Then E◦ is an ellipsoid with semiaxes
1/a1, . . . , 1/an.

4. If K is a polytope of k vertices and m faces, then K◦ is a polytope with m vertices and k
faces.

Polarity goes well along with set theoretic operations.

Proposition 2.5 (Properties of polar sets). Let K and L be convex sets in Rn. Then:
1. (K ∪ L)◦ = K◦ ∩ L◦.
2. (K ∩ L)◦ = conv(K◦ ∪ L◦).
3. If K ⊂ L, then L◦ ⊂ K◦.
4. (Bipolar theorem) If K is closed then K◦◦ = K.

Finally, we interpret the duality between subspaces and quotient spaces of Banach spaces de-
scribed in Proposition 1.3 as a polarity relation between sections and projections of convex bodies.
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Proposition 2.6 (Duality between sections and projections). Let K be a convex body in Rn,
and let E ⊆ Rn be a subspace. Let PE denote the orthogonal projection in Rn onto E. Then:

1. (K ∩ E)◦ = PE(K◦);
2. (PE(K))◦ = K◦ ∩ E.

In both parts, the operation of taking the polar set in the left hand side is considered in the subspace
E.

Proof. The inclusion PE(K◦) ⊆ (K ∩ E)◦ follows when we note that vectors x ∈ K ∩ E and
y ∈ K◦ satisfy 〈x, PEy〉 = 〈PEx, y〉 = 〈x, y〉 ≤ 1. To prove the reverse inclusion, by Proposition 2.5
it suffices to show that (PE(K◦))◦ ⊆ K ∩ E. Let x ∈ (PE(K◦))◦; we have 〈x, PEy〉 ≤ 1 for all
y ∈ K◦. Since x ∈ E, we have 1 ≥ 〈x, PEy〉 = 〈PEx, y〉 = 〈x, y〉. It follows that x ∈ K◦◦ = K. This
shows that x ∈ K ∩ E. This completes the proof of Part 1.

Part 2 follows from part 1 and the bipolar theorem (Proposition 2.5). Indeed, we have (K◦ ∩
E)◦ = PE(K◦◦) = PE(K). This completes the proof.

The following table summarizes the correspondence between functional analysis and convex
geometry that we discussed in this section:

Spaces Unit balls
normed space X, dimX = n symmetric convex body K in Rn

subspace E ⊂ X section K ∩ E
quotient space X/E projection PE⊥(K)

dual space X∗ polar body K◦

3. A first glance at probabilistic methods: an approximate Caratheodory theorem

Geometric functional analysis heavily relies on probabilistic methods. In this section we will de-
velop our first and simple probabilistic argument, which leads to what we might call an approximate
Caratheodory’s theorem.

We first recall the classical Caratheodory’s theorem, which is a useful result in convex geometry.

Theorem 3.1 (Caratheodory’s theorem). Consider a set A in Rn and a point x ∈ conv(A).
There exists a subset A′ ⊆ A of cardinality |A′| ≤ n + 1 such that x ∈ conv(A′). In other words,
every point in the convex hull of A can be expressed as a convex combination of at most n+1 points
from A.

The bound n + 1 can not be improved; it is clearly attained for a simplex A in Rn (a set of
n + 1 points in general position). However, if we only want to approximate x rather than exactly
represent it as a convex combination, this is possible with much fewer points. Their number does
not even depend on the dimension n, so the result holds in an arbitrary Hilbert space.

Let us fix an appropriate unit for approximation, which is the “radius” of A defined as

r(A) = sup{‖a‖ : a ∈ A}.
Theorem 3.2 (Approximate Caratheodory’s theorem). Consider a bounded set A in a Hilbert

space and a point x ∈ conv(A). Then, for every N ∈ N, one can find points x1, . . . , xN ∈ A such
that ∥∥∥x− 1

N

N∑
i=1

xi

∥∥∥ ≤ r(A)√
N
.

Remarks. 1. Since 1
N

∑N
i=1 xi is a convex combination of the points xi, the conclusion of

Theorem 3.2 implies that the point x almost lies in the convex hull of N points from A:

dist
(
x, conv(xi)Ni=1

)
≤ r(A)√

N
.

9



2. Theorem 3.2 has two advantages over the classical Caratheodory theorem. Firstly, Theo-
rem 3.2 is dimension-free. Secondly, the convex combination to represent the arbitrary point is
explicit: all the coefficients equal 1/N . Note however that there may be repetitions among the
points xi.

Proof. Let us fix a point x ∈ conv(A). We can express it as a convex combination of some
vectors z1, . . . , zm ∈ A with some coefficients λi ≥ 0,

∑m
i=1 λi = 1:

x =
m∑
i=1

λizi.

Consider a random vector Z which takes on the value zi with probability λi for each i = 1, . . . ,m.
Then

EZ =
m∑
i=1

λizi = x.

Let Z1, Z2, . . . be independent copies of Z. By the the law of large numbers we know that the sum
of independent random variables 1

N

∑N
j=1 Zj converges to its mean x weakly (and even strongly)

as N goes to infinity. The reason for this, as we may recall from the classical proof of the weak
law of large numbers, is that the second moment of the difference is easily seen to converge to zero.
Indeed, since the random variables Zi − x are independent and have mean zero, we obtain (see
Exercise 1) that

E
∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥2
=

1
N2

E
∥∥∥ N∑
j=1

(Zj − x)
∥∥∥2

=
1
N2

N∑
j=1

E‖Zj − x‖2.

Now, since the random variable X takes on values in A, we can easily bound each term of the sum
(see Exercise 1):

E‖Zj − x‖2 = E‖Z − EZ‖2 = E‖Z‖2 − ‖EZ‖2 ≤ E‖Z‖2 ≤ r(A)2.

This shows that

E
∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥2
≤ r(A)2

N
.

Therefore there is a realization of the random variables Z1, . . . , ZN (i.e. a point in the probability
space) such that ∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥ ≤ r(A)√
N
.

Since by construction each Zj takes on values in A, the proof is complete.

Exercise 1. 1. Let Z1, . . . , ZN be independent mean zero random vectors in a Hilbert space.
Show that

E
∥∥∥ N∑
j=1

Zj

∥∥∥2
=

N∑
j=1

E‖Zj‖2.

2. Let Z be a random vector in a Hilbert space. Show that

E‖Z − EZ‖2 = E‖Z‖2 − ‖EZ‖2.
This is a version of the identity Var(X) = E(X − EX)2 = E(X2) − (EX)2 that holds for random
variables X.
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CHAPTER 2

Banach-Mazur distance

The concept of distance usually quantifies how far objects are from each other. Qualitatively,
it can be used to distinguish the objects. For example, if two points in space have distance zero to
each other, they are the same and thus can be identified with each other. The notion of distance
is a quantitative version of identification; not only it can tell whether the objects are the same but
it also measures how different they are.

How one identifies mathematical objects depends on their nature. For example, in topology,
we identify spaces using homeomorphisms; in algebra, we identify groups using homomorphisms;
in classical convex geometry, we may identify polytopes using rigid motions; in functional analysis,
we identify Banach spaces using isomorphisms. The concept of Banach-Mazur distance which we
shall study in this chapter is a quantitative version of the concept of isomorphism.

1. Definition and properties of Banach-Mazur distance

We will give two equivalent definitions of Banach-Mazur distance, one in the context of func-
tional analysis, the other in convex geometry.

Definition 1.1. (Analytic): Let X,Y be two isomorphic normed spaces. The Banach-Mazur
distance between X and Y is defined as

d(X,Y ) = inf
{
‖T‖‖T−1‖ : T : X → Y is an isomorphism

}
.

(Geometric): Let K and L be symmetric convex bodies in Rn. The Banach-Mazur distance
between K and L is

d(K,L) = inf
{
ab > 0 :

1
b
L ⊆ TK ⊆ aL for some linear operator T on Rn

}
.

Figure 1 illustrates the definition of Banach-Mazur distance between a hexagon and a circle.

Figure 1. Banach-Mazur distance

The analytic and geometric notions of Banach-Mazur distance are connected through the corre-
spondence between normed spaces and symmetric convex bodies described in Section 2. This way,
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the (analytic) Banach-Mazur distance between the spaces X and Y is the same as the (geometric)
Banach-Mazur distance between their unit balls BX and BY .

Remarks. 1. Recall that all finite-dimensional Banach spaces of the same dimension are
isomorphic. Hence the notion of Banach-Mazur distance is well defined for them.

2. Banach-Mazur distance is invariant under invertible linear transformations S: it is easily
seen that d(K,L) = d(SK,SL).

The following easy properties of Banach-Mazur distance follow from the corresponding proper-
ties of linear operators on normed spaces. We leave it to the reader to check them.

Proposition 1.1 (Properties of Banach-Mazur distance). Let X,Y, Z be n-dimensional normed
spaces. Then:

1. d(X,Y ) ≥ 1. Furthermore, d(X,Y ) = 1 if and only if X and Y are isometric;
2. d(X,Y ) = d(Y,X);
3. d(X,Y ) ≤ d(X,Z)d(Z, Y );
4. d(X,Y ) = d(X∗, Y ∗).

The first three properties remind us of the conditions for a metric: nonnegativity, symmetry,
and triangle inequality. The only difference is that we have the above properties in multiplicative
form. To get the additive form, we can simply take the logarithm:

Corollary 1.2 (Banach-Mazur Metric). log d(X,Y ) defines a metric on the set of all n-
dimensional Banach spaces. Equivalently, log d(K,L) defines a metric on the set of all symmetric
convex bodies in Rn.

Since log d(X,Y ) = 0 for isometric spaces X and Y , we feel that all isometric (but not isomor-
phic!) spaces should be identified with each other in geometric functional analysis. Geometrically
this means, for example, that in Rn all ellipsoids are regarded the same, the cubes and paralleletopes
are regarded the same, but an ellipsoid and a cube is not regarded the same.

One can check that the set of all n-dimensional Banach spaces equipped with the Banach-
Mazur metric is a compact metric space. For this reason, this space is called the Banach-Mazur
compactum. Very few properties of Banach-Mazur compactum are known, since it is usually hard
to compute the Banach-Mazur distance between a given pair of normed spaces. However, when
one of the spaces is `n2 , it is possible to give a tight upper bound

√
n on the distance. We will now

prove this remarkable result known as John’s theorem.

2. John’s Theorem

Theorem 2.1 (John’s theorem). Let K be a symmetric convex body in Rn, and let D be the
ellipsoid of maximal volume contained in K. Then

D ⊆ K ⊆
√
nD.

Consequently, for arbitrary n-dimensional normed space one has

d(X, `n2 ) ≤
√
n.

Proof. The second part of the theorem easily follows from the first part using the correspon-
dence between normed spaces and convex bodies.

We are now set to prove the first part of the theorem. Since, as we know, Banach-Mazur distance
is invariant under invertible linear transformations, we can assume that D = Bn

2 by applying an
appropriate linear transformation to K and D.

We will proceed by contradiction. Assume that K *
√
nD. Then we can find x0 ∈ K such that

(1) s := ‖x0‖2 >
√
n.
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By applying a rotation in Rn we can assume without loss of generality that the vector x0 has the
form x0 = (s, 0, . . . , 0). By symmetry and convexity of K, we have

conv{±x0, D} ⊆ K.

We are going to find inside the convex body conv{±x0, D} an ellipsoid E of volume larger than
D, which will contradict the maximality of D. We will construct E by significantly elongating the
ball D in the direction of the s and slightly suppressing D in the orthogonal directions, see Figure 2.

Figure 2. John’s Theorem

To this end, let us consider the ellipsoid E centered at the origin, and whose semi-axes aligned
in the coordinate directions have lengths (a, b, b, . . . , b). Here a, b > 0 are parameters that we are
going to determine.

Firstly, we would like to have vol(E) > vol(D). Since D is a unit ball, we have vol(E) =
abn−1 vol(D), which gives our first restriction

abn−1 > 1.

Secondly, we would like to have E ⊆ conv{±x0, D}, which we shall reformulate as a second
constraint on a, b. Since both sides of this containment are bodies of revolution around the axis
x0, the problem becomes two-dimensional. At this point, the reader is encouraged to complete the
proof independently using only planar geometry. For completeness, we proceed with the argument.
Consider the quarter of any cross-section of these bodies orthogonal to x0, see Figure 3.

We can clearly assume that both the ball D and the ellipsoid E are tangent to the boundary
of conv{±x0, D}. Let t be the y-intercept of the line passing through x0 (on x-axis with length s)
and tangent to D. Similarity of triangles gives

(2)
s

t
=
√
s2 − 1

1
.

Next, we are going to use the tangency of conv{p,D} and E . To this end, we first shrink the
picture along the x-axis by the factor b/a, see Figure 4. This transforms E into the Euclidean ball
Ē of radius b, and it transforms s into s̄ = (b/a) s. Similarity of triangles gives here

b

s̄
=

t√
s̄2 + t2

.

This is equivalent to s2t2 = b2s2 + a2t2. Dividing both sides by t2 and using (2) we conclude that
a2 = s2(1− b2) + b2. Let us choose b2 = 1− ε for sufficiently small ε > 0; then a2 = 1 + (s2 − 1)ε.
Since by our assumption s >

√
n, we conclude that (1) holds:

a2b2(n−1) > (1 + (n− 1)ε)2(1− (n− 1)ε) ≥ 1.

John’s Theorem is proved.
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Figure 3. Proof of John’s Theorem

Figure 4. Proof of John’s Theorem

3. Distance between `np and `nq

John’s theorem is sharp. We will now show that a cube in n dimensions has the largest possible
distance

√
n to the ball.

Proposition 3.1 (Sharpness of John’s theorem). For every n = 1, 2, . . . we have

d(`n∞, `
n
2 ) =

√
n.

Remarks. 1. By duality (Proposition 1.1), we also have d(`n1 , `
n
2 ) =

√
n.

2. The geometric meaning of Proposition 3.1 is that among all ellipsoids, the round ball
approximates the cube the best. While intuitively simple, this result is not entirely trivial, and it
will be proved by a probabilistic argument.

Proof. The upper bound d(`n∞, `
n
2 ) ≤

√
n follows easily from the norm comparison ‖x‖∞ ≤

‖x‖2 ≤
√
n‖x‖∞, which in turn is a consequence of Hölder’s inequality.
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We are now going to prove the lower bound d(`n∞, `
n
2 ) ≥

√
n. Note that in the geometric

definition of Banach-Mazur distance we can require that b = 1 by rescaling. So it suffices to show
that for every linear operator T : Rn → Rn satisfying Bn

2 ⊆ T (Bn
∞), we have T (Bn

∞) 6⊆ sBn
2 for any

s ≤
√
n. The latter simply means that the radius of the parallelopiped T (Bn

∞) is large:

(3) max
x∈Bn∞

‖Tx‖2 >
√
n.

We are going to prove this by showing that a random vertex of the parallelopiped T (Bn
∞) has length

larger than
√
n with positive probability.

The vertices of the cube Bn
∞ have the form x =

∑n
i=1 εiei, where εi ∈ {−1, 1} and ei denote

the canonical basis vectors. Denote fi = Tei. Then the vertices of the parallelopiped T (Bn
∞) have

the form

Tx =
n∑
i=1

εiTei =
n∑
i=1

εifi,

see Figure 5. Since Bn
2 ⊆ T (Bn

∞), we must have ‖fi‖2 ≥ 1 for all i (why?).

Figure 5. Banach-Mazur distance between a cube and a ball

Now we choose a random vertex Tx of the parallelepiped. Formally, choose the signs εi at
random, so we let εi be independent symmetric {−1, 1}-valued random variables: P(εi = 1) =
P(εi = −1) = 1/2. By Exercise 1 and using the lower bound ‖fi‖2 ≥ 1, we can estimate the
expectation

E‖Tx‖22 = E
∥∥∥ n∑
i=1

εifi

∥∥∥2

2
=

n∑
i=1

‖fi‖22 ≥ n.

It follows that there exists choice of signs εi for which the random vertex Tx satisfies ‖Tx‖2 ≥
√
n.

This establishes (3) and completes the proof.

As an application of Proposition 3.1, we now compute the distance between the spaces `np and
`nq in the case when the exponents p and q lie on the same side of 2.

Corollary 3.2 (Distance between `np and `nq ). Let 1 ≤ p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞. Then
for every n = 1, 2, . . . we have

d(`np , `
n
q ) = n1/p−1/q.

Proof. By duality (Proposition 1.1) we may assume that 2 ≤ p ≤ q ≤ ∞. Then the upper
bound d(`np , `

n
q ) ≤ n1/p−1/q follows from the norm comparison

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q
which in turn is a consequence of Hölder’s inequality.
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We will now deduce the lower bound d(`np , `
n
q ) ≥ n1/p−1/q from the lower bound d(`n2 , `

n
∞) ≥

√
n

given by Proposition 3.1. One can do this simply by comparing the corresponding spaces in the
two distance estimates. Indeed, the two special cases of the upper bound proved above are

d(`n2 , `
n
p ) ≤ n1/2−1/p, d(`nq , `

n
∞) ≤ n1/q.

Therefore, using the submultiplicativity of the Banach-Mazur distance (Proposition 1.1) we have
√
n ≤ d(`n2 , `

n
∞) ≤ d(`n2 , `

n
p ) · d(`np , `

n
q ) · d(`nq , `

n
∞)

≤ n1/2−1/p · d(`np , `
n
q ) · n1/q.

It follows that d(`np , `
n
q ) ≥ n1/p−1/q as required.

It is a bit more difficult to compute the distance in the case when the exponents p and q lie on
different sides of 2, that is for 1 ≤ p ≤ 2 < q ≤ ∞. The identity map no longer realizes the distance
between such spaces. For example, in the extreme case p = 1 and q =∞ Hölder’s inequality would
give the upper bound on the distance d(`n1 , `

n
∞) ≤ n, which is far from being optimal. This distance

is actually
√
n up to an absolute constant; it is achieved by some rotation of the octahedron Bn

1

inside Bn
∞ that maps the vertices of the octahedron to some vertices of the cube. The general

optimal bound for such range of p and q is

cnα ≤ d(`np , `
n
q ) ≤ Cnα, where α = max(1/p− 1/2, 1/2− 1/q)

and where C, c > 0 are absolute constants, see [29, Proposition 37.6].

As an immediate application of John’s theorem, we obtain a bound on the distance between
any pair of n-dimensional normed spaces.

Corollary 3.3. Let X and Y be n-dimensional normed spaces. Then

d(X,Y ) ≤ n.

Proof. The estimate follows from John’s Theorem 2.1 and the submultiplicativity property of
Banach-Mazur distance (Proposition 1.1): d(X,Y ) ≤ d(X, `n2 )d(`n2 , Y ) ≤

√
n ·
√
n = n.

Corollary 3.3 is sharp up to a constant. This highly nontrivial result was proved by E. Gluskin
in 1981. He constructed n-dimensional spaces X and Y for which d(X,Y ) ≥ cn. Gluskin’s con-
struction is randomized. He defines the unit ball of X = (Rn, ‖ · ‖) as the convex hull of 2n
random points (and their opposites) on the unit Euclidean sphere of Rn, taken independently and
uniformly with respect to the Lebesgue measure. The second space Y is constructed in the same
way, independently from X. Heuristically, Banach-Mazur distance between such spaces X and Y
should be large with high probability. This is because the vertices of BX and BY are typically
totally “mismatched”. The nontrivial part of Gluskin’s argument is to show that the vertices can
not be sufficiently matched by any linear operator T on Rn, which leads to the large Banach-
Mazur distance. A detailed exposition of Gluskin’s construction, as well as many other results on
Banach-Mazur distance, are in the monograph [29].
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CHAPTER 3

Concentration of Measure and Euclidean Sections of Convex
Bodies

The phenomenon of concentration of measure is the driving force of the early development of
our subject – geometric functional analysis. It tells us that anti-intuitive phenomena occur in high
dimensions. For example, we will see that the mass of a high dimensional ball is concentrated only
on a thin band around any equator. This reflects the philosophy that metric and measure should be
treated very differently: a set can have a large diameter but carries little mass. As we will see later
on in this course, concentration of measure plays an important role in the cornerstone theorems
such as the Dvoretzky’s theorem and other theorems on sections or projections of convex bodies.
In this lecture, we will study two cases of concentration of measure, each with a geometric form
and a functional form:

• on the sphere
• in the Gauss space

1. Concentration of Measure

1.1. Concentration of measure on the sphere: geometric form. Consider the unit
sphere Sn−1 with normalized Lebesgue measure σ = σn−1. Denote by E the equator and Eε the
ε-neighbourhood of the equator,

Eε = {x ∈ Sn−1 : d(x,E) ≤ ε}.

First, we show that Eε contains almost all the mass on the sphere when n is large.

Proposition 1.1 (Neighborhood of spherical caps).

σ(Eε) ≥ 1− 2e−nε
2/2.

We will give an easy geometric proof for ε small.

Proof. Let Cε denote the complement set of Eε on the upper sphere. When ε is small, the
“ice-cream” cone generated by Cε is contained in a ball of radius

√
1− ε2 (See Figure 1):

cone(Cε) ⊂ B
(
O′,
√

1− ε2
)
.

Then,

σ(Cε) =
vol
(
cone(Cε)

)
vol(Bn

2 )
≤

vol
(
B(O′,

√
1− ε2)

)
vol
(
Bn

2

)
=
(√

1− ε2
)n ≤ e−nε2/2.

Exercise 2. Make the treatment of ε rigorous: prove Proposition 1.1 for all ε > 0.
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Figure 1. “ice-cream cone”

Remarks. (1) The proposition implies that a band around the equator of width ∼ 1/
√
n

has constant measure. Hence, as the dimension n gets larger and larger, the band that
contains a fixed amount of mass becomes thinner and thinner.

(2) For any hemisphere A, we have σ(Aε) ≥ 1− e−nε2/2. In fact, this holds for any subset of
measure 1/2 (not necessarily the hemispheres). This follows from the classic isoperimetric
inequality on the sphere.

Theorem 1.2 (Isoperimetric inequality on the sphere: geometric form. [13], [26]). Among
all measurable sets A ⊂ Sn−1 with a given measure, spherical caps minimize the measure of the
ε-neighborhood σ(Aε).

Consequently, we have the following theorem of concentration on the sphere.

Theorem 1.3 (Concentration of measure on the sphere). For an arbitrary measurable set A ⊂
Sn−1 with σ(A) ≥ 1

2 ,
σ(Aε) ≥ 1− e−nε2/2.

Remarks. (1) The number 1/2 is not essential. We have the same concentration phe-
nomenon (up to some constant adjustment) as long as the given measure is an absolute
constant.

(2) The reason why Theorem 1.2 is called ”isoperimetric inequality” is that, if we consider the
measure of the boundary of A,

σn−2(∂A) = lim
ε→0

σ(Aε)− σ(A)
ε

,

then the isoperimetric inequality implies that among all sets of a given volume, spherical
caps have the minimal boundary measure.

(3) The sphere Sn−1 locally looks like the Euclidean space Rn, so we can get the isoperimetric
inequality in Rn from that on the sphere.

Corollary 1.4. (Isoperimetric inequality in Rn) Among all sets of a given volume in Rn,
Euclidean balls minimize the surface area.

Later in this course when we talk about geometric inequalities, we will come back to these
isoperimetric inequalities and concentration of measure inequalities, and see alternative proofs.
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Figure 2. Concentration on the Sphere

1.2. Concentration of measure on the sphere: functional form. Concentration of mea-
sure is closely related to a special type of functions called Lipschitz functions. A general idea is
that a Lipschitz function depending on many variables is almost a constant. A natural choice for
constant is the median of the function. Let us recall some definitions first.

Definition 1.1. Let X,Y be metric spaces. A map f : X → Y is called L-Lipschitz if

d(f(x), f(y)) ≤ L · d(x, y)

for all x, y ∈ X.

Definition 1.2. Let X be a random variable. Then its median is a number M that satisfies

Pr(X ≤M) ≥ 1
2

and Pr(X ≥M) ≥ 1
2
.

Consider a 1-Lipschitz function defined on the sphere

f : Sn−1 → R.
Let M be a median of f . That is,

σ
{
x ∈ Sn−1 : f(x) ≥M

}
≥ 1

2
and σ

{
x ∈ Sn−1 ≥M

}
≥ 1

2
.

Let A = {x ∈ Sn−1 : f(x) ≤M}. Then σ(A) ≥ 1
2 . By the concentration of measure on the sphere,

we get
σ(Aε) ≥ 1− e−nε2/2.

It is easy to check that f(x) ≤M + ε for all x ∈ Aε by the Lipschitz condition. Hence,

σ(f ≤M + ε) ≥ 1− enε2/2.
Similarly,

σ(f ≤M − ε) ≥ 1− enε2/2.
Take intersection of the two sets, and we get

σ(|f −M | ≤ ε) ≥ 1− 2e−nε
2/2.

Thus, we have proved the following:
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Theorem 1.5. (Concentration of measure on the sphere: functional form) Let f : Sn−1 → R
be 1-Lipschitz with median M . Then,

σ(|f −M | ≤ ε) ≥ 1− 2e−nε
2/2.

Remarks. Roughly speaking, this theorem says that a smooth function is almost constant on
almost the entire sphere.

1.3. Concentration of measure in Gauss space: geometric form. We should note that
in the formulation of the concentration of measure on the sphere, we did not quite use the geometry
of the sphere. So it is not surprising that the same phenomenon happen in many other metric
probability spaces. A classic example is the Gauss space.

Definition 1.3. Gauss space is Rn equipped with the standard Gaussian measure γ = γn,
with density

dγn =
1

(2π)n/2
e−‖x‖

2
2/2 =

n∏
i=1

1√
2π
e−x

2
i /2.

Just as in the case of the sphere, we have an isoperimetric inequality in the Gauss space.

Theorem 1.6 (Isoperimetric inequality in Gauss space). Among all measurable sets A ⊂ Rn

with a given Gaussian measure, half-spaces minimize γ(Aε).

Let H denote a half space. Then Hε = {x ∈ Rn : x1 ≤ ε}. A simple computation shows that

γ(Hε) =
1√
2π

∫ ε

−∞
e−x

2
1/2dx1 ≥ 1− e−ε2/2.

Hence, we have the following concentration of measure theorem in the Gauss space.

Theorem 1.7 (Concentration of measure in Gauss space: geometric form). Let A ⊂ Rn be an
arbitrary measurable set with γ(A) ≥ 1

2 . Then γ(At) ≥ 1− e−t2/2.

1.4. Concentration of measure in Gauss space: functional form. Just as in the case
of the sphere, there is a functional form of concentration for Lipschitz functions in Gauss space. It
can be established from the geometric form in the same way as above.

Theorem 1.8 (Concentration of measure in Gauss space: functional form). Let f : Rn → R be
1-Lipschitz with median M . Then for any t > 0,

γ(|f −M | ≤ t) ≥ 1− 2e−t
2/2.

Exercise 3. Generalize the above concentration theorems (including functional forms) to L-
Lipschitz functions.

A trouble here is that median is usually hard to compute. We would like to replace it by the
mean for computational purposes. Fortunately, these two notions of average value are not far apart
when the function has certain concentration properties.

Lemma 1.9. Let X be a random varible with mean EX and median M . Then M ≤ 2EX.

Proof. By Markov inequaluty,

Pr(X > 2EX) ≤ 1
2
≤ Pr(X ≥M).

If M > 2EX, then

Pr(X > M) ≤ Pr(X > 2EX) <
1
2
.

This contradicts the median definition.
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Lemma 1.10 (Mean ≈ Median under concentration hypothesis). Let X be a random variable
with mean EX and median M . Suppose that

Pr(|X −M | > t) ≤ Ce−ct2

for any t > 0. Then
|M − EX| ≤ C1.

Consequently,
Pr(|X − EX| > t) ≤ C2e

−c2t2

for all t > 0, where C1, C2, c2 are constants that depend only on the absolute constants C, c.

Proof.

|M − EX| = |E(M −X)| ≤ E|M −X| by Jensen’s inequality

=
∫ ∞

0
Pr(|X −M | > t)dt ≤

∫ ∞
0

Ce−ct
2
dt = C1.

Remarks. Any type of concentration with tail bound that makes the last integral converge
will give the same “mean ≈ median” result up to some constant.

With this lemma, we have that, under appropriate concentration assumptions,

|X − EX| ≤ |X −M |+ C1.

Assume t > 2C1. This can always be done by choosing C2 sufficiently large. Then,

Pr(|X − EX| > t) ≤ Pr(|X −M | > t− C1)

≤ Pr
(
|X −M | > t

2
)
≤ Ce−c2t2 .

Hence, concentration of measure results on the sphere and in the Gauss space still hold when
median is replaced by the mean.

Exercise 4. Show that the concentration results actually hold when the median is replaced
by any p-th moment of f , (Efp)1/p for any 0 < p <∞ and f ≥ 0.

As a point x in Gauss space is a random vector with independent standard Gaussian coordinates,
we can derive a deviation inequality for certain functions of i.i.d Gaussian random variables. For a
more detailed treatment on this topic, see [28].

Corollary 1.11 (Deviation Inequality). Let g1, · · · , gn be independent standard Gaussian ran-
dom variables. Let f : Rn → R be 1-Lipschitz. Then the random vector X = f(g1, · · · , gn) satisfies
the deviation inequality

Pr(|X − EX| > t) ≤ 2e−t
2/2 ∀t > 0.

Example 1.12. Consider the random variable

X =
n∑
i=1

aigi,

where
∑n

i=1 a
2
i = 1. It is easy to see that the linear functional

f(x) =
n∑
i=1

aixi

21



is 1-Lipschitz. By Corollary 1.11, the normalized sum X satisfies the deviation inequality

Pr(|X| > t) ≤ 2e−t
2/2 ∀t > 0.

This is a well-known fact, since normalized sum of standard Gaussians is standard Gaussian.

Remarks. (1) The significance in this corollary is that the function f only needs to be
“smooth”: it does not have to be linear. Roughly speaking, this corollary says that
a random variable that is a smooth function of many independent Gaussians strongly
concentrates around its mean.

(2) Talagrand [28] proved a version of Corollary 1.11 for bounded random variales |ξi| ≤ c.
(3) Other versions of Corollary 1.11 still remain open, even for subgaussians. A possible

reason is that Lipschitz functions deal with Euclidean distances, and we lack a version
of isoperimetry for subgaussian spaces. Another reason is that in Gauss space, there is
usually heavy dependence on the rotation invariance of the Gaussian measure. However,
for subgaussians, the group of symmetry is too small (usually only reflections, permutation
of coordiantes). There may be hope if one can bypass the rotation invariance property to
obtain concentration properties, for example, via log Sobolev ienqualities, etc.

2. Johnson-Lindenstrauss Flattening Lemma

Johnson-Lindenstrauss Flattening Lemma was motivated by data compression, or “dimension
reduction.” A lot of times, we need to store a large set of data in a complicated metric space. This
would require a huge amount of space. For example, if we have n vectors in Rn, we would need
n2 bits for exact storage. To reduce the complexity while still preserve the essential information of
the original data set, we would love to embed the metric space into a simpler metric space almost
isometrically. Here, “simpler” means smaller dimension. The question is, how far can we push the
dimension down without losing the essential information? Johnson-Lindenstrauss flattening lemma
tells us that to preserve the pairwise distance between the data points, the dimension can go down
to the log level.

As a preliminary, we introduce a notion called “Lipschitz embedding” in metric spaces.

Definition 2.1 (Lipschitz Embedding). Let X,Y be metric spaces. A map T : X → Y is
called a Lipschitz embedding of X into Y if there exists L > 0 such that

1
L
· d(x, y) ≤ d(Tx, Ty) ≤ L · d(x, y) ∀x, y ∈ X.

In other words, both T and T−1 (restricted on the image of T ) are L-Lipschitz. Sometimes, such
T is called bi-Lipschitz.

For example, all isometries are 1-embedding, for d(Tx, Ty) = d(x, y) for all x, y ∈ X. An
“almost isometric embeddings” means a (1 + ε)-embedding for small ε > 0.

Now we are ready to state the flattening lemma.

Theorem 2.1 (Johnson-Lindenstrauss Flattening Lemma). Let X be an n-point set in a Hilbert
space. For any ε > 0, there exists a (1 + ε)-embedding of X into `k2, where k ≥ Cε−2 log n.

Remarks. Here, we consider the dimension reduction in `2. We want to preserve the pairwise
Euclidean distances among all the data points. Note that we can always embed X in span(X) whose
dimension ≤ n. To store all pairwise distances in X, we would need

(
n
2

)
∼ n2 numbers. Moreover,

to store X itself, we would need n · n = n2 numbers (assuming each vector is n-dimensional).
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However, after embedding into `k2, we only need to store n log n numbers while still preserving all
pairwise distances within ε-error.

However, mo similar result holds in `1: one cannot do dimension reduction in `1. See [12].

We will use a linear operator G (in general, emeddings do not have to be linear), and our
construction will be non-adaptive: it is independent of the geometry of X. This non-adaptivity is
the radical idea of this proof. Note that in general, a good embedding should be adaptive. For
example, if X consists of n co-linear points, then we do not want this line contained in ker(G): it
would be perfect isometric embedding if this line is perpendicular to the kernel.

Proof. Without loss of generality, assume that X ⊂ `n2 . We need a map G : `n2 → `k2 which
is a (1 + ε)-embedding when restricted to X. In this proof, we will use an k × n random Gaussian
matrix G. Here is the plan of the proof. We first fix a pair x, y ∈ X and check that

‖G(x− y)‖2 ≈ ‖x− y‖2.
Then, we take union bound over all n2 pairwise distances.
Step 1: Fixed vector.
Let x ∈ Sn−1. Then

E‖Gx‖22 = E
k∑
i=1

〈γi, x〉2 where γi’s are the row vectors of G

= kE〈γ, x〉2 where γ is a standard Gaussian vector in Rn,
= k.

Now, consider the function defined on the Gauss space Rkn:

f : Rkn → R, G = (gij)n×n 7→ ‖Gx‖2.
We claim that f is 1-Lipschitz. In fact,

|f(G)− f(H)| ≤ |‖Gx‖x − ‖Hx‖x| ≤ ‖(G−H)x‖2
≤ ‖G−H‖ ≤ ‖G−H‖HS = d(G,H),

where d(G,H) is the Euclidean distance of G and H when they are treated as elements of Rkn.
Then, by Corollary 1.8, we have that, for every x ∈ Sn−1,

Pr
(∣∣∣‖Gx‖2 −√E‖Gx‖2

∣∣∣ > t
)
≤ 2e−t

2/2 ∀t > 0,

where we have used the p-th moment replacement of the median in the concentration. That is,

Pr
(
|‖Gx‖2 −

√
k| > t

)
≤ 2e−t

2/2 ∀t > 0.

Let t = ε
√
k and replace G by T := G/

√
k. We get

Pr (|‖Tx‖2 − 1| > ε) ≤ 2e−ε
2k/2.

Therefore, for arbitrary x 6= 0, we have

(4) Pr (|‖Tx‖2 − ‖x‖2| > ε‖x‖2) ≤ 2e−ε
2k/2.

Step 2: Union bound.
Apply (4) to all x := u− v, where u, v ∈ X. We get

(5) Pr (∃u, v ∈ X : |‖T (u− v)‖2 − ‖u− v‖2| > ε‖u− v‖2) ≤ n2 · 2e−ε2k/2

As long as the RHS is less than 1, that is, as long as k ≥ Cε−2 log n, there exists a desired almost
isometric embedding.
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Remarks. (1) G can also be a random Bernoulli±1 matrix, as well as a sparse 0/1-matrix.
(2) Not much is know on derandomization of this argument.

Next, we introduce an alternative proof based on concentration of measure on the sphere. See
section 15.2 in [14]. In this method, T will be an orthogonal projection in Rn onto a random
k-dimensional subspace. First, let us be more explicit in what it means by a “random subspace.”

Definition 2.2 (Grassmannian). The Grassmannian Gn,k is the collection of all k-dimensional
subspaces of Rn.

We will equip Gn,k with a probability measure. For this purpose, we need the concept of Haar
measure defined on a compact metric space.

Let (M,d) be a compact metric space, and let G be a group whose members act isometrically
on M , i.e. d(gx, gy) = d(x, y) for all x, y ∈ M and g ∈ G. For example, M = Gn,k equipped
with Hausdorff distance (“angle” between the “orientations” of subspaces). Then G = O(n) =
{rotations and reflections}, or one can take G = SO(n) = {rotations}.

Theorem 2.2 (Haar measure). (1) (Existence) There exists a Borel probability measure
µ on M called Haar measure which is invariant under the action of G:

µ(gA) = µ(A) ∀g ∈ G,A ⊆M.

(2) (Uniqueness) If the G-action is transitive, i.e. for any x, y ∈ M there exists g ∈ G such
that y = gx, then the probability Haar measure is unique.

Example 2.3. M = Sn−1, G = O(n). Then the Haar measure on M is the normalized Lebesgue
measure.

Example 2.4. M = O(n) = G. Then the Haar measure on M defines what we call “random
rotations.”

Example 2.5. M = Gn,k, G = O(n). The Haar measure defines what we call “random
subspaces.”

Exercise 5. Let U be a uniformly random rotation in O(n) (i.e. pick a matrix from O(n)
uniformly at random).

(1) Let x ∈ Sn−1 be fixed. Show that Ux is a a random vector uniformly distributed on Sn−1.
Hint: Use the uniqueness of Haar measure on the sphere and show that Ux is rotation-
invariant.

(2) Let E ∈ Gn,k. Show that U(E) is a random subspace uniformly distributed in Gn,k.

Now we are ready to show the alternative proof of the Johnson-Lindenstrauss lemma. Let T
be a projection onto a random k-dimensional subspace. By the exercise above, this projection is
equivalent to a random rotation of an orthogonal projection onto any fixed k-dimensional subspace.
Hence, T can be realized as U∗PkU , where U is uniformly random in O(n), and Pk is the orthogonal
projection onto Rk. Moreover, for any fixed x ∈ Sn−1, Ux is uniformly random on Sn−1. Therefore,

E‖Tx‖22 = E‖U∗PkUx‖22 = E‖Pkz‖22 = E〈z, Pkz〉 = tr(Pk) = k.

This recovers the fixed vector step in the Gaussian proof above. The rest of the proof will be very
similar to the Gaussian proof. That is, we apply the functional form of the concentration result on
the sphere to the 1-Lipschitz function f : Sn−1 → R defined by f(x) = ‖Tx‖2, and then take union
bound over all x := u− v. We leave the details to the reader.
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3. Dvoretzky Theorem

3.1. Introduction. In the effort to understand the geometry of Banach spaces, it was noticed
that not every Banach space has Hilbert subspaces (up to isomorphism). In particular, any sub-
space of `p has a further subspace isomorphic to `p, so `p has no Hilbert subspaces for p 6= 2, as
every subspace of a Hilbert space is Hilbert.

Grothendieck’s problem then asks, does every infinite dimensional Banach space have a finite di-
mensional subspace whose distance from a Hilbert space is at most of constant order, and whose
dimension can be arbitrarily large?

In the early 1960’s, Dvoretzky gave a positive answer to this question.

Theorem 3.1 (Dvoretzky’s theorem). Let X be an n-dimensional Banach space. Given any
ε > 0, there exists a subspace E of X of dimension k = k(n, ε) → ∞ as n → ∞ such that
d(E, `k2) ≤ 1 + ε.

Remarks. We will see in the proof that k can be as large as C(ε) log n. Moreover, we will show
that this is optimal for X = `n∞.

One can interpret Dvoretzky’s theorem geometrically as follows:

Theorem 3.2 (Geometric version of Dvoretzky’s theorem). Let K be a symmetric convex body
in Rn. Given any ε > 0, there exists a section K ∩ E of K by a subspace E of Rn of dimension
k = k(n, ε)→∞ as n→∞ such that E ⊆ K ⊆ (1 + ε)E for some ellipsoid E.

Remarks. One can also insist that E is a round ball. See Lemma 14.4.1 in [14].

By using the duality between sections and projections (See the Preliminaries part of this course),
we get a dual version of the Dvoretzky’s theorem. This is obtained by interpreting the above
theorem in the dual space.

Theorem 3.3 (Dual version of Dvoretzky’s theorem). Let X be an n-dimensional Banach space.
Given any ε > 0, there exists a quotient space X/F of dimension k = k(n, ε)→∞ as n→∞ such
that d(X/F, `k2) ≤ 1 + ε.

The rest of this section will be organized as follows. We will first prove an intermediate result
called the General Dvoretzky Theorem. It is a direct result of the concentration of measure on
the sphere. This result gives the critical dimension of an almost Euclidean subspace in terms
of the “average norm,” the average value of the norm over the unit sphere. This is an intrinsic
geometric attribute of the given normed space. Then, we will estimate the average norm in `np ,
and apply this General Dvoretzky Theorem to obtain some results regarding Euclidean subspaces
of `np . In particular, we will show that an n-dimensional cube has Euclidean sections of dimension
up to c log n. To show that a general finite dimensional normed space admits an almost Euclidean
subspace of large dimesion, all left to do is show that the average norm cannot be too small. To this
end, we introduce the Dvoretzky-Rogers Lemma, which allows us to get a cube section of dimension
up to n/2. Finally, by using the known result for `n∞, we will obtain Dvoretzky Theorem.

3.2. General Dvoretzky Theorem. In our first attempt to prove Dvoretzky’s theorem, we
will introduce an extra parameter called the “average norm” in the expression of the subspace
dimension. This becomes very natural when we apply the concentration of measure on the sphere.

Without loss of generality, assume X = (Rn, ‖ · ‖) and ‖x‖ ≤ ‖x‖2 ∀x ∈ Rn. In other words,
we assume that the unit Euclidean ball is contained in the unit ball of X. Then, consider the
function f : Sn−1 → R defined by f(x) = ‖x‖. Then f is 1-Lipschitz by our assumptions. By
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concentration of measure on the sphere, f(x) concentrates closely around its average
∫
Sn−1 ‖x‖dσ.

This is what we refer to as the “average norm.” Let us give the statement of the General Dvoretzky
Theorem now.

Theorem 3.4 (General Dvoretzky’s theorem). Let X = (Rn, ‖ · ‖) be a normed space such that
‖x‖ ≤ ‖x‖2 for all x ∈ Rn. Consider the average norm M =

∫
Sn−1 ‖x‖dσ(x). Then there exists a

subspace E of dimension k = c(ε)nM2 such that

(1− ε)M‖x‖2 ≤ ‖x‖ ≤ (1 + ε)M‖x‖2
for all x ∈ Rn. Consequently,

d(E, `k2) ≤ 1 + ε

1− ε
.

The proof uses an important discretization argument. We will discretize the sphere using what
we call “ε-net,” and use this net to approximate the entire sphere. The advantage of discretization
by nets is that if we have good control over the size of the net, then we can use union bound to get
from a fixed vector case to the general case. We have seen this line of thoughts before in the proof
of Johnson-Lindenstrauss lemma.

Let us first pick up all the parts we will use later in the proof.

Definition 3.1. Let (M, d) be a metric space, and let ε > 0. A subset N of M is an ε-net if
for all x ∈M, there exists some y ∈ N such that d(x, y) ≤ ε.

Remarks. (1) Equivalently, N is an ε-net of M if M can be covered by ε-balls centered
at N .

(2) M is compact if and only if it has a finite ε-net.

Now we have the question: when M is compact, what is the minimal cardinality of an ε-net?
In particular, here we are interested in the case where M is the unit ball Bn

2 or the unit sphere
Sn−1.

Lemma 3.5 (cardinality of ε-net of the ball). Let ε > 0. Then there exists an ε-net N of Bn
2 of

cardinality

|N | ≤
(

1 +
2
ε

)n
.

Remarks. Just by comparing the volume, we can get a matching lower bound on the cardinality
of an ε-net, which is also exponential in the dimension. Hence, the cardinality of a good ε-net of
the unit ball is exponential in the dimension.

The proof of this lemma uses the correspondence between minimal covering and maximal pack-
ing.

Proof. Let N be a maximal ε-separated subset of Bn
2 . That is,

d(x, y) ≥ ε ∀x, y ∈ N .

We claim that N is an ε-net of Bn
2 . This can be easily justified by contradiction (otherwise, the

maximality of the separated subset would be contradicted). Note that the balls with centers in N
and radius ε/2 are disjoint. Moreover, all these balls are contained (1 + ε/2)Bn

2 . Hence, by volume
comparison, we have

|N | · vol
( ε

2
Bn

2

)
≤ vol

((
1 +

ε

2

)
Bn

2

)
.

This gives the desired upper bound on |N |.
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Remarks. The same argument works for any unit ball K (instead of Bn
2 ) covered by its

homothetic copy εK.

Exercise 6. Show that the same result holds for the unit sphere Sn−1.

Next, we want to approximate the operator norm using only the vectors in the net.

Lemma 3.6 (Computing operator norms on nets). Let T : X → Y be a linear operator between
normed spaces X and Y . Let N be a δ-net of the “sphere” SX := {x ∈ X : ‖x‖ = 1}. Then,

‖T‖ ≤ 1
1− δ

sup
x∈N
‖Tx‖.

Proof. For every y ∈ SX , there exist x ∈ N , 0 ≤ ρ ≤ δ and u ∈ SX such that y = x + δu.
Then,

‖T‖ = sup
y∈SX

‖Ty‖

≤ sup
x∈N
‖Tx‖+ ρ sup

u∈SX
‖Tu‖

≤ sup
x∈N
‖Tx‖+ δ‖T‖.

The lemma easily follows.

As a corollary of the lemma, we can also approximate infy∈SX ‖Ty‖ using nets:

(6) inf
y∈SX

‖Ty‖ ≥ inf
x∈N
‖Tx‖ − δ‖T‖.

Remarks. Since ‖T−1‖ = 1/ infx∈SX ‖Tx‖, we see that nets are useful when we try to bound
the condition number of T (which is defined as ‖T‖ · ‖T−1‖).

The next corollary shows that if we get good control of vector norms on a net of the unit sphere,
then we also have good control of vector norms over the entire unit sphere.

Corollary 3.7 (From nets to the sphere). Let ‖·‖ be a norm on Rn, and let N be a δ-net of the
unit sphere Sn−1. Suppose that for some 0 < ε < 1 and some M > 0, (1− ε)M ≤ ‖x‖ ≤ (1 + ε)M
for all x ∈ N . Then,

(1− ε− 2δ)M ≤ ‖x‖ ≤
(

1 + ε

1− δ

)
M

We leave it to the reader to work out the details of the proof. (Hint: The right hand side follows
from Lemma 3.6, where we take T to be the identity operator from (Rn, ‖ · ‖2) to (Rn, ‖ · ‖). For
the left hand side, use (6).)

Exercise 7. We see that the upper bound is multiplicative while the lower bound is additive.
Why can’t we get a multiplicative lower bound such as c(δ) · (1− ε)M?

Now we are ready to assemble all the parts in the proof of the General Dvoretzky Theorem.

Proof of General Dvoretzky Theorem. The proof will be completed in three steps.
Step 1: Control of a fixed vector norm by concentration.
The function f : Sn−1 → R defined by f(x) = ‖x‖ is 1-Lipschitz by the assumption that ‖x‖ ≤ ‖x‖2.
By the functional concentration of measure on Sn−1, we have

σ (|‖x‖ −M | > t) ≤ 2 exp
(
−nt

2

2

)
,
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where M = MX =
∫
Sn−1 ‖x‖dσ(x) is the average norm over the unit sphere. Choose t = εM to get

σ (|‖x‖ −M | > εM) ≤ 2 exp
(
−nM

2ε2

2

)
.

In other words, the two sided estimate (1 − ε)M ≤ ‖x‖ ≤ (1 + ε)M holds for a random point
uniformly distributed over Sn−1 with probability at least 1 − 2 exp

(
−nM2ε2/2

)
. Step 2: Union

bound over a δ-net.
Let N be a δ-net of Sk−1 with cardinality

|N | ≤
(

1 +
2
δ

)k
≤
(

3
δ

)k
.

Let U ∈ O(n) be uniformly random. Then for any fixed x ∈ Sn−1, Ux is uniformly random on the
unit sphere Sn−1. In particular, Ux is uniformly random for any x ∈ N . Step 1 gives that

(1− ε)M ≤ ‖Ux‖ ≤ (1 + ε)M

with probability at least 1− 2 exp
(
−nM2ε2/2

)
. Take union bound over N , and we obtain

(1− ε)M ≤ ‖Ux‖ ≤ (1 + ε)M for all x ∈ N
with probability at least 1 − |N | · 2 exp

(
−nM2ε2/2

)
. By the bound of N , this probability ≥

1− (3/δ)k · 2 exp
(
−nM2ε2/2

)
. This is at least 1/2 provided that δ = ε and

(7) k =
cε2

log(3/ε)
nM2 = c(ε)nM2.

Step 3: Approximation of the sphere by the δ-net.
Take the subspace E to be the image U(Rk) (so E is a random subspace). It is easy to check that
U(N ) is an ε-net of Sn−1 ∩ E (recall that δ = ε is our choice from Step 2). By Cor 3.7,

(1− 3ε)M ≤ ‖z‖ ≤ 1 + ε

1− ε
M for all z ∈ Sn−1 ∩ E.

Thus,

d(E, `k2) ≤ 1 + ε

(1− ε)(1− 3ε)
≤ 1 + 10ε

for our choice of k as in (7). This finishes the proof of the general Dvoretzky theorem.

Remarks. (1) Later we will show that

M ≥
√

log n
n

for any symmetric convex body so that k ∼ log n.
(2) Notice that if M ≤ 1/

√
n, then the theorem is meaningless because k would be a constant.

Thanks to John’s theorem, we need not worry about this. By John’s theorem, we always
have

1√
n
‖x‖2 ≤ ‖x‖ ≤ ‖x‖2

, so that M ≥ 1/
√
n.

(3) Dvoretzky’s theorem actually holds for “most” subspaces E in the sense that, if E is
random from Gn,k, then the theorem holds with probability at least 1− exp (−c(ε)k).

(4) The optimal dependence on ε is still open. The proof provides the dependence

c(ε) ∼ ε2

log
(

1
ε

) .
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(5) The ”average norm” can actually be replaced by any p-th moment of the norm
(∫
Sn−1 ‖x‖pdσ(x)

)1/p.
(6) If we slightly relax the assumption to ‖x‖ ≤ b‖x‖2 for all x ∈ Rn, then Dvoretzk’s theorem

holds with

k ≤ c(ε)n
(
M

b

)k
.

(7) Given ε > 0, the best k-value is called the Dvoretzky dimension of the space X, denoted
by k(X). It is the dimension of the largest Euclidean subspace that is (1 + ε)-close to a
subspace of X.

Exercise 8. We can also obtain Dvoretzky’s theorem by working with Gauss space instead
of the unit sphere. Consider `X :=

(∫
Rn ‖x‖

2dγn(x)
)1/2 =

(
E‖g‖2

)1/2, where g is the standard
Gaussian vector in Rn. Prove that

`X =
√
n

(∫
Sn−1

‖x‖2dσ(x)
)1/2

∼
√
nMX .

In fact, show that we can take `X = (E‖g‖p)1/p for any p > 1, since
(
E‖g‖2

)1/2 ∼ (E‖g‖p)1/p
for any p > 1.

Corollary 3.8 (General Dvoretzky Theorem: Gaussian formulation). Let X = (Rn, ‖ · ‖) be
a normed space such that ‖x‖ ≤ b‖x‖2 for some b > 0 and for all x ∈ Rn. Let `X =

(
E‖g‖2

)1/2,
where g is the standard Gaussian vector in Rn. Then there exists a subspace E of dimension
k = c(ε) (`X/b)

2 such that

(1− ε)`X‖x‖2 ≤ ‖x‖ ≤ (1 + ε)`X‖x‖2
for all x ∈ Rn.

3.3. Euclidean subspaces of `np . As we mentioned earlier, to get from General Dvoretzky
Theorem to Dvoretzky Theorem, we only need to estimate the average norm. In this section, we
will compute the average norm in `np spaces and find the corresponding Dvoretzky dimensions. Note
that we use the Gaussian formulation (Corollary 3.8) for computational purposes. We start from
`n1 , a widely used structure in optimization problems.

Corollary 3.9 (Almost Euclidean subspace of `n1 ). There exists an almost Euclidean subspace
of `n1 of dimension proportional to n. To be precise, there exists a subspace E of Rn of dimension
k ≥ c(ε)n such that

(1− ε)‖x‖2 ≤
‖x‖1√
n
≤ (1 + ε)‖x‖2 for all x ∈ E.

Proof. Note that
‖x‖1 ≤

√
n‖x‖2 for all x ∈ Rn,

so b =
√
n in Corollary 3.8. Moreover,

`X = E‖g‖1 =
n∑
i=1

E|gi| =
√
π

2
n.

Hence, the Dvoretzky dimension for `n1 is

k(`n1 ) = c(ε)
(
`X
b

)2

= c(ε)n.
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By duality, we immediately get the following:

Corollary 3.10 (Almost Euclidean quotient space of `n∞). There exists an almost Euclidean
quotient space of `n∞ of dimension proportional to n. Equivalently, there exists an orthogonal
projection of the unit cube [−1, 1]n onto a k-dimensional subspace which is (1 + ε)-close to the
Euclidean ball of radius

√
n, where k = c(ε)n.

Exercise 9. Show that k(`np ) = cn for any 1 ≤ p ≤ 2.

Next, we will find the Dvoretzky dimension of `nq for q ≥ 2.

Corollary 3.11 (Almost Euclidean subspaces of `nq , q ≥ 2). There exists an almost Euclidean
subspace of `nq (q ≥ 2) of dimension k = c(ε)n2/q.

Proof. Note that

`X =
(
E‖g‖qq

)1/q =

(
n∑
i=1

E|gi|q
)1/q

= mqn
1/q,

where mq = (E|g1|q)1/q is the qth moment of the standard Gaussian random variable, which is
about

√
q. Hence, by Corollary 3.8,

k(X) = c(ε)q · n2/q.

As a summary of Euclidean subspaces of `np spaces, we have the following.

Corollary 3.12 (Almost Euclidean Subspaces of `np ). Let X be a finite dimensional normed
space. Denote by k(X) the dimension of the largest Euclidean space that is (1 + ε)-isomorphic to a
subspace of X. Then,

• k(`np ) ≥ c(ε)n, 1 ≤ p ≤ 2
• k(`nq ) ≥ c(ε)q · n2/q, 2 ≤ q <∞.

Remarks. Both inequalities are sharp. See Section 5.4 in [21].

Next, we will obtain some results on the Dvoretzky dimension when we pair up a normed space
with its dual space.

Proposition 3.13 (MM∗−estimate). Let X = (Rn, ‖·‖) be a finite dimensional normed space,
and X∗ = (Rn, ‖ · ‖∗) be the dual space of X. Let M = MX =

∫
Sn−1 ‖x‖dσ(x) and M∗ = MX∗.

Then MM∗ ≥ 1.

Proof. By Hölder’s inequality,

(MM∗)1/2 =
(∫

Sn−1

‖x‖dσ
)1/2(∫

Sn−1

‖x‖∗dσ
)1/2

≥
∫
Sn−1

(‖x‖‖x‖∗)1/2 dσ ≥
∫
Xn−1

〈x, x〉1/2dσ = 1.

Here, we have used the fact that ‖x‖∗ can be recognized as the operator norm of the linear functional
f(z) = 〈z, x〉 for all z ∈ Rn.

Corollary 3.14. Let k(X) and k(X∗) denote the Dvoretzky dimensions of X and its dual
space X∗, respectively. Then

k(X)k(X∗) ≥ cn2

d(X, `n2 )2
.
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Proof. Assume that
a‖x‖2 ≤ ‖x‖ ≤ b‖x‖2

for some a, b > 0 such that

d(X, `n2 ) =
b

a
.

Then, by duality,
1
b
‖x‖2 ≤ ‖x‖∗ ≤

1
a
‖x‖2.

By General Dvoretzky Theorem,

k(X) ≥ c(ε)n
(
M

b

)2

and

k(X∗) ≥ c(ε)n
(
M∗

1/a

)2

.

Hence,

k(X)k(X∗) ≥ c(ε)n2

(
MM∗

b/a

)2

≥ cn2

d(X, `n2 )2

by Proposition 3.13.

Remarks. By John’s theorem, we always have d(X, `n2 ) ≤
√
n. Hence,

k(X)k(X∗) ≥ cn
for some absolute constant c > 0. Consequently, for any finite dimensional normed space X, either

k(X) ≥ c
√
n

or
k(X∗) ≥ c

√
n.

Moreover, this conclusion is sharp: there exists an n-dimensional Banach space X such that both
k(X) and k(X∗) are no less than c

√
n. See Section 3 in [6].

Finally, let us examine the Dvoretzky dimension of `n∞. This will show the sharpness of Dvoret-
zky’s Theorem. As a first step, we give a lower bound on k(`n∞).

Proposition 3.15. k(`n∞) ≥ c log n, where c > 0 is an absolute constant.

Proof. Note that
‖x‖∞ ≤ ‖x‖2

for all x ∈ R. So b = 1 in Corollary 3.8. We claim that

(8) `X = E max
i≤n
|gi| ≥ c

√
log n.

To show that the expectation is large, it suffices to show the quantity is small only on a small
portion of the space. Note that

Pr(max |gi| ≤ t) = Pr(|gi| ≤ t for all i)

= Pr(|g1| ≤ t)n

≤

[
1−

√
2
π

e−t
2/2

t

]n
.

By taking t = c′
√

log n we may obtain (8). Then, apply Corollary 3.8, and we get the desired lower
bound on k(`n∞).
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Let us close this section with a summary for the Dvoretzky dimensions of `np for all 1 ≤ p ≤ ∞.
• k(`np ) ∼ n if 1 ≤ p ≤ 2;
• k(`nq ) ∼ q · n2/q if 2 ≤ q <∞;
• k(`∞) ∼ log n.

Remarks. We have shown that k(`n∞) ≥ c log n. We will establish the other direction k(`n∞) ≤
c log n in the next section.

3.4. Many faces of symmetric polytopes. In this section, we will show that for a convex
symmetric polytope to well-approximate the Euclidean ball, it must have exponentially (in dimen-
sion) many faces. As a result, any symmetric convex polytope must have either ∼ e

√
n vertices or

∼ esqrtn faces.
We start with two classic embedding theorems.

Proposition 3.16 (Embedding into `∞). (1) Every separable Banach space X is isomet-
ric to a subspace of `∞(possibly infinite dimensional).

(2) Ever Banach space X of dimension k ∼ c(ε) log n is (1 + ε)-isomorphic to a subspace of
`n∞.

Proof. (1) We need to find a linear isometric embedding T : X → `∞.
Let SX = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X. Since X is separable, there
exists a countable, dense subset (xi)∞i=1 of SX . By Hahn-Banach theorem, there exist
(ui)∞i=1 in SX∗ such that ui(xi) = 1 for all i.
Define Tx =

∑∞
i=1〈x, ui〉ei, where (ei) is the standard basis vectors in `∞. Then, for every

x ∈ SX , one can easily check that

‖Tx‖∞ = sup
i
|〈x, ui〉| = sup

i
|〈xk, ui〉 = 1,

where xk approximates x. Hence, T is an isometry, as desired.
(2) The proof is similar to the first. Here, we take

N = {xi, i = 1, . . . , n}

to be an ε-net of SX of cardinality

|N | = n ≤
(

3
ε

)k
.

We leave the details to the reader.

Remarks. It is well-known that every k-dimensional convex symmetric polytope with 2n faces
is equivalent to a k-dimensional section of an n-dimensional cube. Hence, the second part of the
proposition is equivalent to the following:

Every symmetric convex body of dimension k = c(ε) log n is (1 + ε)-isomorphic to a symmetric
polytope with 2n faces.

A key ingredient in proving Dvoretzky’s theorem is to reduce the general problem to the special
case of the cube (i.e. `n∞). We have obtained a lower bound on the Dvoretzky dimension in
Proposition 3.15. Now we will derive a matching upper bound in order to conclude that k(`n∞) =
c log n.

Proposition 3.17. k(`n∞) ≤ c log n.
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Proof. We want to find the right dimension k so that a k-section of the n-cube is (1 + ε)-
isomorphic to the k-dimensional Euclidean ball. Assume that P is a convex symmetric polytope in
Rk such that

Bk
2 ⊆ P ⊆ CBk

2

for some constant C > 0. There exist ui ∈ Rk (normal vectors to the faces) such that

P = {x ∈ Rk : |〈x, ui〉| ≤ 1, i = 1, · · · , n}.

Since Bk
2 ⊆ P , we have

‖ui‖2 ≤ 1

for every i. On the other hand, as P ⊆ CBk
2 , there exists some i such that

|〈x, ui〉| ≥ 1

for every ‖x‖2 ≥ C. Equivalently, for every x ∈ Sk−1, there exists i such that

|〈x, ui〉| ≥
1
C
.

Without loss of generality, assume ‖ui‖2 = 1 for all i. Consider the 1/C-caps

Ci =
{
x ∈ Sk−1 : 〈x, ui〉 ≥

1
C

}
.

Figure 3. Many Faces of Symmetric Polytopes

Note that the unit sphere can be covered by n such caps, each corresponding to a face of the
polytope P :

Sk−1 ⊆
⋃
i

Ci.

It is not hard to check that
σ(Ci) ≤ eck,

where c depends on C only. By comparing the volume, we will need n ≥ eck caps, and equivalently,
this many faces.
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Remarks. Consequently, the Euclidean ball Bk
2 can be well approximated by a convex sym-

metric polytope with eck faces and no fewer. If we combine this fact and Corollary 3.14, we obtain
the following result, which says that, given any n-dimensional convex symmetric polytope, either
itself or its polar polytope has many faces.

Corollary 3.18 (Many faces of convex symmetric polytopes; [6]). Let P be a convex symmetric
polytope in Rn. Suppose that P has v vertices and f faces (that is, (n−1)-dimensional faces). Then
there is an abosolute constant c > 0 such that

log v · log f ≥ cn.

Proof. By the duality between vertices and faces, we know that the polar polytope P ◦ has v
faces and f vertices. By Proposition 3.17, we have that

k(P ) = k(`f∞) ≤ c log f,

and
k(P ◦) = k(`v∞) ≤ c log v.

Hence,
log f · log v ≥ ck(P )k(P ◦) ≥ cn.

3.5. Dvoretzky-Rogers Lemma. The last ingredient we need in the proof of Dvoretzky
Theorem is Dvoretzky-Rogers Lemma. It helps to reduce the general problem to the case of `n∞.
It tries to “squeeze” an arbitrary Banach space between a cube from the outside and a Euclidean
ball from the inside. In some sense, these two bodies are the two extremes in terms of Dvoretzky’s
dimension, `n2 being the best, and `n∞ the worst. Unfortunately, we cannot always ”squeeze” the
entire(meaning full-dimension) convex body like this. The factorization

`n2 → X → `n∞

with T : `n2 → X, S : X → `n∞ and ‖T‖ · ‖S‖ = O(1) does not always happen. See [27]. However,
if we replace X with some subspace, we do have such factorization. Moreover, the subspace can
have dimension up to n

2 . This is done in Dvoretzky-Rogers Lemma.

Lemma 3.19 (Dvoretzky-Rogers Lemma). Let X = (Rn, ‖ · ‖) be a normed space. Assume that
Bn

2 is the ellipsoid of maximum volume in the unit ball BX . Then there exists an orthonormal
system {ui : i = 1, · · · , n/2} in X such that

‖ui‖ ≥
1
4

for all i = 1, · · · , n/2.

Remarks. Note that ‖ui‖ ≥ 1/4 means that ui ∈ Sn−1 cannot be too “deep” inside K: the
deepest it can go is 1/4 of the radius of K along this direction. In other words, the boundary
point of K along the direction of ui has Euclidean length at most 4. Therefore, the conclusion of
Dvoretzky-Rogers lemma means that the section K ∩ span{ui, i = 1, . . . , n/2} must be contained
in the cube [−4u1, 4u1]× · · · × [−4un/2, 4un/2].

Proof. We will first construct the orthonormal system inductively. Let u1 ∈ Sn−1 be any
vector with the maximum norm in X. Clearly, ‖u1‖ = 1, meaning that it is a contact point of BX
and Bn

2 . Subsequently, for any k ≥ 2, let uk ∈ Sn−1 ∩ span{ui, i = 1, . . . , k − 1}⊥ be any vector
with the maximum norm in X. Hence,

1 = ‖u1‖ ≥ ‖u2‖ ≥ · · · ≥ ‖un‖.
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Figure 4. Dvoretzky-Rogers

The rest of the proof resembles the proof of John’s theorem. The idea is that if ‖ui‖ is too small
for some i, then ‖uj‖ would be too small for all j > i, which makes Bn

2 too “deep” inside BX in
the directions of uj for j > i. This would contradict the assumption that Bn

2 is the ellipsoid of
maximum volume: we could extend it in these directions and get an ellipsoid still contained in BX
but of larger volume.

Consider the following ellipsoid:

E =


n∑
j=1

ajuj :

∑
j≤n/2 a

2
j

a2
+

∑
j>n/2 a

2
j

b2
≤ 1

 ,

where a = 1/2 and b = 1/(2‖un/2‖). We claim that E ⊂ BX . Then, since Bn
2 has the maximal

volume as an ellipsoid contained in BX , we have

vol(E) = an/2bn/2 vol(Bn
2 ) ≤ vol(Bn

2 ).

This gives our desired lower bound on ‖ui‖’s by plugging in the prescribed values for a and b.
It remains to prove the claim that E ⊆ BX . Let

∑n
j=1 ajuj ∈ E . Then,∑

j≤n/2

ajuj ∈ Bn
2 ⊂ BX

and ∑
j>n/2

ajuj ∈ bBn
2 .

It follows that ∥∥∥ ∑
j≤n/2

ajuj

∥∥∥ ≤ a =
1
2

and ∥∥∥ ∑
j>n/2

ajuj

∥∥∥ ≤ b‖un/2‖,
since un/2 was chosen to maximize the norm in X in span{uj , j > 2/n} ∩ Sn−1. Then the claim
follows directly from the triangle inequality.
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3.6. Dvoretzky Theorem. Now we have all the ingredients in the proof of Dvoretzky The-
orem. Just for recap: First, we proved the General Dvoretzky Theorem. It gives the Dvoretzky
dimension of any n-dimensional Banach space in terms of an average norm:

k(X) = c(ε)n(MX/b)2,

or equivalently,
k(X) = c(ε)(`X/b)2,

where MX is the average norm over Sn−1, and `X is the expected norm of a standard Gaussian
vector. Then we showed that the Dvoretzky dimension of `n∞ is c(ε) log n. Later, we proved the
Dvoretzky-Rogers Lemma, which allows us to embed an n/2-dimensional subspace of X into `n∞.
Hence, we can transfer our knowledge about `n∞ to X. In this section, we will complete this transfer
and prove Dvoretzky Theorem. As we did before, it only remains to come up with the right estimate
on `X .

Lemma 3.20 (`X from Dvor-Rogers lemma). Let X = (Rn, ‖ · ‖) be a normed space. Assume
that Bn

2 is the ellipsoid of maximum volume in the unit ball BX . Then

`X ≥ c
√

log n,

where `X = E‖g‖.

Proof. Let E = span{ui : i ≤ n/2}, where uj ’s are from Dvoretzky-Rogers Lemma. Then,
since gi’s are identically distributed as εigi, where εi’s are independent ±1 equal probability
Bernoulli random variables, we have

`E = E‖
n/2∑
n=1

εigiui‖

≥ E max
1≤i≤n/2

‖giui‖(9)

≥ 1
4

E max
1≤i≤n/2

|gi|(10)

≥ c
√

log n.

Inequality (9) comes from conditioning on the gi’s and applications of Fubini and Jensen’s
inequality. Note that

E1,...,n/2

∥∥∥ n/2∑
i=1

εivi

∥∥∥ = E1E2,...,n/2

∥∥∥ n/2∑
i=1

εivi

∥∥∥
≥ E1

∥∥∥ε1v1 + E2,...,n/2

n/2∑
i=2

εivi

∥∥∥
= E1‖ε1v1‖ = ‖v1‖.

This works for any vi, so we get (9). The second inequality (10) is a result of Dvoretzky-Rogers
lemma. Hence, the proof is complete.

Now, Dvoretzky’s theorem is immediate. The theorem asserts that the Dvoretzky dimension of
an arbitrary n-dimensional normed space X is at least c(ε) log n.
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Proof of Theorem 3.2. By Lemma 3.20,

`X ≥ c
√

log n.

Then, General Dvoretzky’s theorem gives

k(X) ≥ c(ε)`2X ≥ c(ε) log n.

4. Volume Ratio Theorem

In Dvoretzky’s theorem, we see that every n-dimensional Banach space has an almost Euclidean
subspace of logarithmic dimension. There we sacrifice on the dimension in order to get the subspace
1 + ε-close to Euclidean for any prescribed value of ε. In this section, we will explore the other
direction of the same picture: what if we would like to sacrifice on the distance to Euclidean in
order to make the subspace almost full-dimension? This was first examined by Kashin in 1977,
then simplified and generalized by Szarek in 1979. We will present an exposition inspired by [20]
based on covering numbers.

4.1. Covering numbers.

Definition 4.1 (Covering number). LetK, D be two sets in Rn. The covering number N(K,D)
is the minimum number of traslates of D needed to cover K.

Note that covering number is closely related to the notion of an ε-net.

Example 4.1. N(K, εBn
2 ) = minimum cardinality of an ε-net of K in Euclidean metric.

Proposition 4.2 (Covering number estimate). Let K ⊂ Rn, and let D ⊂ Rn be a convex
symmetric set. Then

vol(K)
vol(D)

≤ N(K,D) ≤
vol(K + 1

2D)
vol(1

2D)
.

Proof. The lower bound follows directly from a volume comparison. K can be covered by
N(K,D) translates of D, so

vol(K) ≤ N(K,D) vol(D).

The upper bound can be obtained in a similar way to the estimate on the cardinality of ε-nets. See
the proof of Lemma 3.5.

As an immediate consequence, we can get an estimate on the covering number of a convex body
covered by its homothetic copies.

Corollary 4.3. For any symmetric convex set K ⊂ Rn and every ε > 0,(
1
ε

)n
≤ N(K, εK) ≤

(
2 +

1
ε

)n
.
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4.2. Volume ratio theorem via entropy: local version. As we mentioned in the introduc-
tion part of this section, we want the dimension of the subspace arbitrarily close to full dimension,
and find out how much we need to sacrifice on the “Euclideanness” of that subspace. It turns out
that our sacrifice depends on a geometric quantity of the space called the “volume ratio.”

Theorem 4.4 (Volume ratio theorem (VRT for short)). Let K be a convex symmetric body in
Rn. Suppose that Bn

2 ⊂ K. Define the volume ratio by

v(K) :=
(

vol(K)
vol(Bn

2 )

) 1
n

.

Then, for every δ ∈ (0, 1), there exists a subspace E of dimension (1− δ)n such that

diam(K ∩ E) ≤ (cv(K))
1
δ .

Equivalently,
Bn

2 ∩ E ⊆ K ∩ E ⊆ (cv(K))
1
δ Bn

2 ∩ E.

Remarks. (1) It is easy to see that the volume ratio is the same for all homothetic copies
of a convex body.

(2) It implies that the section K ∩ E is within distance (cv(K))
1
δ from Euclidean.

(3) Note that the conclusion only depends on the volume ratio v(K) and δ, not on the dimen-
sion n.

(4) The proof will show that VRT actually holds for a random subspace E ∈ Gn,(1−δ)n with
high probability (exponential in n).

(5) It is still open whether we can achieve a polynomial dependence on δ if K is first put in a
nice position. For example, is it true if K is in John’s position, meaning that the ellipsoid
of maximum volume is Bn

2 ? In general, this is not true: one can check that e will get
exponential dependence when K is an ellipsoid with a degenerated direction (i.e. K looks
like a “sausage”).

The following corollary is simply a re-interpretation of VRT.

Corollary 4.5 (Almost Euclidean subspaces of finite-dimensional normed spaces). Let X be
an n-dimensional Banach space. Consider the volume ratio

v(X) = inf
{

vol(BX)
vol(E)

: E ⊂ BX is an ellipsoid
}
.

Then, for every δ ∈ (0, 1), there exists a subspace E ⊂ X of dimension (1 − δ)n such that
d(E, `(1−δ)n2 ) ≤ (cv(X))

1
δ .

As we announced earlier, we will derive VRT from the view of covering numbers (sometimes
referred to as “entropy”). The following theorem on entropy is the main step toward VRT.

Theorem 4.6 (Entropy). Let K be a symmetric convex body in Rn. Let v be the number such
that

vn = N(K,Bn
2 ).

Then for any δ ∈ (0, 1), there exists a subspace E of dimension (1− δ)n such that

diam(K ∩ E) ≤ (cv)
1
δ .

Remarks. The proof will show that, in fact, a random subspace E satisfies this with high
probability.

First, let us see how this theorem immediately implies V.R.T.

38



Proof from entropy to VRT. By Theorem 4.6, it suffices to show v ≤ Cv(K). That is,

N(K,Bn
2 ) ≤ vol(CK)

vol(Bn
2 )
.

This follows easily from Proposition 4.2and the fact that Bn
2 ⊂ K.

N(K,Bn
2 ) ≤

vol(K + 1
2B

n
2 )

vol(1
2B

n
2 )

≤
vol(3

2K)
vol(1

2B
n
2 )

=
3n vol(K)
vol(Bn

2 )
= (3v(K))n .

In other words, we have v ≤ 3v(K).

Remarks. The other side of Proposition 4.2 gives that v(K) ≤ v. So we actually have

v(K) ≤ v ≤ 3v(K).

Hence, the two notions v and v(K) are equivalent.

Before we go on to the proof of the entropy theorem, let us first picture the ideas. From the
volume distribution in convex bodies (which decays exponentially away from the center), we can
safely think of a high dimensional convex body as a ball with a few “tentacles” – points in the
convex body that have large Euclidean norm. See Figure 5. The conclusion of the entropy theorem
guarantees that there is a subspace that does not intersect any of these tentacles. In fact, by the
remark following Theorem 4.6, most subspaces avoid these tentacles.

Figure 5. Central Ball and Tentacles

Here is the plan of the proof: First, we cover the tantacles by “not too many” unit balls, using
the assumption that N(K,Bn

2 ) = vn; then we show that a random subspace E is disjoint from
any given covering ball with high probability; lastly, we use union bound over all covering balls to
get that a random subspace E is disjoint from all the covering balls with positive (in fact, high)
probability.

We have everything ready to realize this plan except the second step. Informally, it says that
a random subspace is, with high probability, not too close to a fixed point.
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Proposition 4.7 (Distance of a Random Subspace to a Fixed Point). Let E ∈ Gn,n−k be a
random subspace (codimE = k). Let x ∈ Sk−1 be arbitrary (but fixed). Then,

(1)
(
E dist(x,E)2

) 1
2 =

√
k
n ;

(2) Pr
(

dist(x,E) ≤ ε
√

k
n

)
≤ (cε)k for any ε > 0.

We will present the proof of the first part, and leave the second as an exercise.

Proof. We will use an equivalent model: by the uniqueness of Haar measure, consider E as a
fixed subspace, say E = Rn−k and x ∈ Sn−1 a random uniform vector.

(1) Let x = (xi)ni=1 ∈ Sn−1. Note that all coordinates of x are identically distributed (but not
independent). Then,

1 = ‖x‖22 = E‖x‖22 = nEx2
1,

so that Ex2
1 = 1

n . Hence,

E dist(x,E) = E‖Pkx‖x = E
k∑
i=1

x2
j = kEx2

1 =
k

n
,

where Pk is the orthogonal projection onto the k-dimensional subspace E⊥.
(2) Consider the k-dimensional ”band” around the (n−k)-dimensional equator Sn−k on Sn−1:

Pr
(

dist(x,E) ≤ ε
√
k

n

)
= σ

{
dist(x,Rn−k < ε

√
k

n

}
.

Exercise 10. Show that σ(A) ∼ (cε)k, where

A = {x ∈ Sn−1 : dist(x,E) ≤ ε
√
k

n
}.

(Hint: Use polar coordinate.) For sharp estimate of σ(A), see [1].

Now, we are ready to realize our plan for the proof of VRT.

Proof of VRT. Let ε > 0 be fixed. Later, we will choose ε such that

1
ε

= (cv)
1
δ .

We want to show

K ∩ E ⊂ 1
ε
Bn

2 .

Equivalently,

K ∩ 1
ε
Sn−1 ∩ E = ∅.

We will prove this in three steps.
Step 1: Discretize tentacles.
Let N be a 1-net of K ∩ 1

εS
n−1 in the Euclidean metric. Then,

|N | ≤ N(K,Bn
2 ) = vn.
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Step 2: Fixed vector.
Given any x ∈ K ∩ 1

εS
n−1, we show that a random subspace E is far from x with high probability.

By Prop 4.7

Pr
(

(x+Bn
2 ) ∩ E 6= ∅

)
= Pr

(
dist(x,E) ≤ 1

)
= Pr

(
dist

(
x

‖x‖2
, E

)
< ε
)

≤
(
Cε

√
n

k

)k
=
(Cε√

δ

)δn
.

Step 3: Union bound.

Pr
(
∀x ∈ N , (x+Bn

2 ) ∩ E = ∅
)
≥ 1− |N |

(
Cε√
δ

)δn
≥ 1−

[
v

(
Cε√
δ

)δ]n
≥ 1− e−n,

provided that v
(
Cε/
√
δ
)δ
≤ 1/δ. Choose ε = 1/(Cv)1/δ, and this completes the proof.

Example 4.8 (Euclidean sections of `n1 ). First, we show that `n1 has uniformly bounded volume
ratio. To this end, we need to compute vol(Bn

1 ) and vol(Bn
2 ).

vol(Bn
1 ) = 2n, vol(Tn) =

2n

n!
,

where Tn denotes the standard n-dimensional simplex conv{0, e1, . . . , en}. Next,

vol(Bn
2 ) ≥ vol

(
1√
n
Bn
∞

)
=
(

2√
n

)n
.

Let K =
√
nBn

1 so that Bn
2 is the ellipsoid of maximum volume. Then

vol(K) =
2nnn/2

n!
∼
(

c√
n

)n
,

and thus

v(K) =
(

vol(K)
vol(Bn

2

)
)1/n

≤ constant.

Hence, by VRT, for any 0 < δ < 1, there exists a subspace E of `n1 whose dimension is (1 − δ)n
such that

d
(
E, `

(1−δ)n
2

)
≤ constant.

This was observed by Kashin in 1977.

Corollary 4.9 (Kashin). For every δ ∈ (0, 1), a random subspace E ⊂ Rn of codimension δn
satisfies the following with probability at least 1− e−n:

Bn
2 ∩ E ⊂

√
nBn

1 ∩ E ⊂ C
1
δBn

2 ∩ E.

Remarks. (1) Equivalently,

C−
1
δ ‖x‖2 ≤

‖x‖1√
n
≤ ‖x‖2

for all x ∈ E.
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(2) Similar result holds for all `np , 1 ≤ p ≤ 2.
(3) We only used the bounded volume ratio property of `n1 to get Kashin’s result (geometry of

`n1 is never used), so the same result holds for any space with good volume ratio property.

Another important consequence of VRT is the following splitting theorem due to Kashin.

Corollary 4.10 (Kashin’s Splitting). There exists an orthogonal decomposition Rn = E1⊕E2

into n/2-dimensional subspaces such that both E1 and E2, as subspaces of `n1 , are within constant
distance from Euclidean.

Sketch of proof. Note that if a subspace E of dimension n
2 is uniformly distributed over the

Grassmannian Gn,n/2, then so is its orthogonal complement E⊥. Hence, both E and E⊥ satisfies
VRT with high probability, meaning that they are simultaneously almost Euclidean with high
probability.

4.3. Volume ratio theorem: global version. There are two branches of study in Banach
spaces: local theory and global theory. “Local” usually refers to sections (subspaces) or projections
(quotients), while “global” usually refers to the study of the entire space or intersections of different
spaces. We have just presented the VRT in its local version. In this section, we will establish the
global version.

Theorem 4.11 (Global VRT). Let K be a symmetric convex body in Rn. Suppose that Bn
2 ⊂ K.

Let v(K) be the volume ratio. Then there exists U ∈ O(n) such that

diam(K ∩ UK) ≤ (c · v(K))
1
2 .

Equivalently,
max {‖x‖K , ‖x‖UK} ≥ (c · v(K))−

1
2 ‖x‖2.

Proof. (See Chapter 6 in [24]) Consider a Kashin’s splitting Rn = E1 ⊕ E2 with

dimE1 = dimE2 =
n

2
such that VRT holds for both E1 and E2. Then,

‖x‖K ≥ (c · v(K))−
1
2 for all x ∈ E1 ∪ E2.

Let P1 and P2 be orthogonal projections onto E1 and E2, respectively. Let U = P1−P2. It is easy
to see that U ∈ O(n). Then,

max {‖x‖K , ‖Ux‖K} ≥
1
2

(‖x‖K + ‖x‖UK)

=
1
2

(‖P1x+ P2x‖K + ‖P1x− P2x‖K)

≥ max {‖P1x‖K , ‖P2x‖K} (by triangle inequality)

≥ (cv(K))−
1
2 max {‖P1x‖2, ‖P2x‖2}

≥ cv(K)−
1
2

√
‖P1x‖22 + ‖P2x‖22 = cv(K)−

1
2 ‖x‖2.

Remarks. Note that max {‖x‖K , ‖x‖UK} = ‖x‖K∩UK .
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CHAPTER 4

Metric Entropy and Applications

1. Diameters of Projections of Convex Sets

Let K be a convex body in Rn, and let P be a random projection onto a subspace of dimension
k, that is, a projection onto a random subspace of dimension k. How does this projection change
the shape of K? It is easy to see that a projection only catches the ”extremal points” of K. Hence,
a quantity affected by projections is the diameter of the body. In this section, we will examine how
diam(PK) looks.

Figure 1. Diameters under Projections

Example 1.1. (1) K = [−1/2, 1/2]. Then, by the estimate on the distance from a random
vector to a random subspace,

diam(PK) ∼
√
k

n
∼
√
k

n
diam(K).

(2) K = Bn
2 . As any projection of a Euclidean ball is still Euclidean and does not change the

diameter,
diam(PK) = diam(K).

¿From these two examples, we see two kinds of behavior of the diameter under projections:
it “shrinks” by a factor of

√
n/k in the first example, while it does not “shrink” at all in the

second example. Surprisingly, those are essentially the only two possible types of projection effect
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on the diameter of a high-dimensional convex body. In order to explain this phenomenon, we first
introduce the following notion called the “mean width” of a convex body.

Definition 1.1. The mean width M∗(K) of a symmetric convex body K in Rn is the expected
value of the dual norm over the unit sphere (with respect to the normalized Haar measure). That
is,

M∗(K) =
∫
Sn−1

‖x‖K∗dσ(x) =
∫
sn−1

max
y∈K
〈x, y〉dσ(x).

Remarks. (1) We can think of he mean width as the average ”thickness” measured from
the center of the convex body.

(2) The mean width of a symmetric convex body is the mean norm of its polar:

M∗(K) = M(K◦).

(3) Recall that

M(K) ∼ `(K)√
n
,

where `(K) = E‖g‖K , and g is a standard Gaussian vector in Rn. Hence,

M∗(K) = M(K◦) =
`(K◦)√

n
=
`∗(K)√

n
,

where `∗(K) = E‖g‖K◦ = E maxy∈K〈g, y〉. The duality often makes the computation
easier. We will see this in the following examples.

Example 1.2 (Mean width of Bn
p ). (1) Mean width of the cube.

M∗(Bn
∞) = M(Bn

1 ) ∼ `(Bn
1 )√
n
∼ n√

n
=
√
n ∼ diam(Bn

∞).

(2) Mean width of the crosspolytope.

M∗(Bn
1 ) = M(Bn

∞) ∼ `(Bn
∞)√
n
∼
√

log n
n

.

Hence, the mean width of Bn
1 is only logarithmically larger than the diameter of the

inscribed ball, whereas the mean width of the cube is polynomially larger (
√
n) than its

inscribed ball (as shown in the first example) . This is due to the contribution of very few
vertices (2n vertices instead of 2n vertices as in the cube).

(3) For any 1 < p ≤ ∞, let q be such that 1/p+ 1/q = 1. Then,

M∗(Bn
p ) = M(Bn

q ) ∼
Bn
q√
n
∼ n

1
q
− 1

2 = n
1
2
− 1
p

∼
{

diam(inscribed ball), 1 < p ≤ 2;
diam(circumscribed ball), p ≥ 2.

Now, if we apply the General Dvoretzky Theorem in the dual space, we get the following:

Theorem 1.3 (Dual Version of General Dvoretzky Theorem). Let K be a (symmetric) convex
body in Rn with diam(K) ≤ 1. Let

k∗ = c(ε)M∗(K)2n.
Then a random projection P in Rn onto a k∗-dimensional subspace satisfies the following with
exponentially high probability:

(1− ε)M∗(K) · P (Bn
2 ) ⊆ P (K) ⊆ (1 + ε)M∗(K) · P (Bn

2 ).
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Hence, the projection of K onto a k∗-dimensional subspace looks like a Euclidean ball of radius
M∗(K). Since the Euclidean ball is preserved by projections, any further projection will not change
the diameter: PK will remain Euclidean for projections P onto subspaces of dimension k ≤ k∗.
But what happens for projections onto subspaces of dimension k > k∗? It turns out that diam(PK)
will shrink by

√
n/k, just as in the case K = [−1/2, 1/2].

Theorem 1.4 (Diameters under Random Projections, [9]). Let K be a symmetric convex body
in Rn, and let P be a projection in Rn onto a random subspace of dimension k. Then, with
probability at least 1− e−k,

diam(PK) ≤ C
(
M∗(K) +

√
k

n
diam(K)

)
.

Proof. Without loss of generality, we may assume that diam(K) = 2, i.e. K ⊆ Bn
2 . Let

E ∈ Gn,k be a random subspace. Then, E can be viewed as the image of Rk under a random
orthogonal transformation U ∈ O(n). Therefore, the orthogonal projection P onto E can be viewed
as the first k rows of U , and let us call it Q. Then diam(PK) is distributed identically with
diam(QK). Note that

diam(QK) = 2 max
x∈K
‖Qx‖2,

and that for any u ∈ Rk,

‖u‖2 = max
z∈Sk−1

〈u, z〉 ≤ 2 max
z∈N
〈u, z〉,

where N is a 1
2 -net of Sk−1. Choose N such that |N | ≤ eck.Then we have

diam(QK) ≤ 4 max
z∈N

max
x∈K
〈Qx, z〉.

Note that for fixed z and x,

〈Qx, z〉 = 〈x,Q∗z〉 = 〈x, u〉,

where u is uniform random on Sn−1. This is because the adjoint Q∗ is a random embedding of Rk

into Rn, which puts any fixed z ∈ Sk−1 uniformly distributed on Sn−1. Thus,

E max
x∈K
〈x, u〉 = M∗(K).

It is easy to see the function u 7→ maxx∈K〈x, u〉 is 1-Lipschitz on Sn−1. By concentration of measure
on the sphere,

Pr
(

max
x∈K
〈x, u〉 ≥M∗(K) + t

)
≤ e−t2n/2 ∀t > 0.

Take union bound over N , and we get

Pr
(

max
z∈N

max
x∈K
〈x, u〉 ≥M∗(K) + t

)
≤ |N |e−t2n/2 ≤ eck−t2n/2 ≤ e−k,

provided that t = c
√
k/n. Hence,

Pr

(
diam(QK) ≥ C

(
M∗(K) +

√
k

n

))
≤ e−k.
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Remarks. (1) If we let diam(K) = 1 and k∗ := M∗(K)2n, then, with probability at least
1− e−k,

diam(PK) ≤

{
C
√

k
n , k ≥ k∗;

M∗(K), k ≤ k∗.
We see a “phase transition” at k∗: when k > k∗, the diameter of K shrinks by

√
n/k

under projection (as if K were an interval); when k ≤ k∗, the diameter stabilizes since
PK is already Euclidean.

(2) The result is sharp. See [19].

Corollary 1.5. Let T be a linear operator on `n2 , and let P be the orthogonal projection onto
a random subspace in the Grassmanian Gn,k. Then, with probability at least 1− e−k,

‖PT‖ ≤ C
( 1√

n
‖T‖HS +

√
k

n
‖T‖

)
.

Proof. We apply Theorem 1.4 for the ellipsoid K := TBn
2 . It is an exercise to check that

M∗(K) ≈ 1√
n
‖T‖HS and diam(K) = ‖T‖.

Remarks. There is a version of this corollary for projections onto random coordinate subspaces,
see [M. Rudelson, R. Vershynin, Sampling from large matrices: an approach through geometric
functional analysis, Journal of the ACM (2007), Art. 21, 19 pp].

Exercise 11. Get an estimate on the diameter under a random projection for
(1) K = Bn

p , 1 < p ≤ 2.
(2) K = Bn

p , 2 ≤ p <∞.

2. Metric Entropy. Sudakov and Dual Sudakov Inequalities

One of the big open problems in geometric functional analysis is the duality conjecture. Recall
that, given two convex bodies K and L, the covering number of K by L, denoted N(K,L), is
the minimum number of copies of L needed to cover K. The duality problem asks whether the
covering number of K by L is equivalent to the covering number of L◦ by K◦. Note that just for
the dimension effect on the volume, we should expect a generic covering number exponential in the
dimension. Hence, sometimes it is easier to work with logN(K,L), which we refer to as the metric
entropy of K with respect to L. Now, we may phrase the duality problem as follows.

Conjecture 2.1 (Entropy duality). There exist absolute constants C, c > 0 such that for every
symmetric convex sets K,L ⊂ Rn,

c logN(L◦, C ·K◦) ≤ logN(K,L) ≤ C logN(L◦, c ·K◦).

Remarks. (1) Clearly, for all K,L, the left hand side follows from the right hand side,
and vice versa.

(2) It was recently solved for L being an ellipsoid. See [2].

There are two common ways to compute metric entropy:
(1) By volume ratio estimate

N(K,D) ≤
vol
(
K + 1

2D
)

vol
(

1
2D
) .

However, this estimate can be very insensitive. One can see this through the example
where K is a “lean sausage” and D a Euclidean ball.
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(2) By the mean width. We will focus on this approach here.

Recall that `∗(K) = E‖g‖K◦ = E maxx∈K〈g, x〉. It turns out that the metric entropy and this
Gaussian mean width are closely related.

Theorem 2.2 (Sudakov Inequalities). For every symmetric convex set K in Rn,

(1) Sudakov inequality:
√

logN(K,Bn
2 ) ≤ C · `∗(K);

(2) Dual Sudakov inequality:
√

logN(Bn
2 ,K

◦) ≤ C · `∗(K).

Remarks. (1) Note that the two inequalities are equivalent by the solved case of the
duality conjecture. That is, when L is a Euclidean ball. See [2].

(2) More generally,

√
logN(K, εBn

2 ) =

√
logN

(
1
ε
K,Bn

2

)
≤ C · `

∗(K)
ε

,

and √
logN(Bn

2 , εK
◦) ≤ C · `

∗(K)
ε

.

As the two inequalities implies each other, it suffices to prove only one of them. We will prove
the dual Sudakov inequality. For reference, see Section 3.3 in [11]. We will imitate the proof of
the volumetric bound for covering numbers. Recall that minimal covering is equivalent to maximal
packing. Let {xi, i = 1, . . . , N} be a maximal 1-separated set in Bn

2 in the norm induced by K◦,
then {xi +K◦} is a covering of Bn

2 by maximality. Thus

N(Bn
2 ,K

◦) ≤ N.

Moreover, the sets xi + K◦/2 are disjoint (also from maximality), so they form a packing in the
Gauss space (Rn, γn). Hence,

1 = γn(Rn) ≥ γn
(
Bn

2 +
1
2
K◦
)
≥

N∑
i=1

γn

(
xi +

1
2
K◦
)
.

The difficulty here is that the Gaussian measure is NOT translation invariant: the summand
measures are not all the same. Fortunately, we have the following nice estimates for the Gaussian
measure under translation and dilation.

Lemma 2.3 (Gaussian Measure of Translates). For every symmetric set T ⊂ Rn and every
z ∈ Rn,

γn(z + T ) ≥ e−‖z‖22/2γn(T ).
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Proof. First, note that γn/γn(T ) defines a probability measure on T . Hence,

γn(z + T ) = (2π)−n/2
∫
z+T

e−‖x‖
2
2/2dx

= (2π)−n/2
∫
T
e−‖y+z‖

2
2/2dy

= e−‖z‖
2
2/2

∫
T
e−〈z,y〉dγn(y)

= e−‖z‖
2
2/2γn(T )

∫
T
e−〈z,y〉dγn(y)/γn(T )

≥ e−‖z‖22/2γn(T )e−E〈z,y〉dγn(y) by Jensen’s inequality

= e−‖z‖
2
2/2γn(T )e−〈z,Ey〉dγn(y)

= e−‖z‖
2
2/2γn(T )

Lemma 2.4 (Gaussian Measure of Dilations). For any t > 1,

γn (t`∗(K) ·K◦) ≥ 1− 1
t
.

Proof. Note that `∗(K) = E‖g‖K◦ . By Markov inequality,

Pr (‖g‖K◦ > t`∗(K)) ≤ E‖g‖K◦
t`∗(K)

=
1
t
.

Then,

γn (t`∗(K) ·K◦) = Pr (g ∈ t`∗(K) ·K◦) = Pr (‖g‖K◦ ≤ t`∗(K)) ≤ 1− 1
t
.

Let t = 1/2. Then we have

(11) γn(2`∗(K) ·K◦) ≥ 1
2
.

Now we are in a position to prove dual Sudakov inequality.

Proof of dual Sudakov. Let a = `∗(K)/4. Note that

N := N(Bn
2 ,K

◦) = N(aBn
2 , aK

◦).

Then there exists {xi, i = 1, . . . , N} such that xi+ (a/2)K◦ are pairwise disjoint. Then, by Lemma
2.3 and inequality (11),

1 ≥
N∑
i=1

γn(xi +
a

2
K◦) ≥

N∑
i=1

e−‖xi‖
2
2/2γn(

a

2
K◦)

≥
N∑
i=1

e−a
2/2 · 1

2
≥ 1

2
e−a

2/2N.

Hence, N ≤ 2ea
2/2, and thus

√
logN ≤ C`∗(K).
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Next, we will prove a weak form of the duality of metric entropy, which is sufficient for the
equivalence of Sudakov and dual Sudakov inequalities.

Lemma 2.5 (Weak Entropy Duality). For any symmetric convex set K in Rn,

sup
ε>0

ε
√

logN(K, εBn
2 ) ≤ 8 sup

ε>0
ε
√

logN(Bn
2 , εK

◦).

We will need a couple of easy facts in the proof of this lemma.

Proposition 2.6. For any t, s > 0 and any symmetric convex body K in Rn,

tK ∩ sK◦ ⊆
√
tsBn

2 .

Proof. For any x ∈ tK ∩ sK◦, ‖x‖22 = 〈x, x〉 ≤ ‖x‖K‖x‖K◦ ≤ ts.

Proposition 2.7. Let K,L ⊂ Rn. Suppose that K is symmetric (i.e.K = −K). Then,
N(K,L) ≥ N(K, 2K ∩ L).

Proof. Let N = N(K,L). Then, there exist {xi}Ni=1 ⊂ K such that

K ⊂
N⋃
i=1

xi + L.

Then, for any y ∈ K, there exists some i ≤ N such that y − xi ∈ L. Note that by symmetry of K,
y − xi ∈ K +K = 2K. Hence,

K ⊂

(
N⋃
i=1

xi

)
+ (2K ∩ L) ,

and thus N(K, 2K ∩ L) ≤ N.

Proof of dual Sudakov inequality. By Proposition 2.6 and Proposition 2.7,

N (K, εBn
2 ) ≤ N

(
K, 2K ∩ ε

2

2
K◦
)

≤ N
(
K,

ε2

2

)
≤ N (K, 2εBn

2 ) ·N
(

2εBn
2 ,
ε2

2
K◦
)

= N (K, 2εBn
2 ) ·N

(
Bn

2 ,
ε

4
K◦
)
.

Taking log, square root, and multiplying both sides by ε, with the fact that
√
a+ b ≤

√
a+
√
b, we

get

ε
√

logN(K, εBn
2 ) ≤ ε

√
logN(K,

ε

2
Bn

2 ) + sup
ε>0

ε

√
logN(Bn

2 ,
ε

4
).

Let f(ε) = ε
√

logN(K, εBn
2 ) and M = supε>0 ε

√
logN(Bn

2 , εK
◦). Then,

f(ε) ≤ 1
2
f(2ε) + 4M.

We leave it as an exercise to check that supε>0 f(ε) ≤ 8M.
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Exercise 12. If a function satisfies
(1) f(ε) ≤ 1

2f(2ε) + 4M ;
(2) limε→∞ f(ε) = 0,

then supε>0 f(ε) ≤ 8M.

Example 2.8. K = Bn
1 . Clearly, N(K, εBn

2 ) ≥ 2n for all ε ≤ 1 just to cover the vertices. By
Sudakov inequalities,

N(Bn
1 , εB

n
2 ) ≤ ec`∗(K)2/ε2 ≤ nc/ε2 ,

as `∗(K) ∼
√

log n. The significance is this upper bound is polynomial in n, which matches the
lower bound.

Exercise 13. Prove that for any polytope K in Rd with n vertices can be covered by polyε(n)
Euclidean balls of diameter ≤ ε · diam(K). (Hint: Realize K as some projection of Bn

1 from Rn to
Rd.)

Remarks. See Section 3.3 in [11] for a different proof under a reformulation for Gaussian
processes.

3. Low M∗-estimate. `-position

In the previous section, we saw how diameter behaves under a random orthogonal projection.
In this section, we will look at the dual case. We will see how diameter behaves in a random section.

Theorem 3.1 (Low M∗-estimate; Theorem 18.2 in [11]; [18]; [22]). Let K be a symmetric
convex body in Rn, and let E ∈ Gn,n−k be a random subspace of codimension k. Then, with
probability at least 1− e−k,

diam(K ∩ E) ≤ C
√
n

k
M∗(K).

Remarks. (1) The diameter estimate was first given by Milman with linear dependence
on n, and later improved by Pajor and Tomczak ( [22]).

(2) As `∗(K) ∼
√
nM∗(K), we have a dimension-free version

diam(K ∩ E) ≤ C√
k
`∗(K).

Proof. We will follow a standard discretization argument.
Step 1:Discretizing K using Sudakov inequality.
Let

t = c

√
n

k
M∗(K).

For computational purposes, we will take c =
√

10. By Sudakov inequality, there exists a t-net N
of K in Euclidean metric of cardinality

|N | ≤ exp
(
C
`∗(K)2

t2

)
∼ exp

(
nM∗(K)2

t2

)
= ek/10.

Step 2: Fixed vector: diameter of random projection.
Let x ∈ K ∩E. Then there exists y ∈ N with ‖x− y‖2 ≤ t. Consider the orthogonal projection P
onto E⊥ ∈ Gn,k. Then x ∈ kerP , and thus

‖Py‖2 = ‖P (x− y)‖2.
Moreover, since K is convex and symmetric,

x− y ∈ 2K.
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Hence,
x− y ∈ tBn

2 ∩ 2K.

By Theorem 1.4, we have that, with probability at least 1− e−k,

diam (P (tBn
2 ∩ 2K)) ≤ C

(
M∗(K) + t

√
k

n

)
≤ CM∗(K),

using our prescribed value for t in the beginning of Step 1. Choose a realization of P that satisfies
this. Then, for all x ∈ K ∩ E, there exists y ∈ N such that

(12) ‖Py‖2 ≤ ‖P (x− y)‖2 ≤ diam (P (tBn
2 ∩K)) ≤ CM∗(K).

Step 3: Norm under random projection and union bound.
Recall that for any fixed y ∈ Rn and for a random projection onto a k-dimensional subspace,

‖Py‖2 ≥ c
√
k

n
‖y‖2

with probability at least 1− e−k. Hence, by taking union bound over N , we get

(13) ‖Py‖2 ≥ c
√
k

n
‖y‖2

for all y ∈ N with probability at least 1−|N | · 2e−k > 1− e−ck, using the bound on |N | in the first
step.
Step 4: Approximation.
Combine the upper and lower bounds from (12) and (13), and we get that for all y ∈ N , ‖y‖2 ≤
C
√
nkM∗(K). Hence, for all x ∈ K,

‖x‖2 ≤ C
√
n

k
M∗(K) + t ≤ C

√
n

k
M∗(K)

by our choice of t.

As an example, we now apply this low M∗-estimate to examine Euclidean subspaces of `np of
arbitrary dimensions.

Example 3.2. Bn
p , 1 < p ≤ 2.

Note that
M∗(Bn

p ) ≈ diameter of its inscribed ball ∼ n
1
2
− 1
p .

Consider K = n
1
2
− 1
pBn

p so that Bn
2 is the inscribed ball. Then

M∗(K) ∼ constant.

By low M∗-estimate, for a random E ∈ Gn,n/2,

diam(K ∩ E) ∼ constant.

So the random section K ∩ E is Euclidean.

Corollary 3.3. (Euclidean subspaces of `np , 1 < p ≤ 2) A random subspace E ∈ Gn,n−k of `np ,
1 < p ≤ 2 satisfies

d(E, `np ) ≤ Cp
√
n

k

with probability at least 1− e−k.
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Remarks. (1) This is not sharp for k = 1 (small codimensional subspaces):

d(E, `n−1
2 ) ≈ d(`np , `

n) ∼ n
1
p
− 1

2 � Cp
√
n.

(2) A similar result follows from the volume ratio theorem since

v(`np ) ∼ constant

for 1 ≤ p ≤ 2. However, the volume ratio theorem gives an exponential dependence of
d(E, `n−k2 ) on the aspect ratio:

d(E, `n−k2 ) ≤ C
n
k ,

whereas the low M∗-estimate gives a polynomial dependence.
(3) For new developments on this, see [8] and [9], where asymptotic formula for E diam(K∩E)

are given in terms of M∗(K ∩ rBn
2 ), where r = r(k/n).

Example 3.4. Bn
1 .

Consider K =
√
nBn

1 . We have seen before that

M∗(K) ∼
√

log n.

Hence, the low M∗-estimate implies

d(E, `n−k2 ) ≤ C
√
k

n
log n.

Remarks. A more accurate estimate, with log n
k factor instead of log n, was obtained in [7].

We will quote it here without proof.

Theorem 3.5 (Diameter of Euclidean sections of Bn
1 ; [7]). A random subspace E ∈ Gn,n−k of

`n1 satisfies the following with probability at least 1− e−ck:

diam(E ∩
√
nBn

1 ) ≤ C
√
n

k
log

n

k
.

A position of a convex body is a linear transformation of the body. For example, John’s position
of a convex body K is the linear image TK such that the ellipsoid of maximal volume in K is Bn

2 .
It is the position that minimizes the volume ratio of K. In general, choice of a position of a
convex body corresponds to choice of a coordinate system to work with. That is, we are choosing
a Euclidean structure on the linear space that contains K. This is extremely convenient especially
when the initial setup is in some abstract linear space without a coordinate system. In this section,
we will discuss an important position of convex bodies called the `-position.

Definition 3.1 (`-position; [23]). An `-position of a convex body K minimizes the product
M(TK)M∗(TK) over all positions TK of K.

Recall that M(K)M∗(K) ≥ 1 for any convex body K. However, the converse does not hold:
M(K)M∗(K) can be arbitrarily large.

Exercise 14. Show that M(K)M∗(K) can be arbitrarily large in Rn.

The good news is that if we are allowed position K, then we have an upper bound for MM∗.
The following result is given without proof. See [23] and Chapter 15 in [21].

Theorem 3.6 (Upper Bound for MM∗). For every symmetric convex body K in Rn, there
exists a position TK such that

M(TK)M∗(TK) ≤ C log 2d(K,Bn
2 ) ≤ C log n,

where the last inequality is immediate from John’s theorem.
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Remarks. (1) The result would fail if the convex body is non-symmetric. It is still an open
problem when K is non-symmetric. The best known bound is O∗(n4/3) by Rudelson [25].

(2) The result of the theorem is sharp. We leave this as an exercise. Hence, we also call the
position in the theorem an `-position of K.

Exercise 15. Prove sharpness of this theorem. That is, find some K such that M(K)M∗(K) ∼
log n.
Hint: For K = Bn

1 , we have

M(K) ∼
√
n and M∗(K) ∼

√
log n
n

so that MM∗ ∼
√

log n. If there could be a
√

log n factor in both M(K) and M∗(K), then we would
be done. Is there a way to modify Bn

1 so this can happen?

4. Quotient of Subspace Theorem

In this section, we will see that every symmetric convex body in a finite dimensional normed
space contains a Euclidean structure. We have already seen that convex bodies such as Bn

1 has
large Euclidean sections, while convex bodies such as Bn

∞ has large Euclidean projections. It is
then natural to think that, given any symmetric convex body, we could end up with some large
Euclidean structure if we compose these two operations. This idea is confirmed by the Quotient of
Subspace Theorem (QS Theorem for short). We will follow [8].

Theorem 4.1 (Quotient of Subspace theorem). Let K be a symmetric convex body in Rn, and
let δ ∈ (0, 1). Then there exist subspaces F ⊂ E ⊂ Rn with k = dimF ≥ (1− δ)n such that

d
(
PF (K ∩ E), `k2

)
≤ C

δ
log

1
δ
.

Equivalently, let X be an n-dimensional normed space. Let δ ∈ (0, 1). Then there exist subspaces
H ⊂ E ⊂ X with k = dim(E/H) ≥ (1− δ)n such that

d
(
E/H, `k2

)
≤ C

δ
log

1
δ
.

Let us sketch the idea of the proof first. Recall that a quotient of a subspace and a subspace of
a quotient are related by duality, and that M∗(K◦) = M(K). Then,

K ∩ E ⊆M∗(K) ·Bn
2 iff PE(K) ⊇ 1

M∗(K)
·Bn

2 .

Similarly, if we take a further section of the projection,

PE(K) ∩ F ⊆M(K) ·Bn
2 .

Hence,
d(PE(K) ∩ F, `k2) ≤M(K)M∗(K) ≤ log d(K,Bn

2 ).
This means that the distance from Euclidean drops logarithmetically after we take a composition
of quotient and subspace operation. We then may hope that the distance can drop to constant
order after a few iterations.

Proof. We will proceed by steps.
Step 1: Double application of low M∗-estimate.
By low M∗-estimate, there exists a subspace E with dimE = (1− δ)n such that

K ∩ E ⊆ C√
δ
M∗(K) ·Bn

2 ∩ E.
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By duality,

PE(K◦) ⊇ c
√
δ

1
M∗(K)

·Bn
2 ∩ E.

Now, apply low M∗-estimate again, and we get a further subspace F ⊂ E with dimF = (1 −
δ) dimE = (1− δ)2n such that

PE(K◦) ∩ F ⊆ C√
δ
M∗(PE(K◦)) ·Bn

2 ∩ F.

Note that by duality, M∗(PE(K◦)) = M(K ∩E), and we leave it an exercise to show that M(K ∩
E) ≤M(K). Thus,

c
√
δ

1
M∗(K)

·Bn
2 ∩ F ⊆ PE(K◦) ∩ F ⊆ C√

δ
M(K) ·Bn

2 ∩ F.

Hence,

d(PE(K◦) ∩ F, `k2) ≤ C

δ
M(K)M∗(K) ≤ C

δ
log 2d(K, `n2 )

by MM∗-estimate. Recall that d(X,Y ) = d(X∗, Y ∗) for any Banach spaces X and Y . Hence, we
have shown that

d(PF (K ∩ E), `k2) ≤ C

δ
log 2d(K, `n2 ).

Step 2: Iteration.
Consider

QS(K) := { projections of sections of K}.
Define f : (0, 1)→ R+ by

f(α) = inf{d(L, `k2 : L ∈ QS(K), k = dimL ≥ αn}.
We have shown in the first step that f satisfies the following recursive relation:

f((1− δ)2α) ≤ C

δ
log(2f(α)), ∀α ∈ (0, 1) ∀δ ∈ (0, 1).

It can then be shown that functions satisfying this must satisfy

f(α) ≤ C

1− α
log

1
1− α

.

See Section 5.9 in [21] for details.

Exercise 16. Prove that M(K ∩ E) ≤ M(K) for any symmetric convex body K in Rn and
any subspace E.
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CHAPTER 5

Geometric Inequalities

In the last part of this course, we will see a series of geometric inequalities involving volumes
and their applications in geometric functional analysis. For example, isoperimetric inequalities and
concentration of measure inequalities can be recovered from Brunn-Minkowski inequality. Moreover,
we will learn a new position of convex bodies called the notion in establishing the inverse inequalities
to the classic ones such as Brunn-Minkowski and Santalo inequalities. We will also revisit the
entropy duality problem and the quotient of subspace theorem, as a result of these geometric
inequalities.

1. Brunn-Minkowski Inequality

1.1. Brunn-Minkowski inequality. Brunn-Minkowski inequality is one of the most funda-
mental results in convex geometry. As we have seen all along this course, the correspondence
between convex geometry and functional analysis produces better understanding of the whole pic-
ture. Hence, we should expect that Brunn-Minkowski inequality has influential consequences in
geometric functional analysis. It turns out that the results on concentration of measure in vari-
ous spaces we saw in the beginning of the course can actually be derived from Brunn-Minkowski
inequality. Although it has profound consequences, the form of the inequality is extremely simple.

Theorem 1.1 (Brunn-Minkowski inequality). For any measurable sets A,B ⊂ Rn, we have:
(1) (additive form) vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n;
(2) (multiplicative form) vol(λA+ (1− λ)B) ≥ vol(A)λ vol(B)1−λ.

Moreover, equality holds iff A and B are homothetic.

Remarks. (1) The two versions are equivalent. (1) implies (2) by replacing A by λA
and B by (1− λB) and then applying the geometric-arithmetic inequality. For the other
direction, we may apply (2) with

A′ =
A

vol(A)
1
n

, B′ =
B

vol(B)
1
n

, λ =
vol(A)

1
n

vol(A)
1
n + vol(B)

1
n

.

(2) Recall that a log-concave measure µ is a measure that satisfies

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

By the equivalence of these the versions of Brunn-Minkowski inequality, we see that any
log-concave measure, not just the Lebesgue measure on Rn, satisfies Brunn-Minkowski
inequality.

1.2. Prekopa-Leindler inequality. Brunn-Minkowski inequality is a special case of Prekopa-
Leindler inequality, which can be viewed as a reverse Hölder inequality.

Lemma 1.2 (Prekopa-Leindler inequality). Let f, g, h : Rn → [0,∞) be measurable functions,
and let λ ∈ (0, 1). Assume that

(14) h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ ∀x, y ∈ Rn .
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Then, ∫
Rn
h ≥

(∫
Rn
f

)λ(∫
Rn
g

)1−λ
.

Remarks. Prekopa-Leindler inequality immdiately implies Brunn-Minkowski inequality by
taking indicator functions f = 1A, g = 1B, and h = 1λA+(1−λ)B. Hence, all we need to do is
to prove this functional form of Brunn-Minkowski inequality.

Proof of Prekopa-Leindler. We first use the one-dimensional Brunn-Minkowski inequality
to prove the one-dimensional Prekopa-Leindler inequality. Then we will proceed by induction on
the dimension.
Step 1: One-dimensional Brunn-Minkowski.
We will show that |A + B| ≥ |A| + |B|, where | · | denotes the Lebesgue measure on the real
line. Without loss of generality, assume A,B are compact. As the Lebesgue measure is translation
invariant, we can also assume that

supA = 0 = inf B.

Then,
A ⊂ A+B and B ⊂ A+B.

Hence |A+B| ≥ |A|+ |B|.
Step 2:One-dimensional Prekopa-Leindler.
We will reduce the integral to level sets. Note that

(15)
∫
f =

∫ ∞
0
|{f ≥ a}|da.

It is easy to check that
{h ≥ a} ⊇ λ{f ≥ a}+ (1− λ){g ≥ a}.

By one-dimensional Brunn-Minkowski, we have

|{h ≥ a}| ≥ λ|{f ≥ a}|+ (1− λ)|{g ≥ a}|.

Integrate both sides over all a > 0. By (15), we have∫
h ≥ λ

∫
f + (1− λ)

∫
g.

Then, apply arithmetic-geometric mean inequality, and we get∫
h ≥

(∫
f

)λ(∫
g

)1−λ
.

Step 3: Induction on dimension.
Assume that the lemma holds in Rn−1. For t ∈ R, consider the functions

ft, gt, ht : Rn−1 → R

defined as
ft(x) = f(t, x)

and similarly for gt and ht. Suppose that

t = λt1 + (1− λ)t2.

Then by (14),
ht(λx+ (1− λ)y) ≥ ft1(x)λgt2(y)1−λ.
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for all x, y ∈ Rn−1. By induction hypothesis,∫
Rn−1

ht ≥
(∫

Rn−1

ft1

)λ(∫
Rn−1

gt2

)1−λ
.

Now, apply the one-dimensional Prekopa-Leindler, and we get∫
R

(∫
Rn−1

ht

)
≥
(∫

R

(∫
Rn−1

ft1

))λ(∫
R

(∫
Rn−1

gt2

))1−λ
.

This completes the proof.

As we said earlier, Brunn-Minkowski inequality can be obtained as soon as the Prekopa-Leindler
inequality is proved. In the next section, we will see various consequences of Brunn-Minkowski
inequality in not only convex geometry, but also Banach spaces.

2. Applications of Brunn-Minkowski Inequality

2.1. Brunn’s Principle.

Theorem 2.1. Let K be a convex body in Rn and u ∈ Rn. Consider the hyperplanes

Ht = {x ∈ Rn : 〈x, u〉 = t}.

Then the function

t 7→ vol(K ∩Ht)
1

n−1

is concave on its support.

Remarks. It is easy to check that if K is a cone, then this function will be linear.

Proof. Consider the sections Kt = K ∩Ht. Convexity implies that for any r, s ∈ R and for
any λ ∈ (0, 1),

Kλr+(1−λ)s ⊇ λKr + (1− λ)Ks.

By Brunn-Minkowski inequality, we have

vol(Kλr+(1−λ)s)
1

n−1 ≥ λ vol(Kr)
1

n−1 + (1− λ) vol(Ks)
1

n−1 ,

which is exacly what we want.

Figure 1. Brunn’s Principle
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Remarks. (1) One can deduce Brunn-Minkowski inequality for convex bodies from Brunn’s
principle. Note that we state it for all measurable sets in Theorem 1.1.
We can embed A and B in Rn+1 so that A is at position t = 0 and B at position t = 1 for
the additional dimension t. See Figure 1. Then the section of the convex hull of A ∪B at
t = 1− λ corresponds to the sets λA + (1− λ)B. Then Brunn-Minkowski inequality is a
direct consequence of Brunn’s principle. We leave the details to the reader.

(2) Brunn’s principle can also be derived from a direct geometric argument through Steiner’s
symmetrization. See Theorem 3.1 in [9].

2.2. Isoperimetric inequality in Rn. Brunn-Minkowski inequality also implies the isoperi-
metric inequality in a very simple way.

Let A be a set in Rn. Recall that the surface area vol(∂A) of A is defined by

(16) vol(∂A) = lim
ε→0

vol(A+ εBn
2 )− vol(A)
ε

.

Theorem 2.2 (Isoperimetric inequality in Rn). Among all bodies of a given volume in Rn,
Euclidean balls have the least surface area.

Proof. Consider A ⊂ Rn and a Euclidean ball B with vol(A) = vol(B). We want to show
that

vol(∂A) ≥ vol(∂B).

By Brunn-Minkowski inequality, for any ε > 0,

vol(A+ εBn
2 )

1
n ≥ vol(A)

1
n + vol(εBn

2 )
1
n

= vol(B)
1
n + vol(εBn

2 )
1
n

= vol(B + εBn
2 )

1
n ,

since B and εBn
2 are homothetic. Then use surface area formula (16) and take limit as ε→ 0.

Remarks. It is still not known how to apply Brunn-Minkowski to get isoperimetric inquality
on the sphere, which is more general situation as spheres locally look like Rn. The difficulty on
the sphere is that subsets may “curve back” to wrap itself. Recall that in the proof of the one-
dimensional Brunn-Minkowski, we first process the two sets A,B so that they are apart from each
other. This causes a problem on the sphere: it is not always possible to separate two sets.

2.3. Concentration of measure in the ball, sphere and Gauss space. We know that
isoperimetry on the sphere implies concentration of measure on the sphere early in this course, but
we do not know how to get isoperimetry on the sphere from Brunn-Minkowski. Hence, in an effort
to go from Brunn-Minkowski inequality to the concentration of measure on the sphere, we will
bypass isoperimetry and take a direct path. Sometimes this is called “approximate isoperimetry.”

2.3.1. Concentration of measure in the ball. ConsiderBn
2 equipped with the normalized Lebesgue

measure

µ(A) =
vol(A)

vol(Bn
2 )
.

Let
Aε := {x ∈ Bn

2 : d(x,A) ≤ ε}

denote the ε-extension of the set A.
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Theorem 2.3 (Concentration in the Ball). Let A ⊂ Bn
2 be a measurable set. Then

µ(Aε) ≥ 1− C

µ(A)
e−cε

2n

for any ε > 0, where C, c are absolute constants. In particular, if µ(A) ≥ 1/2, then

µ(Aε) ≥ 1− 2Ce−cε
2n.

Proof. Consider
B = (Aε)c = {x ∈ Bn

2 : d(x,A) > ε}.
Our goal is to show that

µ(A)µ(B) ≤ Cecε2n.
One can check that µ is a log-concave measure. By Brunn-Minkowski inequality for log-concave
measures, we have √

µ(A)µ(B) ≤ µ
(
A+B

2

)
.

Hence, it suffices to show that

µ

(
A+B

2

)
≤ Ce−cε2n.

This will be immediate from the following claim.

Claim: A+B
2 ⊂

√
1− ε2

4 B
n
2 .

Let x ∈ A and y ∈ B. Then d(x, y) > ε. We need to estimate ‖x+y2 ‖. By the parallelogram
law,

‖x+ y

2
‖ =

1
2

√
2(‖x‖2 + ‖y‖2)− ‖x− y‖2

≤
√

1− ε2

4
,

as ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x− y‖ > ε. This finishes the proof of the claim. Hence,

µ

(
A+B

2

)
≤ µ

(√
1− ε2

4
Bn

2

)

=
(

1− ε2

4

)n/2
≤ e−ε2n/8.

This completes the proof.

2.3.2. Concentration of measure on the sphere. Concentration on the sphere follows from con-
centration of measure in the ball. We will leave the proof to the reader.

Corollary 2.4 (Concentration on the Sphere). Let A ⊂ Sn−1 be measurable, and let σ denote
the canonical probability measure over Sn−1. Then

σ(Aε) ≥ 1− C

σ(A)
e−cε

2n

Exercise 17. Prove this corollary.
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2.3.3. Concentration of measure in Gauss space. Recall that Gauss space is just Rn equipped
with the standard n-dimensional Gaussian measure γ. We will deduce concentration of measure in
Gauss space directly from Prekopa-Leindler inequality.

Theorem 2.5 (Concentration of Measure in Gauss Space; [15]). Let A ⊂ Rn be a measurable
set. Let g ∈ Rn be a standard Gaussian vector. Then

E exp
(
d(g,A)2

4

)
≤ 1
γ(A)

.

In particular,

γ(At) ≥ 1− e−t
2/4

γ(A)
.

Proof. The “in particular” part follows from Markov inequality:

γ(At) = γ{x : d(x,A) > t} ≤ 1
γ(A)

· e−t2/4.

For the main result, we apply Prekopa-Leindler inequality for with

λ =
1
2

h(x) = (2π)−n/2e−‖x‖
2/2

f(x) = exp
(
d(x,A)2

4

)
· (2π)−n/2e−‖x‖

2/2

g(x) = 1A · (2π)−n/2e−‖x‖
2/2.

It only remains to check that they satisfy the assumption of Prekopa-Leindler:

h

(
x+ y

2

)
≥ f(x)

1
2 · g(x)

1
2

for all x, y. This can be easily checked, where the parallelogram law is used. (without loss of
generality, we may assume y ∈ A.)

Remarks. The proof works for any log-concave density (not just Gaussian density).

2.4. Borell’s inequality. Let us first recall that a measure µ : A → R is log-concave if the
function

A ∈ A 7→ logµ(A)
is concave. That is,

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ

for all A,B ∈ A and for any λ ∈ (0, 1).

Example 2.6 (log-concave measures). (1) Lebesgue measure in Rn. This follows from
Brunn-Minkowski.

(2) Normalized volume on any convex set. µ(A) = vol(A ∩ K) is log-concave. This follows
from Prekopa-Leindler with

f = 1A∩K , g = 1B∩K and h = 1λA+(1−λ)B∩K .

(3) Log-concave densities. By a result of C.Borell in 1975 ( [3]), any measure with log-concave
density is log-concave.
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Theorem 2.7 (Borell’s inequality). Let µ be a log-concave probability measure on Rn, and let
A ⊂ Rn be symmetric and convex with µ(A) ≥ 2

3 . Then,

µ(tA) ≥ 1− e−ct

for every t > 0.

We will prove a special case where the log-concave measure is the normalized volume on a
convex body.

Theorem 2.8 (Volume Distribution in Convex Sets). Let K ⊂ Rn be a convex body (not
necessarily symmetric). Consider the normalized volume measure

µ(A) =
vol(A ∩K)

vol(K)
.

Let A be the Euclidean ball with µ(A) = 2
3 . Then

µ ((tA)c) ≤ e−ct.

Figure 2. Volume Distribution of Convex Bodies

Remarks. (1) One can also use this argument for A = the slab between two hyperplanes
with µ(A) = 2

3 and get the same result.
(2) Note that µ ((tA)c) describes the proportion of volume taken by the “tentacles” of the

convex body.

Proof of Theorem 2.8. Without loss of generality, assume that t ≥ 1. We will find some
convex combination of A and (tA)c that is disjoint from A. That is, we will find some λ ∈ (0, 1)
such that

λA+ (1− λ)(tA)c ⊂ Ac.
It can be easily checked that

λ =
t− 1
t+ 1
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Figure 3. Volume Distribution between Hyperplanes

works. Then, by Brunn-Minkowski,
1
3
≥ µ(Ac) ≥ µ(λA+ (1− λ)(tA)c) ≥ µ(A)λµ((tA)c)1−λ.

Solve for µ((tA)c), and we get the desired bound.

2.5. Urysohn’s inequality. Recall that we discussed the two directions in considering Eu-
clidean sections or projections of high dimensional convex bodies. One direction is Dvoretzky-type
theorems, which are closely related to the mean width M∗. The other direction is VRT, which
is closely related to the notion of volume ratio of a convex body. How do these two directions
compare? Urysohn’s inequality tells that the volume ratio is always dominated by the mean width.

Theorem 2.9 (Urysohn’s inequality; Chapter 1 in [24]). Let K ⊂ Rn be a compact set. Then(
vol(K)
vol(Bn

2 )

) 1
n

≤
∫
Sn−1

‖x‖K◦dσ(x).

As a preliminary to the proof, the following exercise gives alternative meaning of the mean
width.

Exercise 18. Let U ∈ O(n) be random. Then
∫
O(n) U(K)dµ(U) = M∗(K) ·Bn

2 .

Now we are ready to prove Urysohn’s inequality.

Proof. First, it is not hard to see that Brunn-Minkowski inequality holds for more than two
sets:

vol

(
m∑
i=1

vol(Ki)

) 1
n

≥
m∑
i=1

vol(Ki)
1
n .

In the limit, we see that Brunn-Minkowski holds in integral form:

vol

(∫
O(n)

U(K)dµ(U)

) 1
n

≥
∫
O(n)

vol (U(K))
1
n dµ(U).

Then, by the exercise preceding this proof, we have

M∗(K) · vol(Bn
2 )

1
n ≥ vol(K)

1
n .
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2.6. Santalo inequality. In this application of Brunn-Minkowski inequality, we want to con-
sider the “dual volume.” We will discuss how the volume of a convex body is related to the volume
of its polar body. We can easily picture that the polar set is “small” when the original set is “large”
in terms of the volume, since they are sort of ”inversely” related. One can see this through the fact
that

(aK)◦ =
1
a
K◦.

Hence, we might expect that the product of the two volumes behaves like a constant. We introduce
the notion of Mahler volume for a better formulation of the problem.

Definition 2.1 (Malher volume). The Mahler volume of a convex body K is defined as

s(K) = vol(K) · vol(K◦).

Exercise 19. Check that the Mahler volume is invariant under any linear transformation. For
example, it is easy to see that it is invariant under scaling.

Hence, we may expect that there is an upper and a lower bound for s(K), regardless of K. As
we will see in this and next sections, finding these bounds are nontrivial. Different symmetrization
technieques will be used in the two directions. The upper estimate uses the classic Steiner’s sym-
metrization. For the lower estimate, things get more involved. We will use Milman’s “isomorphic
symmetrization.”

Theorem 2.10 (Santalo inequality: upper estimate for Mahler volume). Let K be a symmetric
convex body in Rn. Then s(K) ≤ s(Bn

2 ).

Remarks. (1) In other words, the Mahler volume is maximized by Euclidean balls. More-
over, by invariance under linear transformations, it is also maximized by any ellipsoid.

(2) s(Bn
2 ) = vol(Bn

2 )2 = [(2πe+ o(1))n]−n.

We will present the proof due to Meyer and Pajor [16] using Steiner symmetrization. The idea
is that these symmetrizations can only increase the Mahler volume, and they bring any symmetric
convex body K closer and closer to the Euclidean ball.

Definition 2.2 (Steiner symmetrization). Let H be a hyperplane in Rn and K ⊂ Rn. Then,
the Steiner symmetrization of K with respect to H is

KH =
{
x1 − x2

2
: x1, x2 ∈ K,x1 − x2 ⊥ H

}
.

Figure 4. Steiner Symmetrization

Two main properties of Steiner symmetrizations are listed below. The reader is encouraged to
check them as an exercise.

63



Proposition 2.11 (Basic Properties of Steiner symmetrization). (1) Steiner symmetriza-
tion is volume-preserving.

(2) There exists a sequence of Steiner symmetrizations of any symmetric convex body K that
converges to an Euclidean ball in Hausdorff metric (also in Banach-Mazur distance).

Now, we will use Steiner symmetrization to prove Santalo inequality.

Proof of Santalo inequality. It suffices to show that

(17) vol((KH)◦) ≥ vol(K◦).

Indeed, if this holds, then

vol(KH) · vol((KH)◦) ≥ vol(K) · vol(K◦),

as vol(KH) = vol(K). Now, by the second property of Steiner symmetrization, we get that in the
limit,

vol(Bn
2 ) · vol(Bn

2 ) ≥ vol(K) · vol(K◦),

which is exactly what we want to show.
Now, to prove (17), we may assume H = Rn−1. Consider the slices

K(s) = {x ∈ Rn−1 : (x, s) ∈ K}.

It suffices to show that
vol(K◦H(s)) ≥ vol(K◦(s))

for all s, as

vol(K◦) =
∫

vol(K◦(y))dy.

It is easy to verify the following:

K◦ = {(y, s) : 〈x, y〉+ ts ≤ 1 ∀(x, t) ∈ K}

KH =
{

(x, t) : t =
t1 − t2

2
, (x, ti) ∈ K

}
(KH)◦ =

{
(y, s) : 〈x, y〉+

t1 − t2
2
· s ≤ 1 ∀(x, ti) ∈ K

}
.

Then we claim that

K◦H ⊇
K◦(s) +K◦(−s)

2
.

In fact, let y ∈ K◦(s) and z ∈ K◦(−s). That is,

〈x, y〉+ t1s ≤ 1 ∀(x, t1) ∈ K

〈x, z〉 − t2s ≤ 1 ∀(x, t2) ∈ K.
Easy arithmetic operations give

〈x, y + z

2
〉+

t1 − t2
2
· s ≤ 1.

This means
y + z

2
∈ K◦H .
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Hence, by Brunn-Minkowski inequality,

vol(K◦H) ≥ vol
(
K◦(s) +K◦(−s)

2

)
≥
√

vol(K◦(s)) · vol(K◦(−s))
= vol(K◦(s)),

as K◦(−s) = −K◦(s) by symmetry.

3. Isomorphic Symmetrizations. Inverse Santalo Inequality

3.1. Inverse Santalo inequality. We have showed in Santalo inequality that Euclidean balls
maximize the Mahler volume. A natural question is, which convex bodies minimize the Mahler
volume?

Conjecture 3.1 (Mahler conjecture). Cubes (or octahedra) are minimizers of the Mahler
volume.

Intuitively, this makes a lot of sense, as cubes and octahedra are the “farthest” from the
Euclidean ball: they are the “pointiest” convex bodies. It is easy to check that

s(Bn
1 ) = s(Bn

∞) = vol(Bn
1 ) · vol(Bn

∞) = (4e+ o(1))nn−n,

and
s(Bn

2 ) = vol(Bn
2 ) · vol(Bn

2 ) = (2πe+ o(1))nn−n.
Hence, the conjectured lower bound of Mahler volume matches the known upper bound: s(Bn

1 ) =
s(Bn

∞) ∼ cns(Bn
2 ) for some absolute constant c > 0. For more discussion, See Terry Tao’s blog

entry on this topic. Here, we will give a proof of a joint statement of both Santalo and inverse
Santalo inequalities due to Bourgain and Milman. This proof provides some evidence that cubes
and octahedra are good candidates for the minimizer of the Malher volume.

Theorem 3.2 (Inverse Santalo inequality; [4]). There exists an absolute constant c ∈ (0, 1)
such that for every symmetric convex body K in Rn,

cn ≤ s(K)
s(Bn

2 )
≤ 1.

In other words,

c ≤
(

vol(K) · vol(K◦)
vol(Bn

2 )2

) 1
n

≤ 1.

The righthand side inequality is just Santalo inequality. Recall that in proving Santalo in-
equality, we used Steiner symmetrization, which is volume-preserving and can only increase the
Mahler volume (i.e. increase the volume of the polar body). Moreover, there exists a sequence
of Steiner symmetrizations that bring a symmetric convex body to a Euclidean ball. Hence, we
cannot expect “exact” symmetrizations (meaning converging to the exact Euclidean ball) to get
the inverse Santalo. Instead, we will have a sequence of symmetrizations that bring the convex
body to C-isomorphic (instead of “isometric”) to the Euclidean ball: we hope that in the end, we
have

rBn
2 ⊂ Kt ⊂ C · rBn

2

for some r > 0. This way, we will also have
1
rC

Bn
2 ⊂ K◦t ⊂

1
r
Bn

2 ,
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so that

(18)
1
Cn

vol(Bn
2 )2 ≤ vol(Kt) vol(K◦t ) ≤ Cn vol(Bn

2 )2.

This is already very close to what we want: the only thing left to do is to make sure the Mahler
volume is well controlled during symmetrization: s(Kt)

1
n � s(K)

1
n in the sense that there exist

constants c1 and c2 such that

(19) cn1s(K) ≤ s(Kt) ≤ cn2s(K).

In summary, we need to control two things in the proof of the inverse Santalo inequality:
(1) Distance from the Euclidean ball.

We will borrow the idea in the proof of the Quotient of Subspace Theorem. At each step,
if

d(Ki, B
n
2 ) . M(Ki−1)M∗(Ki−1),

then the MM∗-estimate promises logarithmetically dropping distance.
(2) Volume control.

We will show
e−cins(Ki) ≤ s(Ki−1) ≤ ecins(Ki)

for some properly chosen constant ci. After iterations, we will get

e−(
P
ci)ns(K) ≤ s(Kt) ≤ e(

P
ci)ns(K),

where our choice of ci guarantees the convergence of the series.
Let us break down the proof into its main pieces, and then assemble them to form the complete

proof. The first and most important piece is the symmetrization technique called “isomorphic
symmetrization” or “convex surgery,” as first called by Milman.

3.2. Isomorphic symmetrization. We transform K into

K1 = conv
{
K ∩ λupBn

2 ,
1

λdown
Bn

2

}
.

Two operations are involved here to regularize K:
• Cut “tentacles” by intersecting K with a large Euclidean ball λupBn

2 , and
• Fill out the interior by taking convex hull with a small Euclidean ball (1/λdown)Bn

2 . See
Figure 5.

Observe that
1

λdown
Bn

2 ⊂ K1 ⊂ λupBn
2 .

Hence,

(20) d(K1, B
n
2 ) ≤ λup · λdown

Moreover,

K◦1 = (K ∩ λupBn
2 )◦ ∩ λdownBn

2

= conv
{
K◦,

1
λup

Bn
2

}
∩ λdownBn

2

� conv
{
K◦ ∩ λdownBn

2 ,
1
λup

Bn
2

}
.

For notation convenience, let T = conv
{
K◦ ∩ λdownBn

2 ,
1
λup

Bn
2

}
. We leave the last step above

as an exercise.
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Figure 5. Isomorphic Symmetrization

Exercise 20. Show that there exists some C ≥ 1 such that
1
C
T ⊂ K◦1 ⊂ CT.

The second piece of the proof of the inverse Santalo inequality is how to control the volume
of our convex bodies during symmetrizations. In particular, we want to control the volume of
intersections and convex hulls of different convex bodies.

3.3. Volume control lemmas. First, we need to control the volume of intersections of two
convex symmetric bodies.

Lemma 3.3 (Volume of intersections). Let K,D be symmetric convex bodies in Rn. Then

vol(K) ≤ N(K,D) · vol(K ∩D).

Proof. Consider the covering of K by translates of D. Suppose that

K ⊆
N⋃
i=1

(xi +D),

where xi ∈ K. The reader should check that for any centrally symmetric convex bodies K and D,
and for any x ∈ Rn,

vol
(
(x+D) ∩K

)
≤ vol(D ∩K).

Then, by symmetry and convexity, we have
(x+D) ∩K + (−x+D) ∩K

2
⊆ D ∩K.

Apply Brunn-Minkowski inequality, and we get

vol(D ∩K) ≥ vol
(
(x+D) ∩K

)1/2 · vol
(
(−x+D) ∩K

)1/2 = vol
(
(x+D) ∩K

)
.

Hence, vol(K) ≤ N(K,D) vol(K ∩D).
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We also need to control the volume of convex hulls. Ideally, we would like to have the estimate

vol(conv{K,D}) ≤ N(D,K) · vol(K).

In Milman’s paper [17], he proved a slightly weaker result.

Lemma 3.4 (Volume of convex hulls: weaker version). Let K,D be convex sets in Rn such that
D ⊂ bK for some b ≥ 1. Then,

vol(conv{K,D}) ≤ enb ·N(D,K) · vol(K).

We will prove an intermediate result, and leave it as an exercise to get to Milman’s weaker
version from there.

Proposition 3.5. Let K,D ⊂ Rn be convex bodies. Then, for any λ ∈ (0, 1),

vol(λK + (1− λ)D) ≤ N(D,K) · vol(K).

Proof. Cover D by N = N(K,D) translates of K such that

D ⊂
N⋃
i=1

(xi +K)

for some {xi}Ni=1 ⊂ D. Multiply by (1− λ) and add λK to get

λK + (1− λ)D ⊂ λK +
N⋃
i=1

((1− λ)xi + (1− λ)K) =
N⋃
i=1

(1− λ)xi +K,

where the convexity of K is used in the last equality. Then, compare the volume.

Exercise 21. Finish the proof for Lemma 3.4.
Hint: Note that

conv{K,D} =
⋃

λ∈[0,1]

λK + (1− λ)D

⊂
⋃

λ∈[0,1]

N⋃
i=1

(1− λ)xi +K

=
N⋃
i=1

[0, xi] +K.

Then one can discretize the interval [0, xi] using ∼ n points and use union bound.

3.4. Proof of inverse Santalo inequality. Now we are in a position to put everything
together to prove the inverse Santalo inequality (Theorem 3.2).

Proof of inverse Santalo inequality. We will follow two steps: isomorphic symmetriza-
tion and iterations.
Step 1: First isomorphic symmetrization.
Since the Mahler volume is invariant under linear transformations, we may assume that K is in an
`-position. So we have

M(K)M∗(K) ≤ C log 2d(K,Bn
2 ) ≤ C log n.

Choose
λup = M∗(K)a1 λdown = M(K)a1,
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where a1 ≥ 1 is to be determined later.
Consider the isomorphic symmetrization K1 defined as

K1 = conv
{
K ∩ λupBn

2 ,
1

λdown
Bn

2

}
.

We claim that

e−Cn/a
2
1 ≤ vol(K1)

vol(K)
≤ eCn/a2

1 .

In fact, by Lemma 3.3 and Sudakov inequality,

vol(K1) ≥ vol (K ∩ λupBn
2 )

≥ vol(K)
N (K,λupBn

2 )

≥ e−Cn/a2
1 · vol(K).

This is the lower bound. For the upper bound, we use Lemma ?? and the dual Sudakov inequality.

vol(K1) ≤ vol
(

conv
{
K,

1
λdown

Bn
2

})
≤ N

(
1

λdown
Bn

2 ,K

)
· vol(K)

≤ eCn/a2
1 · vol(K).

The same computation can be done for K◦, and we have

e−Cn/a
2
1 ≤ vol(K◦1 )

vol(K◦)
≤ eCn/a2

1 .

Hence,

e−Cn/a
2
1 ≤ s(K1)

s(K)
≤ eCn/a2

1 .

At the same time, by (20) and MM∗-estimate,

d(K1, B
n
2 ) ≤ λupλdown
≤M∗(K)M(K) · a2

1

≤ Ca2
1 log 2d(K,Bn

2 )

≤ Ca2
1 log n.

Choose a1 = log n, so that
d(K1, B

n
2 ) ≤ C(log n)3.

Step 2: Iteration
We first put K1 in its `-position. Then choose

λup = M∗(K1)a2 λdown = M(K1)a2,

where a2 ≥ 1 is to be determined later.
Define K2 in a similar way as above, and we get

e−Cn/a
2
2 ≤ s(K2)

s(K1)
≤ eCn/a2

2 ,
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and

d(K2, B
n
2 ) ≤ λupλdown ≤M∗(K1)M(K1) · a2

2

≤ Ca2
2 log 2d(K1, B

n
2 ) ≤ Ca2

2 log logn.

Choose a2 = log log n, so that
d(K2, B

n
2 ) ≤ C(log log n)3.

After t iterations, we get

e
−Cn

(
1

a21
+···+ 1

a2t

)
≤ s(Kt)
s(K)

≤ e
Cn
(

1

a21
+···+ 1

a2t

)
and

d(K,Bn
2 ) ≤ C

(
log(t) n

)3
,

where log(t) = log log · · · log denotes n iterations of log. Choose t to be the smallest integer such
that

log(t) n < 2.
Then

d(Kt, B
n
2 ) ≤ C1

for some absolute constant C1 > 0. Moreover, since with our choice of the ai’s, the series
∑

(1/a2
i )

is uniformly convergent, we obtain that for some absolute constant C2 > 0,

e−C2n ≤ s(Kt)
s(K)

≤ eC2n.

Then, by (18) and (19), the proof is complete.

An immediate corollary says that the Mahler volume of any symmetric convex bodies in Rn are
equivalent.

Corollary 3.6 (Malher volume of arbitrary symmetric convex bodies). For any symmetric
convex bodies K,L ⊂ Rn, there exists an absolute constant c ∈ (0, 1) such that

cn ≤ s(K)
s(L)

≤ 1
cn
.

4. Applications of Isomorphic Symmetrizations

4.1. Milman’s ellipsoids. The method of isomorphic symmetrization turns out to be quite
flexible. Instead of controlling vol(K) and vol(K◦) throughout symmetrizations, one can control
vol(K +L) for an arbitrary symmetric convex body L. This idea leads to the existence of so-called
M -ellipsoids.

Theorem 4.1 (M -ellipsoids). For every symmetric convex K ⊂ Rn, there exists an ellipsoid
EK called an M -ellipsoid with the following properties:

(1) vol(EK) = vol(K);
(2) There exists an absolute constant C ≥ 1 such that

1
Cn

vol(EK + L) ≤ vol(K + L) ≤ Cn vol(EK + L)

for every symmetric convex body L ⊂ Rn.

Remarks. The existence of M -ellipsoids means that a symmetric convex body “behaves” like
an ellipsoid.
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The proof is similar to the proof of the inverse Santalo inequality in the previous section. So
we will only sketch the proof and leave the details as an exercise. Before starting the proof, we will
have to modify our volume control lemmas. We encourage the reader to verify them in a similar
way to their original versions.

Lemma 4.2 (Modified volume of intersection).

vol(K + L) ≤ N(K,D) vol(K ∩D + L).

Lemma 4.3 (Modified Volume of Convex Hull).

vol(conv{K,D}+ L) ≤ 2enb ·N(K,D) · vol(K + L).

Proof of Theorem 4.1. Define the isomorphic symmetrizations Ki the same way as before.
At each step, we have

(21) e−Cn/a
2
i ≤ vol(Ki + L)

vol(Ki−1 + L)
≤ eCn/a2

i

and
d(Kt, B

n
2 ) ≤ Ca2

i log d(Ki−1, B − 2n),
where ai = log(i) n. Hence, we conclude that

e−C1n ≤ vol(Kt + L)
vol(K + L)

≤ eC1n ∀ L,

while d(Kt, B
n
2 ) ≤ C2, which means that Kt is C-isomorphic to some ellipsoid E . Therefore,

(22) vol(K)
1
n ∼ vol(Kt)

1
n ∼ vol(E)

1
n ,

where the first ∼ follows from (21) and the second ∼ follows from the C-isomorphism. Now, let
EK = ρE such that vol(K) = vol(ρE). By (22), we see that

ρ ∼ constant.

Since Kt is still O(1)-isomorphic to EK , we can replace Kt by EK in (21).

Remarks. (1) Uniqueness of M -ellipsoids. M -ellipsoid is not unique, as the constant
C is not specified. We leave it an exercise to check that one can dilate one axis of an
M -ellipsoid by 2, and it still remains an M -ellipsoid.

(2) Duality. Similar with the proof of the inverse Santalo inequality, one can run isomorphic
symmetrizations for K and K◦ in parallel. This way, one gets

EK◦ = ρ · (EK)◦

in the end, where ρ ∼ constant. Note that one can define M -ellipsoids in an isomorphic
way as

vol(EK) ∼ vol(K),
that is,

1
Cn

vol(K) ≤ vol(EK) ≤ Cn vol(K),

rather than exact equality. Adopting this definition, we have

EK◦ = (EK)◦.

(3) M -position. By Theorem 4.1, we can define a position of a convex body called an M -
position.

Definition 4.1 (M-position). Let K be a convex body in Rn. Then, K is said to be in an
M -position if its M -ellipsoid is an Eucdliean ball.
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4.2. Inverse Brunn-Minkowski inequality. Without putting on extra conditions on the
convex bodies, the reader is encouraged to find examples that fail the inverse Brunn-Minkowski
inequality (this is not hard). However, if we assume in addition that the convex bodies are in
M -positions, then the inverse Brunn-Minkowski is a quick consequence of Theorem 4.1.

Corollary 4.4 (Inverse Brunn-Minkowski inequality). Let K,L ⊂ Rn be symmetric convex
bodies whose M -ellipsoids are homothetic. Then

vol(K + L)
1
n ≤ C

(
vol(K)

1
n + vol(L)

1
n

)
.

Proof. We will use Theorem 4.1 twice.

vol(K + L)
1
n ≤ C vol(EK + L)

1
n

≤ C2 vol(EK + EL)
1
n

= C2
(

vol(EK)
1
n + vol(EL))

1
n

)
(by homothety).

Remarks. By this corollary, we see that here is always a position of K such that the reverse
Brunn-Minkowski inequality holds.

The following is a consequence of inverse Brunn-Minkowski inequality.

Corollary 4.5. Let K,L ⊂ Rn be symmetric convex bodies with homothetic M -ellipsoids.
Then

vol(K ∩ L)
1
n ≥ c ·min

{
vol(K)

1
n , vol(L)

1
n

}
.

Proof. Let v(K) denote the volume ratio
(

vol(K)/ vol(Bn
2 )
)1/n. Then, by Santalo and inverse

Santalo inequalities, we have v(K◦) ∼ 1/v(K). Then,

1
v(K ∩ L)

∼ v((K ∩ L)◦)

∼ v(K◦ + L◦) (as (K ∩ L)◦ = conv{K◦, L◦} � K◦ + L◦)

∼ v(K◦) + v(L◦) (by BM and reverse BM)

∼ 1
v(K)

+
1

v(L)
(by Santalo and reverse Santalo).

This completes the proof.

Another consequence of inverse Brunn-Minkowski inequality is that the covering number and
the volume ratio of two convex bodies with homothetic M -ellipsoids are equivalent.

Corollary 4.6 (Covering number and volume ratio). Let K,L ⊂ Rn be symmetric convex
bodies with homothetic M -ellipsoids. Then

vol(K)
vol(L)

≤ N(K,L) ≤ Cnvol(K)
vol(L)

,

provided that vol(K)
vol(L) ≥ 1.
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Proof.

N(K,L)
1
n ≤

vol(K + 1
2L)

vol(1
2L)

(by covering number estimate)

≤ C ·
vol(K)

1
n + vol(1

2L)
1
n

vol(1
2L)

1
n

(by reverse Brunn-Minkowski)

≤ C
(

vol(K)
vol(L)

) 1
n

.

When we consider the covering of a symmetric convex body by its M -ellipsoid (or vice versa),
we have the following result as a direct consequence of the above corollary.

Corollary 4.7 (Covering number by M -ellipsoids). There exist absolute constants c1, c2 > 0
such that for every symmetric convex body K ⊂ Rn,

N(K, EK) ≤ ec1n N(EK ,K) ≤ ec2n.

4.3. Duality of entropy: on the exponential scale. In this subsection, we will present
a weak result on the duality of metric entropy. First, let us see what we have on the duality of
volume ratios.

Corollary 4.8 (Volume ratio duality). Let K and L be symmetric and convex bodies in Rn.
Consider the volume ratio defined by

v(K,L) =
(

vol(K)
vol(L)

) 1
n

.

Then, there exists an absolute constant C ≥ 1 such that
1
C
v(L◦,K◦) ≤ v(K,L) ≤ Cv(L◦,K◦).

Sketch of proof. Note that by Theorem 3.2,
v(K,L)
v(L◦,K◦)

= (s(K)s(L))
1
n ∼ constant.

Now, we present a result on the duality of metric entropy due to König and Milman.

Corollary 4.9 (Entropy duality; [10]). Let K,L ⊂ Rn be symmetric and convex. Then there
exists an absolute constant C > 1 such that

1
Cn

N(L◦,K◦) ≤ N(K,L) ≤ CnN(L◦,K◦).

Proof. By Lemma 3.3 and the inverse Santalo inequality,

N(K,L) ≥ vol(K)
vol(K ∩ L)

≥ cnvol(K ∩ L)◦

vol(K◦)
.

Note that
(K ∩ L)◦ = conv{K◦, L◦} ⊃ K◦ + L◦

2
.

Then,

N(K,L) ≥ cnvol(K◦ + L◦)
vol(K◦/2

≥ cnvol(K◦/2 + L◦)
vol(K◦/2

) ≥ cnN(L◦.K◦),
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where the last step follows from the covering number estimate

N(K,L) ≤
vol
(
K + 1

2L
)

vol
(

1
2L
) .

Remarks. This corollary solves a weak form of the duality conjecture

N(L◦, CK◦)c ≤ N(K,L) ≤ N(L◦, cK◦)C

when the covering number N(K,L) ∼ ecn, where an exponential coefficient does not ruin the order.

4.4. An alternative proof of Quotient of Subspace Theorem. Our last application is
a quotient of subspace theorem where the subspaces are random. Recall that the QS-theorem we
proved in only gives existence of such subspaces. In this subsection, we will see that it actually
holds with high probability under some M -position assumptions.

Corollary 4.10. (Random Quotient of Subspace theorem) Let K ⊂ Rn be a symmetric convex
body in an M -position, let δ ∈ (0, 1), and let E be a random (1 − δ)n-dimensional subspace and
F ⊂ E a random k = (1− δ)2n-dimensional subspace. Then with probability at least 1− e−ck,

d
(
PF (E ∩K), Bk

2

)
≤ C(δ),

where C(δ) is a constant that depends only on δ.

Proof. AsK is in anM -position, we may assume that itsM -ellipsoid EK = Bn
2 , and EK◦ = Bn

2 .
By Corollary 4.7,

N(K,Bn
2 ) ≤ ec1n N(K◦, Bn

2 ) ≤ ec2n.
Moreover, by Theorem 4.6, a random subspace E of dimension (1 − δ)n satisfies that, with high
probability,

diam(K ∩ E) ≤ C(δ).
That is, K ∩ E ⊂ C(δ) ·Bn

2 ∩ E. By duality, we get

PE(K◦) ⊃ 1
C(δ)

· PE(Bn
2 ).

Hence, we found a Euclidean ball inside a projection of K◦. Clearly,

N
(
PE(K◦), PE(Bn

2 )
)
≤ N(K◦, Bn

2 ) ≤ ec2n.

Apply entropy theorem again, for PE(K◦) and a random (1− δ)2n-dimensional subspace F ,

diam(PE(K◦) ∩ F ) ≤ C(δ).

Consequently,
1
C(δ

) ·Bn
2 ∩ F ⊂ PE(K◦) ∩ F ⊂ C(δ) ·Bn

2 ∩ F.

Hence, by duality,
d(PF (K ∩ E), Bk

2 ) = d(PE(K◦) ∩ F,Bk
2 ) ≤ C(δ)2.
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