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Abstract. We extend some basic results known for finite range operators to long range operators

with off-diagonal decay. Namely, we prove an analogy of Sch’nol’s theorem. We also establish the
connection between the almost sure spectrum of long range random operators and the spectra of

deterministic periodic operators.

1. Introduction

Long range operators on l2pZdq arise naturally from the discrete Laplacian on half-space Zd`1
`

after dimension reduction (see e.g. [9, 6, 7]). However, compared to Schrödinger operators or finite
range operators, little has been studied. Our goal is to extend some basic results known for finite
range operators to long range setting with off-diagonal decay. The first part of this note concerns
a generalization of Sch’nol’s theorem to the case of a long range normal operator. The second part
provides a connection between the almost sure spectrum of long range self-adjoint random operators
and the spectra of deterministic periodic operators. We hope these could serve as ready-to-use tools
in the future for people who study discrete operators.

The classical Sch’nol’s theorem for Schrödinger operators is well-known, see [15, 2, 16, 4] for the
continuum case, from which the discrete version could be derived. It asserts that any spectral mea-
sure gives full weight to the set of energies with generalized eigenfunctions, moreover, the spectrum is
the closure of this set. It has many applications, for example, relating the spectrum to non-uniform
hyperbolicity of the corresponding cocycle, as well as providing a priori estimate which turns out to
be crucial in the proofs of the almost-localization and localization. So far there have been various
generalizations of Sch’nol’s theorem (see e.g. [13, 14, 3, 5]). In this note, we generalize this result
to the long range case.

Let us consider long range normal operators with polynomially decaying off-diagonal terms.

pHuqpnq “
ÿ

jPZdzt0u

anj upn´ jq ` a
n
0upnq,(1.1)

with

|amj | ď Cp1` }j}q´r for any j,m P Zd,(1.2)

where }j} is the Euclidean norm of j and C ą 0 is a constant. We assume
ÿ

jPZd
anj a

n´m
j´m “

ÿ

jPZd
an´j´j a

n´j
m´j for any m,n P Zd,(1.3)

to ensure H is a normal operator.
We introduce generalized eigenfunctions.

Definition 1.1. (ε-generalized eigenvalue/eigenfunction) An energy z of H is called an ε-generalized
eigenvalue if there is a formal solution to the equation Hφz “ zφz, with φzp0q “ 1 and |φzpnq| ď

C 1p1` }n}q
d
2`ε for some constant C 1.
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We denote the set of ε-generalized eigenvalues by Gε. The spectral measures of H are defined by
µn,mpBq “ pen, χBpHqemq, for any Borel sets B Ă C and m,n P Zd. We denote µn,n :“ µn. Let
µ “

ř

nPZd λnµn, where λn “ p1` }n}q
´d´2ε{p

ř

nPZdp1` }n}q
´d´2εq. Clearly, any spectral measure

is absolutely continuous with respect to µ.
Our main theorem is:

Theorem 1.1. Let H be a normal operator defined as in (1.1) with r ą 2d. Then for any 0 ă ε ă
r ´ 2d, we have the following:
paq. Gε Ď σpHq,
pbq. µpσpHqzGεq “ 0,
pcq. Gε “ σpHq.

The proof of part (a) relies on Lemma 2.1. We will discuss both in Section 2. The proofs of (b),
(c) are standard. We will include them in the appendix for completeness.

Switching our attention to the long range self-adjoint case, we are able to cover operators with
unbounded potentials an0 . Let H be a self-adjoint operator defined as follows.

pHuqpnq “
ÿ

jPZdzt0u

anj upn´ jq ` a
n
0upnq,(1.4)

with

|amj | ď Cp1` }j}q´r for any j ‰ 0,m P Zd, and anj “ an´j´j .(1.5)

Note that the polynomial decay condition (1.5) does not involve j “ 0, allowing us to take
unbounded potentials into account. Following exactly the same line of the proof of Theorem 1.1, we
have Sch’nol’s theorem for long range self-adjoint operators (with unbounded potentials).

Theorem 1.2. Let H be a self-adjoint operator defined as in (1.4) with r ą 2d. Then for any
0 ă ε ă r ´ 2d, the conclusions of Theorem 1.1 hold.

The localization property of long range self-adjoint operators with polynomially decaying off-
diagonal terms has been studied in the random potential case, when the potentials an0 “ Vωpnq are
i.i.d. random variables. Some known results are pure point spectrum in the large disorder and high
energy regime when r ą d [1], purely singular spectrum for typical ω when d “ 1 and r ą 4 [17],
pure point spectrum for typical ω when d “ 1 and r ą 8 (conjectured to be r ą 2) under some
conditions on the density of distribution [8]. We hope Theorem 1.2 could serve as a step towards
the proof of the conjecture, as well as establishing localization in more general setting.

The second part of this note is devoted to extending some basic results which were previously
known for random Schrödinger operators to long range self-adjoint cases.

Let Γ be a subset of Zd such that Γ and ´Γ form a partition of Zdzt0u in the sense that Γ
Ş

p´Γq “
H and Γ

Ť

p´Γq “ Zdzt0u. Denote Γ0 “ t0u
Ť

Γ. Let tγpiquiPΓ be a sequence of compactly supported
probability measures on C and γp0q be a probability measure on R. Similar to Theorem 1.2 we do not
make compact support assumption on γp0q. This enables us to cover unbounded operators. Let dκ “
Ś

iPΓ0
pdγpiqqZ

d

and Ω “
Ś

iPΓ0
psupp γpiqqZ

d

“ tpωpiqqiPΓ0
| ωpiq “ pω

piq
j qjPZd , ω

piq
j P supppγpiqqu. For

any n P Zd, we define the translations T̃n on Ω as T̃npωpiqq “ pTnωpiqq, where pTnωpiqqj “ ω
piq
j`n.

Consider long range self-adjoint operator Hpωpiqq on l2pZdq:

pHpωpiqquqpnq “
ÿ

jPZd
an´jpT̃

npωpiqqqupjq,(1.6)
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where akppω
piqqq “ ω

pkq
0 for k P Γ0, and akppω

piqqq “ ω
p´kq
´k for k P p´Γ0q. We will further assume

γpkq have shrinking supports, namely,

supp γpkq Ď BpCp1` }k}q´rq for k P Γ,(1.7)

for some constant C ą 0 and r ą d
2 , with BpMq being the ball in C centered at 0 with radius M .

Following a standard argument, one can show that there exists a non-random Σ, such that
σpHpωpiqqq “ Σ for κ´almost every pωpiqq P Ω [12].

We say a set Ω1 is a dense subset of Ω, if for any pωpiqq P Ω, 0 ă ξ P R and any finite sets
Ź

1 Ă Γ0

and
Ź

2 Ă Zd, there exists pω̃piqq P Ω1 such that |ω̃
piq
j ´ ω

piq
j | ă ξ for any i P

Ź

1 and j P
Ź

2. It is

clear that any subset Ω0 Ď Ω with κpΩ0q “ 1 is dense in Ω.
The following result is similar to Theorem 3 [11].

Theorem 1.3. Let Ω1 be a dense subset of Ω, then

Σ “
ď

pωpiqqPΩ1

σpHpωpiqqq

This theorem has a direct corollary which implies the almost sure spectrum is determined by the

spectra of periodic operators. We say pωpiqq is p´periodic if ω
piq
j “ ω

piq
j`p for any i, j P Zd.

Corollary 1.4.

Σ “
ď

pPZ`

ď

p´periodic pωpiqq

σpHpωpiqqq

This can be viewed as an extension of Theorem 3.9 [10] for Schrödinger operators. We also point
out that in [5], the authors established a similar result for the extended CMV matrices.

If we focus on one-dimensional random Jacobi matrices, it turns out we could get a better result
than Corollary 1.4. Let γ be a compactly supported measure on R. Let dκ̃ “ pdγqZ and Ω̃ “

psupp γqZ. For any ω P Ω̃, we consider

pHωuqpnq “ apTnωqupn` 1q ` apTn´1ωqupn´ 1q ` bpTnωqupnq(1.8)

where apωq “ ω1, bpωq “ ω0 and Tωn “ ωn`2, which ensures that all apT iωq and bpT jωq are
independent. We have

Theorem 1.5. Let Hω be a random Jacobi matrice defined as in (1.8). We have

Σ “
ď

2´periodic tαju

σpHtαjuq.

Remark 1.1. Unlike the random Schrödinger case, for Jacobi matrices, Σ “
Ť

constanttαu σpHconstanttαuq

is in general not true. For example, take suppγ “ t0, 1u, then
Ť

constanttαu σpHconstanttαuq “ r´1, 3s,

however Σ “ r´2, 3s.

We organize the note as follows: a key lemma and proof of Theorem 1.1 will be presented in
Section 2, proofs of Theorems 1.3 and 1.5 will be given in Section 3, the proof of our key lemma will
be included in Section 4.
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2. Key lemma and the proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemma.

Lemma 2.1. Let H be defined as in (1.1) with r ą p2d ` εq q
q´1 for some ε ą 0 and q P Z`. Let

z P Gε and φ be a corresponding generalized eigenfunction. Let

φN pjq “

"

φpjq ´N ď }j} ď N,
0 otherwise.

(2.1)

and ΦN “ pH ´ zqφN . We have

lim inf
LÑ8

}ΦLq}l2

}φLq}l2
“ 0.(2.2)

Proof of Theorem 1.1. We only prove part (a) here, the proofs of part (b) and (c) are standard,
we include them in the appendix for reader’s convenience.

Since r ą 2d ` ε, we can choose q P Z` large enough such that r ą p2d ` εq q
q´1 . Then Lemma

2.1 directly implies dist pz, σpHqq “ 0. l

3. Proofs of Theorems 1.3 and 1.5

3.1. Proof of Theorem 1.3. Let Ω0 be a shift invariant set with κpΩ0q “ 1 such that σpHpωpiqqq “ Σ

for every pωpiqq P Ω0. Then given any pωpiqq P Ω, ξ ą 0, and any finite sets
Ź

1 Ă Γ0,
Ź

2 Ă Zd,
there exists pω̃piqq P Ω0 such that |ω

pjq
n ´ ω̃

pjq
n | ă ξ for any j P

Ź

1 and n P
Ź

2.

The “ Ě ” direction. Take pωpiqq P Ω1 and E P σpHpωpiqqq, by Weyl’s criterion, for any L ą 0 there

exists φpLq P l2pZdq such that }pHpωpiqq ´ Eqφ
pLq} ă 1

L}φ
pLq}.

First, we show such φpLq can be taken with compact support. This is standard if Hpωpiqq is a
bounded operator, but since Hpωpiqq could be unbounded here, we will work out the detail.

Let us consider a cut-off function φ
pLq
k pnq “ χ}j}ďkpnqφ

pLqpnq. We split Hpωpiqq into two parts

H0
pωpiqq

` H1
pωpiqq

, where H0
pωpiqq

contains only the diagonal multiplication, namely pH0
pωpiqq

uqpnq “

a0pT̃
npωpiqqqupnq, and H1

pωpiqq
is the off-diagonal part. Clearly, H1

pωpiqq
is a bounded operator while

H0
pωpiqq

could be unbounded. Now let’s consider

pHpωpiqq ´ Eqpφ
pLq ´ φ

pLq
k q “ pH1

pωpiqq ´ Eqpφ
pLq ´ φ

pLq
k q `H0

pωpiqqpφ
pLq ´ φ

pLq
k q.

We know }pH1
pωpiqq

´EqpφpLq´φ
pLq
k q}l2 ď }pH

1
pωpiqq

´Eq} }pφpLq´φ
pLq
k q}l2 Ñ 0 as k Ñ8. Also since

}H0
pωpiqq

φpLq} ď }pH1
pωpiqq

´EqφpLq} ` 1
L}φ

pLq} ă 8, we have }H0
pωpiqq

pφpLq´ φ
pLq
k q}l2 Ñ 0, as k Ñ8.

Thus }pHpωpiqq ´ Eqpφ
pLq ´ φ

pLq
k q} Ñ 0 as k Ñ8. Taking kL large enough, we may assume

}pHpωpiqq ´ Eqφ
pLq
kL
} ă

2

L
}φ
pLq
kL
}.(3.1)

For simplicity, we still denote φ
pLq
kL

by φpLq and we assume it is supported on a compact set t}n} ď Ku.

Now, we take an integer m large enough such that pm ´ 1q2r´d ą L2K2d´2r, this choice is
guaranteed by r ą d{2. Let

Ź

1 “ Γ0

Ş

t}j} ď pm ` 1qKu and
Ź

2 “ t}n} ď mKu. There exists
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pω̃piqq P Ω0 such that |ω
pjq
n ´ ω̃

pjq
n | ă

1
LKdmd{2

for any j P
Ź

1 and n P
Ź

2. Now let us consider

}pHω̃piq ´Hωpiqqφ
pLq}2l2

“
ÿ

nPZd
|

ÿ

}j}ďK

pan´jpT̃
npω̃piqqq ´ an´jpT̃

npωpiqqqqφpLqpjq|2

ď}φpLq}2l2
ÿ

nPZd

ÿ

}j}ďK

|an´jpT̃
npω̃piqqq ´ an´jpT̃

npωpiqqq|2

“}φpLq}2l2
ÿ

}j}ďK

p
ÿ

}n}ąmK

`
ÿ

}n}ďmK,n´jPΓ0

`
ÿ

}n}ďmK,n´jP´Γ

q|an´jpT̃
npω̃piqqq ´ an´jpT̃

npωpiqqq|2

ď}φpLq}2l2
ÿ

}j}ďK

p
ÿ

}n}ąmK

2p1` }n´ j}q´2r `
ÿ

}n}ďmK,n´jPΓ0

|ω̃pn´jqn ´ ωpn´jqn |2

`
ÿ

}n}ďmK,n´jP´Γ

|ω̃pj´nqn ´ ωpj´nqn |2q

ďC}φpLq}2l2p
ÿ

}n}ěmK

ÿ

}j}ďK

}n´ j}´2r `K2dmd 1

L2K2dmd
q

ďC}φpLq}2l2ppm´ 1qd´2rK2d´2r `
1

L2
q

ď
C

L2
}φpLq}2l2

Thus }pHω̃piq ´ Eqφ
pLq} ď

?
C`1
L }φpLq}. Taking LÑ8, we get E P σpHpω̃piqqq “ Σ.

The “ Ď ” direction. Note that since Ω1 is dense in Ω, the proof follows from that of “ Ě ” by
interchanging the roles of Ω0 and Ω1. l

3.2. Proof of Theorem 1.5. LetHω “ H1
ω`H

2
ω, where pH1

ωuqpnq “ apTnωqupn`1q`apTn´1ωqupn´
1q and pH2

ωuqpnq “ bpTnωqupnq. Let Σ1 “ σpH1
ωq a.s., Σ2 “ σpH2

ωq a.s. and M “ supt|α|, α P
supp γu. Clearly,

ď

2´periodic tαju

σpHtαjuq “ r´2M, 2M s ` supp γ.(3.2)

The “ Ď ” direction. }H1
ω} ď 2M , we have Σ1 Ă r´2M, 2M s. This immediately implies Σ Ď

Σ1 ` Σ2 Ď r´2M, 2M s ` suppγ.

The “ Ě ” direction. Let Ω0 be the full κ̃-measure set so that σpHωq “ Σ for any ω P Ω0. Since
M “ supt|α|, α P supp γu, for any β P p´2M, 2Mq, there exists a set F with γpFq ą 0 such that
1
2 |β| ă inft|α|, α P Fu. Then taking any ξ P supp γ, there exists a sequence pαn, ξnq P Ω0 such that
1
2 |β| ă αn and ξn Ñ ξ as n Ñ 8. Clearly, β ` ξ P

Ť

n σpHt...αnξnαnξnαnξn...uq “ Σ. Thus we have
p´2M, 2Mq ` supp γ Ď Σ, which implies the desired result after taking closure. l
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4. Proof of Lemma 2.1

For simplicity, we denote aj0 ´ z by aj0. Then ΦN pnq “
ř

}j}ďN

ajn´jφpjq. Clearly,

ÿ

nPZd
|ΦLq pnq|

2 “
ÿ

nPZd
|

ÿ

}j}ďLq

ajn´jφpjq|
2

“
ÿ

}n}ąLq

|
ÿ

}j}ďLq,}j´n}ąLq´1

ajn´jφpjq `
ÿ

}j}ďLq,}j´n}ďLq´1

ajn´jφpjq|
2

`
ÿ

}n}ďLq

|
ÿ

}j}ąLq,}j´n}ąLq´1

ajn´jφpjq `
ÿ

}j}ąLq,}j´n}ďLq´1

ajn´jφpjq|
2

ď2
ÿ

}n}ąLq

¨

˝|
ÿ

}j}ďLq,}j´n}ąLq´1

ajn´jφpjq|
2 ` |

ÿ

}j}ďLq,}j´n}ďLq´1

ajn´jφpjq|
2

˛

‚

` 2
ÿ

}n}ďLq

¨

˝|
ÿ

}j}ąLq,}j´n}ąLq´1

ajn´jφpjq|
2 ` |

ÿ

}j}ąLq,}j´n}ďLq´1

ajn´jφpjq|
2

˛

‚

:“2pΣ1 ` Σ2 ` Σ3 ` Σ4q.(4.1)

Estimate of Σ1.

ÿ

}n}ąLq

|
ÿ

}j}ăLq,}j´n}ąLq´1

ajn´jφpjq|
2

ď}φLq}
2
l2

ÿ

}n}ąLq

ÿ

}j}ăLq,}j´n}ąLq´1

|ajn´j |
2

ď}φLq}
2
l2

ÿ

}n}ąLq

ÿ

}j}ăLq,}j´n}ąLq´1

p1` }n´ j}q´2r

ďC}φLq}
2
l2L

qp2d´2rq`2r´1.(4.2)

The proof of (4.2) will be included in the appendix.

Estimate of Σ2.

ÿ

}n}ąLq

|
ÿ

}j}ďLq,}j´n}ďLq´1

ajn´jφpjq|
2

ď
ÿ

Lq`Lq´1ě}n}ąLq

¨

˝

ÿ

}m}ďLq´1

χ}n´m}ďLq |a
n´m
m φpn´mq|

˛

‚

2

ď

$

’

&

’

%

ÿ

}m}ďLq´1

p1` }m}q´r

¨

˝

ÿ

Lq`Lq´1ě}n}ąLq

χ}n´m}ďLq |φpn´mq|
2

˛

‚

1
2

,

/

.

/

-

2

ďp}φpL`1qq}
2
l2 ´ }φpL´1qq}

2
l2qp

ÿ

mPZd
p1` }m}q´rq2.(4.3)
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Estimate of Σ3.

ÿ

}n}ďLq

|
ÿ

}j}ąLq,}j´n}ąLq´1

ajn´jφpjq|
2

ď
ÿ

}n}ďLq

p
ÿ

}j}ąLq,}j´n}ąLq´1

|ajn´jφpjq|q
2

ď

$

’

&

’

%

ÿ

}j}ąLq

|φpjq|

¨

˝

ÿ

}n}ďLq

χ}j´n}ąLq´1 |ajn´j |
2

˛

‚

1
2

,

/

.

/

-

2

ď

$

’

&

’

%

ÿ

Lq`Lq´1ě}j}ąLq

}j}
d
2`ε

¨

˝

ÿ

}n}ďLq

χ}j´n}ąLq´1 p1` }n´ j}q´2r

˛

‚

1
2

`
ÿ

}j}ąLq`Lq´1

}j}
d
2`ε

¨

˝

ÿ

}n}ďLq

p1` }n´ j}q´2r

˛

‚

1
2

,

/

.

/

-

2

ď

$

’

&

’

%

CLqp2d´rq`r`εq `
ÿ

}j}ąLq`Lq´1

}j}
d
2`ε

¨

˝

ÿ

}n}ďLq

p1` }n´ j}q´2r

˛

‚

1
2

,

/

.

/

-

2

ďpCLqp2d´rq`r`εqq
1
2 .(4.4)

The proof of (4.4) will be included in the appendix.

Estimate of Σ4.

ÿ

}n}ďLq

|
ÿ

}j}ąLq,}j´n}ďLq´1

ajn´jφpjq|
2

ď
ÿ

}n}ďLq

¨

˝

ÿ

}m}ďLq´1

χ}n´m}ąLq |a
n´m
m φpn´mq|

˛

‚

2

ď

$

’

&

’

%

ÿ

}m}ďLq´1

p1` }m}q´r

¨

˝

ÿ

}n}ďLq

χ}n´m}ąLq |φpn´mq|
2

˛

‚

1
2

,

/

.

/

-

2

ďp}φpL`1qq}
2
l2 ´ }φpL´1qq}

2
l2qp

ÿ

mPZd
p1` }m}q´rq2.(4.5)

Eventually combining the estimates (4.2), (4.3), (4.4), (4.5) with our choice of r, we conclude that

lim inf
lÑ8

}ΦLq}
2
l2

}φLq}2l2
ď C lim inf

LÑ8

}φpL`1qq}
2
l2 ´ }φpL´1qq}

2
l2

}φLq}2l2
as LÑ8.(4.6)

Then lim infLÑ8
}ΦLq }

2
l2

}φLq }
2
l2
ą κ ą 0 would imply that }φpL`1qq}

2
l2 ě p1 `

κ
C q}φpL´1qq}

2
l2 , which leads

to exponential growth of φ, contradiction. l
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Appendix

The proofs of (4.2) and (4.4) are in the same spirit.

Proof of (4.2).
ÿ

}n}ąLq

ÿ

}j}ăLq,}j´n}ąLq´1

p1` }j ´ n}q´2r

“
ÿ

Lq`Lq´1ě}n}ąLq

ÿ

}j}ăLq,}j´n}ąLq´1

p1` }j ´ n}q´2r `
ÿ

}n}ąLq`Lq´1

ÿ

}j}ăLq

p1` }j ´ n}q´2r

ďCLqp2d´2rq`2r´1 ` CLqd
ż 8

Lq`Lq´1

xd´1

px´ Lqq2r
dx

ďCLqp2d´2rq`2r´1.

l

Proof of (4.4).

ÿ

}j}ąLq`Lq´1

p1` }j}q
d
2`ε

¨

˝

ÿ

}n}ăLq

p1` }n´ j}q´2r

˛

‚

1
2

ďL
dq
2

ÿ

}j}ąLq`Lq´1

p1` }j}q
d
2`ε p}j} ´ Lqq´r

„L
dq
2

ż 8

Lq`Lq´1

x
3d
2 `ε´1

px´ Lqqr
dx

ďCL
qp2d´rq`r`εq

.

l

Part (b). The proof is standard, we present it here for readers’ convenience and completeness.

Since µn,m ! µ, there exists a Fn,mpEq “
dµn,m
dµ pEq defined for µ-a.e. E. We will show that for

any fixed n, for µ-a.e. E, Fn,mpEq is an ε-generalized eigenfunction, namely

(1) Fn,mpEq is a solution to Hu “ Eu,

(2) |Fn,mpEq| ď p1` }m}q
d
2`ε.

Proof.

(1).pH ´ EqFn,mpEq “ 0, µ-a.e. E, is equivalent to
ż

σpHq

pHFn,mqpEqgpEq dµpEq “

ż

σpHq

EFn,mpEqgpEq dµpEq

for any compactly supported continuous function g on σpHq. For simplicity, we denote aj0 ´ E by

aj0. Then for any such g, gpHq is a bounded operator, moreover,
ş

σpHq
EFn,mpEqgpEq dµpEq

“ pen, HgpHqemq
“ pgpHq˚en, Hemq
“ pgpHq˚en,

ř

kPZd a
m
k´mekq

“ pen,
ř

kPZd a
m
k´mgpHqekq

“
ş

σpHq

ř

kPZd a
m
k´mFn,kpEqgpEq dµpEq
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“
ş

σpHq
pHFn,mqpEqgpEq dµpEq.

(2). For any Borel set B Ă C,

|

ż

B

Fn,mpEq dµpEq| “ |µn,mpBq| ď
a

µnpBqµmpBq| ď
µpBq
?
λnλm

ď CµpBqp1` }n}q
d
2`εp1` }m}q

d
2`ε

Thus |Fn,mpEq| ď Cp1` }m}q
d
2`ε for some constant C and µ-a.e. E. l

Part (c). Part (c) follows directly from (a), (b) and the fact that spectrum of H is the smallest
closed set which supports every spectral measure of H. l
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