CONTINUITY OF MEASURE OF THE SPECTRUM FOR SCHRODINGER
OPERATORS WITH POTENTIALS DRIVEN BY SHIFTS AND SKEW-SHIFTS
ON TORI

RUI HAN

ABSTRACT. We study discrete Schrédinger operators on [?(Z) with ~-Lipschitz potentials defined
on higher dimensional torus (']l'd, T), where T is a shift or skew-shift with frequency a. We show that
under the positive Lyapunov exponent condition, measure of the spectrum at irrational frequency
is the limit of measures of spectra at rational approximations.

1. INTRODUCTION

Consider Schrédinger operators acting on [2(Z):
(1.1) Hirou(n) =un+1)+uln—1)+ f(T"0)u(n).

where f is the potential, § € T? is the phase and T is shift or skew-shift with frequency o on the torus
T<¢. We study continuity of the spectra in frequency a. In particular, since the spectrum at rational
frequencies can be obtained numerically and are easier to study, continuity in frequency allows us
to study the spectrum at irrational frequencies via rational approximation. While many recent
significant advances in discrete Schrodinger operators, see e.g. [6l O] 2], require one dimensional
torus shift and analytic potentials, our results reveal that continuity of the spectrum is a much more
general phenomenon: it holds for both shift and skew-shift on higher dimensional torus and also
Holder continuous potentials. Our results can be viewed as a generalization of [12], where a similar
result was obtained for d = 1 and T is a rotation of the circle.

Let Tso : 0 — 0 + o be the shift and Tss 4 : (01,02,...,0q) = (01 + o, 02 + 61,....,04 + 04_1)
be the skew-shift. For a fixed f,T ., let us denote the spectrum of Hyr, o by S(a,0). Let
S(a) = UperaS(a, 8). Tt is known that if « is irrational, S(a) = S(a, 8) for any 0 € T¢, while if « is
rational, S(«,#) depends on § and S (%) is a union of at most g, bands. We would like to establish

that lim, S(%) = S(«) in the sense that lim,,_ Xg(Ln)(E) = XS(a)(E) for ae. E€R.

This question first arose from the Aubry-Andre conjecture [I] on the measure of the spectrum
of the almost Mathieu operator (d = 1, T = T, , and f(0) = 2Xcos276) to be 4|1 — |A||. This
conjecture has been proved for all irrational «, with partial results obtained in [5] 16}, [I7] [7, 14] and
the extension to all irrational o was made in [10] [4] E| (see e.g. [12] for a complete history). The proof
of the Aubry-Andre conjecture contains two important ingredients: one is to obtain estimates about
the rational frequencies [5 [I7]: \S(%)\ — 4|1 — |Al|; the other is to prove continuity of measure
of the spectrum in frequency at irrationals. While the first ingredient clearly specializes to the
almost Mathieu operator, the second ingredient, related to quantitative estimates on the Hausdorff
continuity of the spectrum, have been studied for much more general potentials.

When d =1 and T = T ,, it was proved [10] that for any analytic f in the regime of positive Lya-
punov exponent, |S(22)| = [S(«a)| for every Diophantine v and its continued fraction approximants.

IThe argument of [4], applies to the critical value A = 1, did not involve continuity in frequency
1



2 RUI HAN

Later, it was shown [II] that positivity of the Lyapunov exponent is not need for this result, in
particular, S (Z—“L) — S(«) for any analytic f and all irrational a. More recently, it has been proved
[12] that under the condition of positive Lyapunov exponent, the regularity of f can be relaxed to
Hoélder continuity.

One of the key ingredients of the proof of [12] is strongly (weakly) M-dense property of the
irrational rotation of the circle defined in the abstract form in Section 2.3. We say a dynamical
system is strongly M-dense if any point will enter a ball with radius 7 within r= steps under the
map as long as r is small, while the weak version requires only a sequence of lengths r, — 0. The
strongly M-dense property for the irrational rotation of the circle is guaranteed by the Diophantine
condition on a and proved using continued fraction expansion. For the higher dimensional shift
and skew-shift, strongly M-dense properties have been studied using different methods in [3} [§], and
some results on weakly M-dense property were obtained in [8]. These properties are important in
our generalization of the results of [I2] to both (T4, Ty ,) and (T%, Ty o) cases.

Let L(c, E) be the Lyapunov exponent of the operator Hyr, ¢ at energy E (see (2.1)). Let
Li(a)={F:L(a,F) >0} and Ly (a) ={E : L(c, E) > €}.

With the Diophantine conditions defined in section our main results are:

Theorem 1.1. Let T, be an irrational shift on T¢. Let 1 > v > ﬁl be a constant. Then if o ¢
WDC(%) ora € DC(7) for some T > 1, there exists a sequence of rationals % = (p;—;l", o p;—;”) -«

such that for any f € C7(T9),

lim ST Ly (a) = S(a) N Ly ().

n—oo q,n

Remark 1.1. The sequence of rationals can be taken as the full sequence of best simultaneous
approximation, of a (see section 2.2.2) when o € DC(7), and a proper subsequence when « ¢
WDC(%).

A direct corollary is:

Corollary 1.2. Let ’;—” be the chosen sequence of rationals as in Theorem we have,

lim |S(22)

n—oo qn

NLi(a)] = [S(a) N Li(a)].

Theorem 1.3. Let Tis o be a skew-shift on T¢. For any o € R\ Q. There exists a sequence of
rationals % — o such that for any f € CV(T9) with 1 > ~v > %,

lim SN Lo (a) = S(a) N Ly ().

n—oo qn

Remark 1.2. The sequence of rationals will the be full sequence of continued fraction approximants
if « € DC(7) for some 7 > 1, and a proper subsequence otherwise.

A direct corollary is:

Corollary 1.4. Let % be the chosen sequence of rationals as in Theorem we have,

lim [S(72) N Ly ()] = S(0) N L (o).

n—oo (Zn
For shifts on two dimensional torus, as for the skew-shifts, we are able to cover all frequencies.

Theorem 1.5. Let Ts,, be an irrational shift on T2. Let 1 > v > % be a constant. Then for any
€0 > 0 and for any irrational o, there exists a sequence of rationals ’g—" — « (depending on €g) such
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that for any f € C7(T?),

lim S(&) N Leyt (@) = S(@) N Ly ().

n—o0 Qn

Similarly, we have

Corollary 1.6. Let g—" be the chosen sequence of rationals as in Theorem we have,

: P
tim |S(2%) 0 Ly (@) = [S(a) N La(a).
n—oo qn
We organize this paper as follows: some preliminaries are presented in section 2, then the two
key lemmas proved in section 3 prepare us for the proofs of main theorems in section 4.

2. PREPARATION

For x € R, let ||z||ra = dist (z,Z%). For a Borel set U C R%, let |U| be its Lebesgue measure.
Let dy be the dimension of the frequency a and dy = d — dy + 1, hence we have dy = d and d; =1
when T, o = Ts,a, while dg = 1 and d; = d when Ty o = Tss . Let D,(z) C T¢ be the Euclidean
ball centered at x with radius r.

2.1. Cocycles and Lyapunov exponent. For a given z € C, a formal solution u of Hy 1, , gu = zu
can be reconstructed using the transfer matrix

A6, 2) = (Z_lf(9> _01>

(u(;l(;lf')l)> = A(T? .0, 2) (u{ffﬁ)lﬁ

Indeed, let Ak (0, z) be the product of consecutive transfer matrices:
Ap(0,2) = A(TFL10,2) - - - A(T. 00, 2)A(0,2) for k>0, Ag(a,0,2) =1 and
Ap(0,2) = (A_x(TF ,0,2))"" for k < 0.

Then for any k € Z we have the following relation

(uy) = 2w, ().

We define the Lyapunov exponent

via the equation

1 1
(2.1) L(a, z) = limf/ In||Ak(0,2)| d0 = inff/ In ||Ak(0, )| d.
k k Jya k k Jya
Furthermore, L(a, z) = limy, 4 In ||Ax(6, z)|| for a.e. 6 € T

2.2. Rational approximation.
Let us introduce the Diophantine condition on T¢:

- c

DC(1) = UeoDC(c, 7) = Ueso{ (a1, ..., aa)[[| (R, ) |1 = W

r T

where 7(h) = H;i:l max (|h;],1). It is well-known that when 7 > 1, DC(7) is a full measure set.
We also introduce the weak Diophantine condition:

for any 0 # h € Z%}

WDC(7) = UpsoWDC(c,7) = Upso{(ar, ..., ag)| max{||hai|jr} > ﬁ for any 0 # h € Z}.
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It is well-known that when 7 > 4, WDC(7) is a full measure set.
Clearly, in general DC(7) C WDC(r), while in the single frequency case DC(7) = WDC(r).

2.2.1. Single frequency. Let a be an irrational number and let {f’l—“} be its continued fraction ap-
proximants. The following properties (see e.g.[15]) are well-known:

1
2.2 < allt <
(2.2) S S lgnallr < —
(2.3) [kallr > [lgnalr for gn <[k < gn1-
If « € DC(e,7) for some ¢ > 0, we have
(2.4) lkalT > ﬁ for any k # 0.

In particular, combining (2.2]) with (2.4) we have

(2.5) Cnt+1 < qp.

2.2.2. Multiple frequencies. Let a = (aq,ao, ..., aq) be a set of irrational frequencies. Let {%} be
its best simultaneous approximation with respect to the Euclidean norm on T%, namely,

d d
S llgaasl3 < 3 aylp for any 0 < [k < gu.

J=1 Jj=1

Clearly, by the pigeonhole principle, we have

d d P
o0 (2 4+ 1)

(2.6) ) lgnaylln® < =2
j=1 Q41

By the definition of Diophantine and weak-Diophantine condition.
(1) If a« € DC(e, 7), then

(2.7) [k, a)|lx > —=— for any k € 24\{0}.
r(k)”
(2) If « € WDC(c, ), then
(2.8) Jnax, | ka|lr > T for any k € Z\{0}.

In particular combining (2.6 with (2.8)), we have for « € WDC(71),

1
(2.9) dq7., < g, for some constant ¢

(3) If a« ¢ WDC(7), there exists a subsequence of the best simultaneous Diophantine approxi-
mation { Z’A} so that
ng

1 im ¢ -
(2.10) Jim gr,, mwax [lgn, e =0



CONTINUITY OF MEASURE OF THE SPECTRUM 5

2.3. Covering T¢ with the orbit of a ball. We say a point « in T¢ is (T, r, M)-dense for some
r>0,M>1,if U;T;gf D,.(T7z) = T?. This means, the ball D,(x) with radius 7 will cover the whole
T in r— steps under the map 7. We say (T%,T) is strongly M-dense if there exists o > 0 such
that any point in T¢ is (T, r, M)-dense. We say (T, T) is weakly M -dense if there exists a sequence
rr, — 0 as k — oo such that any point in T¢ is (T, ry, M)-dense.

The following lemmas are extracted from section 3 of [§].

Lemma 2.1. Let T, be an irrational shift on T? and Tys be a skew-shift. We have,

if « € DC(1) C T?, then (T%,Ty) is strongly M-dense for some M > 1.
if o € DC(7) C T, then (T%, Tys) is strongly M-dense for some M > 1.
if « ¢ DC(d) C T, then (T4, Tys) is weakly M-dense for some M > 1.
if « € WDC(7) C T2, then (T2, Ty) is weakly M-dense for some M > 1.

2.4. Upper and lower bounds on transfer matrices. The following lemma on the uniform
upper bound of transfer matrix is essentially from [I3], we have adapted it into the following form
for convenience.

Lemma 2.2. [13] Let f be a function whose discontinuity set has Lebesgue measure 0 and T be a
uniquely ergodic map on T¢. Let L(E) be positive on a Borel set U and p be a measure such that
u(U) > 0. Then for any ¢, e > 0 there exists a number D¢ > 0, a set B¢ . with 0 < u(B¢.) < ¢, and
an integer N¢ . such that for any E € U\Bg .:

e L(E)> D¢,

o forn> Ne., |2 — E| <e ™ and § € T, we have L 1In||A,(0,z)|| < L(E) +e.

We also have the following lemma on the lower bound of transfer matrix.

Lemma 2.3. [§] Let f € CV(T%) with 1 >~ >0 and Ty o = Ts,o 0r Tss.o. Let L(E) be positive on
a Borel set U and a measure p with p(U) > 0. For any (€, let D¢, By . and N¢ . be defined as in
Lemmal22 Then
(1) if (T4, T o) is strongly M-dense for some M > 0, then for n > N, any E € U\Bg,
|z — E| < e %" and § € T? we have

min max ||An(T£ N Z)H > e L(B)=3¢)
te{—1,1} Ve 5Me,, )

0,..,e ¥
(2) if (T4, Ty o) is weakly M-dense for some M > 0, then there exists a sequence {ng(€)} such
that for any k > ke, any E € U\B¢., |z — E| < e™*" and § € T? we have

min max | A, (T2 .0, 2)|| > e (L(E)=3¢)
k

11 5Me
{11} g

2.5. Continuity of the spectrum for well approximated frequencies. The following lemma
enables us to establish the continuity of the spectrum at frequencies that are well approximated by
the rationals, it is an extension of the (T, T; ) case in [5] 12].

Lemma 2.4. Let f € C7(T¢) with1 >~ > 0 and Ty o = Ts.o 07 Tsso. Then for each E € S(a),
for ||o/ — a0 small enough, there exists E' € S(a') such that

(2.11) |E— E'| < Cflla —a[lpay" -

Two direct corollaries of Lemma [2.4] are:
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Lemma 2.5. Let T =T, ,. Ifa ¢ WDC’(%), then there exists a proper subsequence of the best
simultaneous approximation {]:"—’k} of a, such that for any f € C7(T?), we have
e

(2.12) S(a) C liminf S(@)

k— oo Gny,
Lemma 2.6. Let T = Tss 0. If a ¢ DC(d—1+ %), then there exists a proper subsequence of the
continued fraction approximants {5&} of a, such that for any f € CY(T9), we have
Mg

(2.13) S(a) C liminf §(2mx).

k—o0 Gny,

The proofs of Lemmas [2.4] 2.5] [2:6] will be included in the appendix.
In the next sections, we therefore focus on the Diophantine a.

3. KEY LEMMAS
Lemma 3.1. Let f € C7(T?) with 1 > v > 0 and Tio =Ts,o or Tsso. Recall that dy = d,dy =1
for Tss.o and dy = 1,d1 = d for Tss . Then

(1) for any ¢,e >0, let D¢, Bee and N¢ . be defined as in Lemma |2.2. If (T, T o) is strongly
M-dense, then forn > N{ _, where N/ is defined as in Lemma|2.5, E € S(a)N L (a)\ Bee
and ||o/ — a|pay small enough, there exists E' € S(a') so that

5M

—n(2¢ _sMe edin
(3.1) B~ B < Ce"(F =) 4 Cpfla — o[, Mo,

where C' is an absolute constant.

(2) for any (,e > 0, let B¢ and N¢ . be defined as in Lemma . If (T4 T, o) is weakly
M-dense, then for k > k¢, where {ny(e)} and k¢ are defined as in Lemma E €
S(a) N Ley4(a) \ Bee and ||o — oo small enough, there exists E' € S(a’) so that

(3.2) ‘E i E/‘ < Cefnk(%ofm’»yfe) + CfHa . a,‘l%d(,@s]wsdlnk7

where C 1s an absolute constant.

Proof of Lemma We will prove part (2). Part (1) will be discussed briefly at the end of the
proof. For E € S(a) N Ley+ \ Bee, by Lemma for n > N¢ . and |z — E| < e=%" we have

(3.3) A (6, 2)| < emLEI+e),
By Lemma for k > ke, |2 — E| < e7%" and any 0 € T¢ we have

(3.4) min max | A, (T2 0, 2)| > on (L(E)=3¢)
ve{-1,1} =0, BSTME"k )

Let Ey be a generalized eigenvalue of Hy 1, , ¢ such that |E — Eg| < e~ (L(E)He) with generalized
eigenvector 1 satisfying |1 ()| = o((1 + |z])*/?*¢). Then there exists z,, so that

55) )l _ )

= X .
Ltfzm o 14zl

Let 1 be normalized so that
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5Me
For k > k¢, let Qn, =€ » "*. There exists an 2} with z,, — Q,, —np < 2} < @, — 1y such that

A, (TEL0, E)|| > e+ (E(E)=3¢) - Similarly there exists an x5 with z,, < 4 < @, + Qp, such that
k D 3 3 k
| An, (T52,0, Eo)|| > e+ (L(E)=3¢) In general, we have

P (T! 0,2) —P,_1(T!310,2)
[ _ n\Ltx a" n *,00 7
An(T*,agaZ) - (Pn_1(T,£ﬂ19,Z) _ n—2(Ti;12072) .

This implies for z; = 2} or ] — 1 and k; = ng,ny — 1 or n; — 2, we have

1 —3e

(3.7) |Pr, (T4,0, Eo)| > Zek’(L(E) 5.,

Similarly, for 3 = 2% or 5 — 1 and k. = ng,ny — 1 or nx — 2, we have
1

(3.8) [P (T30, Eo)| > ek (H730,

Let

3.9 = k. =z3+ ke

(3.9) T =1 + 5 | @ =13 5 |

Also set x5 = x1 + k; — 1 and x4 = x3 + k. — 1. By Cramer’s rule and (3.3)), ,
Py, (TFLH0, ) e (L(B)+e)

Eo _ *,Q 2k [(E)
(3.10) |G[x1,x2](xl’x1)| = | P, (T246, Fo) | < Lok (L(B)=5¢) <e 4 )
Similarly
Y
(3.11) |G[€°3’m4](xr,x3)\ < e~ L(E),
For similar reasons, (3.10) holds if we replace (x;, z1) with (z;, x2), (2 —1,21) or (z; — 1, 22); (3.11))
holds if we replace (z,,x3) with (x,,z4), (2. + 1,23) or (z, + 1,24). Let A = [2;,2,], we have

Al <3Qy, = 36576"’°. Let 15 be the truncation of ¥ to A. For x = x; + 1,7 = 1,2,3,4, by (3.5
k
and ‘ ’

(3.12)

@ _ @) 1+l Lol o = o] ) s,
1+ |zm| 14z 14 |zm] — 1+ |2 -
For 1 <z < 29,

(3.13) P(x) = —G§27I2]($7$1)¢($1 —1)—Ggko

s ) (T, 22)Y (22 + 1),
Thus by (3.10) and (3.12),

L(E) SMe)
2l .

[ (20)| < A1 + |z |)e ™ (53

Similarly

L(E) 5Me)

[ (@)| < 4(1+ |z l)e 55 5
Hence the cut-off function satisfies

L(E) 5Me)
Y .

|(Hy,r, .0 — Eo)tal < C(1+ ‘mee—nk( e

Let ¢p = u:ﬁiﬁu Then by 1)
(3.14) I(Hyr. 00 — Eo)pual < Ce ™

L(E)_5Me)
4 ~y .
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z txr zl+m

. S
T, .2 Tvo® 0. Then T 9' = T*; 0, furthermore for |k| < #=5%L,

*,Q00

For T, o, set 0’ =

Ty txr )+ z txr
(3.15) (VAP ey i 0| = |TF, To? 0 TE Teo? 0 < Clk[* [la — o |-

Thus since f € C7(T9),

k+«’ﬁl+$r

3.16 H *a79—H7 1,0 )PA S max T*,a 2

(316)  W(Hpr oo = Hpr, po)oal < | max - [f(
< Cr(IA1" fla = o]l a,)”

5Med1nk

k4L _;TT 9/) |

9) - f(T*,o/

= Cflla — o[ 1a,e
Then by the choice of Ey and (3.14)), (3.16]),
(317) (B = Hyr, ,,0)01l < |E = Eo| + [[(Eo — Hyr. o 0)Onll + [(Hyr 00 — Hyro0r) Al

( ) e
E 01\/1 )+CfHOZ70/||TdO L)Med1nk.

< (e —nl

This implies there exists E' € S(a/) so that

|E—E'| < Ce ™ (R 4 Opla— o [[2,, Mt

Remark 3.1. Part (1) can be proved by considering S(«) N Ly () instead of S(a) N Ley4 () and
without taking a subsequence {ny(¢)}. O

Lemma 3.2. Let f € C7(T?) with 1>~ >0 and Tio=Ts0 or Tss q.

(1) If (T4, T, o) is strongly M-dense for some M > 1, then for any ¢ > 0 and v > 8 > 0 there
exists a set B? with 0 < |B?| < ¢ such that for any E € S(a) N L+(a)\B? and ||o/ — || pao
small enough, there exists E' € S(a) satisfying

|E — E'| < C¢lla — O/||Td0
(2) Let d =2, T =Ts4 and o € WDC(;). Then for any eg > 0 and v > B > 0 there exists
a sequence (’?& — «, with the property that for any ¢ > 0 there exists a set B?’EO with
mg

0 < |B?’E°| < ¢ such that for any E € S(a) N L€0+(a)\B?’€° there exists E' € S(?ﬂ)
my

satisfying
Py,
|E— E'| < Cylla— =I5,
ka
Proof of Lemma [3.2]
Part (1). Given ¢ > 0, let Dy > 0 be from Lemma Fix e = ¢((, 8) = % <5

Let B? = Bee(¢,8)s Nf = N¢ ec,p) With Be ¢, N¢ e as in Lemma Let N? = Né@((ﬁ) be defined

as in Lemma By Lemma for any n > N&B, E e S(a)N Li(a) \B? and ||&’ — a|pa, small
enough, there exists £’ € S(«') so that E’ is close to E, namely,

(3.18) B - | < Ce™"F =) 4 Cpfla — o L, M,

There exists a small constant o¢ g > 0 so that when ||a — &'||pe < 0¢,3 We have

v — B+ 2d1yB

! !
NCaﬁ < d1’)’D< (—thO[—Ot ”TdD)'
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Then we could take n > N/ ; satisfying

T o = o) < < O o ),
so that by there exists E’ € S(a') with
(3.19) |E— E'| < Cylla— o |2,
(|
Part (2). For ey > 0, fix a constant € = €(8,¢) = % < . For any ¢ > 0, let B?’ED =

Be ey and N 1= Ne 5.y be s in Lemma 23] Let {n(8, o)} = {ne(e(8,e0))} and K20 =
k¢ e(8,e0) be as in Lemma By Lemma for any k > k?’eo, E € S(a) N Ley+ (@) \Bg’eo and
|lo/ — a2 small enough, there exists E' € S(a/) so that

5Me

(3:20) B - B| < O (=49 1 ¢ fla - of Lueem,

a € WDC/(c, %) for some ¢ > 0. Take the sequence of best simultaneous approximation {%} By
ol
lb we have g, > c7q? . Combining this with 1) and 1) we have

D, c 1 1 2 Do, 1 2
o — 2L > > o(— )3 > cla—L2ma,.

dm+1 1+% T qm /Qm+1 dm

Which implies
. . 9 _
—Infla— 22| < —Infla— 2 $ —Zinfla— 22 .
dm m—+1 Y m
Therefore for each ny (8, €p) there must be a corresponding my (5, €p) such that that

760 pmk 60
——— i < —In|la— 2 < ——M .
4(y - B +48) | Gy | v—B+46

By (3.20) and the choice of my, there exists E' € S(?’l—’“) so that
771k

P,
(3.21) |E — B'| < Cflla = 2 .

mg

4. PROOF OF THEOREMS AND

First of all, the continuity of S(«) in the Hausdorff metric implies that for any sequence % - a,

—

(4.1) limsupS(&) C S(a).

n—roo Qn

By (4.1) and Lemmas the proofs are all reduced to proving a statement of the following
type

S(a) N Ly (a) C liminf §(22%).
k—o0 Qny,
Since the proofs for (T, T o), (T% Tss.) and (T2, T ) (weakly M-dense) relying on Lemma
are quite similar, we will only give the proof for (T¢, Ty o) in detail. The other two proofs will be
discussed briefly at the end of this section.
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Proof of Theorem Let % be the full sequence of continued fraction approximants of a. Since
v > %, we could fix 1 < # <. By Lemma for any ¢ > 0 there exists B¢ := BCB, 0 < |B¢| <¢,
such that for n large enough we have

p p p

S(0) N Ly() \ B € U, [ani — Cflla = 22112, boi + Cplla — 2218) = s(22) U F,

Qn Qn n

where ¢}, < g, and
S(2) = UL, (i, b
dn

This implies

S(a) N Ly(a )\BCChmlnfS( "YU F,

n—00 Qn
furthermore,
(4.2) 15(0) N Ly (@) \ (timinf S(2) U F,)| < ¢,
By (2.2),
(4.3) |l < 2Cfgnl|a - —||é§ <2Csq,57,

which implies ), |Fy| < oo, thus |limsup,,_,  F,| = 0. This implies
e Pn TP
(4.4) |hnrg£f5(q—)UFn\f|lggng( )|

n qn
Combining (4.2)) with (4.4), we have
|S(a) N Ly(cx )\hmlnfS( )|<C

for any ¢ > 0. Thus
(4.5) S(a) N Ly (a) C liminf S(E2).

n—00 qn

|
Theorem could be proved by takmg ~ to be the full sequence of best simultaneous approxi-

mation. One needs to apply (2.7) to obtain the following (similar to (4.3)))

(4.6) Pl < 2Csq0 00 .
Theorem [1.5| could be proved by applying part (2) of Lemma O

APPENDIX A. PrROOFs OF LEmMAS [2.4] [275] [2:6]
A.l. Lemma [2.4] The proof is very similar to that of [B, 12]. Given ¢ > 0 and E € S(a),
there exists an approx1mate eigenfunction ¢, € 1?(Z) such that ||(Hz, .0 — E)¢c| < €l|¢c]. Set
gj,r.(n) = max (1 — g Z"I ,0). Avron-van Mouche-Simon [5] proved that for sufficiently large L, for
any bounded f: T? — R there exists j such that 9;,L%e 7 0 and for any € > 0,
(A.1) I(Hr. .0 — E)gj,ocll” < C(e* + L72)llgj, e,

where C' is universal. Now let 6’ = T*_,i,Tf,ae. By the Holder assumptionon f and j—L <n < j+L,
we have

F(T7008) = FT2,0)] < CHI 0! = allpao ).
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Thus,

(A.2) [(Hr, o0 — E)gj,00e|| < [(Hr, 00 — Hr, ..0)95,00ell + [[(Hr. .0 — E)gj, L0l

(A.3) < (CHLM|o! = allpa )Y + C( + L7)7) | g5,06 -

Choosing € = L™ = C|ja — ||z TR , we obtain the statement of Lemma O

A.2. Lemma Assume « ¢ WDC’(%). Then by 1) there exists a subsequence of the best

simultaneous Diophantine approximation {z "t 1 50 that
Tk

(A.4) Jim e Joax, ln, 157 = 0.

By Lemma we have

5(6) C U [an,. — Cyllar — 7; 157, b m,i+cf||a—p”k|\l+w-f sy U R,

N qny

where q;k < ¢y, and

o J
S(pnk) =U; kl[ankm bnk 2]
an

Thus, by (A.4),

S(a) C liminf S(2me).

k—o0 dny

O

A.3. Lemma Assume o ¢ DC(d — 1+ %) Then by 1) there exists a subsequence of the

. - . P
continued fraction approximants an so that
"k

14+(d—1)y
(A.5) lim g, "% ||qn,€04H1+le =0
k—o0
By Lemma we have
S C Pny, 1+d7 C Dny, ﬁ —g Pny F
(a )CU Yan,.,i — Cyllo— || s bog,i + Cflla = =[] == S(==) U F,,,

where q;,, < qn, and

D a,
S( _ ) = Uizkl [ank,i7 bnk,l]
qny,

Thus, by (A.5)),

S(a) C liminf S(2me).

k—o0 qny,
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