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Abstract. We study discrete Schrödinger operators on l2(Z) with γ-Lipschitz potentials defined

on higher dimensional torus (Td, T ), where T is a shift or skew-shift with frequency α. We show that
under the positive Lyapunov exponent condition, measure of the spectrum at irrational frequency

is the limit of measures of spectra at rational approximations.

1. introduction

Consider Schrödinger operators acting on l2(Z):

Hf,T,θu(n) = u(n+ 1) + u(n− 1) + f(Tnθ)u(n).(1.1)

where f is the potential, θ ∈ Td is the phase and T is shift or skew-shift with frequency α on the torus
Td. We study continuity of the spectra in frequency α. In particular, since the spectrum at rational
frequencies can be obtained numerically and are easier to study, continuity in frequency allows us
to study the spectrum at irrational frequencies via rational approximation. While many recent
significant advances in discrete Schrödinger operators, see e.g. [6, 9, 2], require one dimensional
torus shift and analytic potentials, our results reveal that continuity of the spectrum is a much more
general phenomenon: it holds for both shift and skew-shift on higher dimensional torus and also
Hölder continuous potentials. Our results can be viewed as a generalization of [12], where a similar
result was obtained for d = 1 and T is a rotation of the circle.

Let Ts,α : θ → θ + α be the shift and Tss,α : (θ1, θ2, ..., θd) → (θ1 + α, θ2 + θ1, ..., θd + θd−1)
be the skew-shift. For a fixed f, T∗,α, let us denote the spectrum of Hf,T∗,α,θ by S(α, θ). Let

S(α) = ∪θ∈TdS(α, θ). It is known that if α is irrational, S(α) = S(α, θ) for any θ ∈ Td, while if α is

rational, S(α, θ) depends on θ and S( ~pnqn ) is a union of at most qn bands. We would like to establish

that limn→∞ S( ~pnqn ) = S(α) in the sense that limn→∞ χS( ~pnqn )(E) = χS(α)(E) for a.e. E ∈ R.

This question first arose from the Aubry-Andre conjecture [1] on the measure of the spectrum
of the almost Mathieu operator (d = 1, T = Ts,α and f(θ) = 2λ cos 2πθ) to be 4|1 − |λ||. This
conjecture has been proved for all irrational α, with partial results obtained in [5, 16, 17, 7, 14] and
the extension to all irrational α was made in [10, 4] 1 (see e.g. [12] for a complete history). The proof
of the Aubry-Andre conjecture contains two important ingredients: one is to obtain estimates about
the rational frequencies [5, 17]: |S(pnqn )| → 4|1 − |λ||; the other is to prove continuity of measure

of the spectrum in frequency at irrationals. While the first ingredient clearly specializes to the
almost Mathieu operator, the second ingredient, related to quantitative estimates on the Hausdorff
continuity of the spectrum, have been studied for much more general potentials.

When d = 1 and T = Ts,α, it was proved [10] that for any analytic f in the regime of positive Lya-
punov exponent, |S(pnqn )| → |S(α)| for every Diophantine α and its continued fraction approximants.

1The argument of [4], applies to the critical value λ = 1, did not involve continuity in frequency
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Later, it was shown [11] that positivity of the Lyapunov exponent is not need for this result, in
particular, S(pnqn )→ S(α) for any analytic f and all irrational α. More recently, it has been proved

[12] that under the condition of positive Lyapunov exponent, the regularity of f can be relaxed to
Hölder continuity.

One of the key ingredients of the proof of [12] is strongly (weakly) M -dense property of the
irrational rotation of the circle defined in the abstract form in Section 2.3. We say a dynamical
system is strongly M -dense if any point will enter a ball with radius r within r−M steps under the
map as long as r is small, while the weak version requires only a sequence of lengths rk → 0. The
strongly M -dense property for the irrational rotation of the circle is guaranteed by the Diophantine
condition on α and proved using continued fraction expansion. For the higher dimensional shift
and skew-shift, strongly M -dense properties have been studied using different methods in [3, 8], and
some results on weakly M -dense property were obtained in [8]. These properties are important in
our generalization of the results of [12] to both (Td, Ts,α) and (Td, Tss,α) cases.

Let L(α,E) be the Lyapunov exponent of the operator Hf,T∗,α,θ at energy E (see (2.1)). Let
L+(α) = {E : L(α,E) > 0} and Lε+(α) = {E : L(α,E) > ε}.

With the Diophantine conditions defined in section 2.2, our main results are:

Theorem 1.1. Let Ts,α be an irrational shift on Td. Let 1 ≥ γ > d
d+1 be a constant. Then if α /∈

WDC( 1
γ ) or α ∈ DC(τ) for some τ > 1, there exists a sequence of rationals ~pn

qn
= (

p1,n

qn
, ...,

pd,n
qn

)→ α

such that for any f ∈ Cγ(Td),

lim
n→∞

S(
~pn
qn

) ∩ L+(α) = S(α) ∩ L+(α).

Remark 1.1. The sequence of rationals can be taken as the full sequence of best simultaneous
approximation, of α (see section 2.2.2) when α ∈ DC(τ), and a proper subsequence when α /∈
WDC( 1

γ ).

A direct corollary is:

Corollary 1.2. Let ~pn
qn

be the chosen sequence of rationals as in Theorem 1.1, we have,

lim
n→∞

|S(
~pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

Theorem 1.3. Let Tss,α be a skew-shift on Td. For any α ∈ R \ Q. There exists a sequence of
rationals pn

qn
→ α such that for any f ∈ Cγ(Td) with 1 ≥ γ > 1

2 ,

lim
n→∞

S(
pn
qn

) ∩ L+(α) = S(α) ∩ L+(α).

Remark 1.2. The sequence of rationals will the be full sequence of continued fraction approximants
if α ∈ DC(τ) for some τ > 1, and a proper subsequence otherwise.

A direct corollary is:

Corollary 1.4. Let pn
qn

be the chosen sequence of rationals as in Theorem 1.3, we have,

lim
n→∞

|S(
pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

For shifts on two dimensional torus, as for the skew-shifts, we are able to cover all frequencies.

Theorem 1.5. Let Ts,α be an irrational shift on T2. Let 1 ≥ γ > 2
3 be a constant. Then for any

ε0 > 0 and for any irrational α, there exists a sequence of rationals ~pn
qn
→ α (depending on ε0) such
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that for any f ∈ Cγ(T2),

lim
n→∞

S(
~pn
qn

) ∩ Lε0+(α) = S(α) ∩ Lε0+(α).

Similarly, we have

Corollary 1.6. Let ~pn
qn

be the chosen sequence of rationals as in Theorem 1.5, we have,

lim
n→∞

|S(
~pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

We organize this paper as follows: some preliminaries are presented in section 2, then the two
key lemmas proved in section 3 prepare us for the proofs of main theorems in section 4.

2. Preparation

For x ∈ Rd, let ‖x‖Td = dist (x,Zd). For a Borel set U ⊆ Rd, let |U | be its Lebesgue measure.
Let d0 be the dimension of the frequency α and d1 = d− d0 + 1, hence we have d0 = d and d1 = 1
when T∗,α = Ts,α, while d0 = 1 and d1 = d when T∗,α = Tss,α. Let Dr(x) ⊂ Td be the Euclidean
ball centered at x with radius r.

2.1. Cocycles and Lyapunov exponent. For a given z ∈ C, a formal solution u of Hf,T∗,α,θu = zu
can be reconstructed using the transfer matrix

A(θ, z) =

(
z − f(θ) −1

1 0

)
via the equation (

u(n+ 1)
u(n)

)
= A(Tn∗,αθ, z)

(
u(n)

u(n− 1)

)
Indeed, let Ak(θ, z) be the product of consecutive transfer matrices:

Ak(θ, z) = A(T k−1
∗,α θ, z) · · ·A(T∗,αθ, z)A(θ, z) for k > 0, A0(α, θ, z) = I and

Ak(θ, z) = (A−k(T k∗,αθ, z))
−1 for k < 0.

Then for any k ∈ Z we have the following relation(
u(k)

u(k − 1)

)
= Ak(θ, z)

(
u(0)
u(−1)

)
.

We define the Lyapunov exponent

L(α, z) = lim
k

1

k

∫
Td

ln ‖Ak(θ, z)‖ dθ = inf
k

1

k

∫
Td

ln ‖Ak(θ, z)‖ dθ.(2.1)

Furthermore, L(α, z) = limk
1
k ln ‖Ak(θ, z)‖ for a.e. θ ∈ Td.

2.2. Rational approximation.
Let us introduce the Diophantine condition on Td:

DC(τ) = ∪c>0DC(c, τ) = ∪c>0{(α1, ..., αd)|‖〈~h, α〉‖T ≥
c

r(~h)τ
for any ~0 6= ~h ∈ Zd}

where r(~h) =
∏d
i=1 max (|hi|, 1). It is well-known that when τ > 1, DC(τ) is a full measure set.

We also introduce the weak Diophantine condition:

WDC(τ) = ∪c>0WDC(c, τ) = ∪c>0{(α1, ..., αd)|max{‖hαi‖T} ≥
c

|h|τ
for any 0 6= h ∈ Z}.
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It is well-known that when τ > 1
d , WDC(τ) is a full measure set.

Clearly, in general DC(τ) ⊆WDC(τ), while in the single frequency case DC(τ) = WDC(τ).

2.2.1. Single frequency. Let α be an irrational number and let {pnqn } be its continued fraction ap-

proximants. The following properties (see e.g.[15]) are well-known:

(2.2)
1

2qn+1
≤ ‖qnα‖T ≤

1

qn+1
.

(2.3) ‖kα‖T > ‖qnα‖T for qn < |k| < qn+1.

If α ∈ DC(c, τ) for some c > 0, we have

(2.4) ‖kα‖T ≥
c

|k|τ
for any k 6= 0.

In particular, combining (2.2) with (2.4) we have

(2.5) cqn+1 ≤ qτn.

2.2.2. Multiple frequencies. Let α = (α1, α2, ..., αd) be a set of irrational frequencies. Let { ~pnqn } be

its best simultaneous approximation with respect to the Euclidean norm on Td, namely,

d∑
j=1

‖qnαj‖2T <
d∑
j=1

‖kαj‖2T for any 0 < |k| < qn.

Clearly, by the pigeonhole principle, we have

(2.6)

√√√√ d∑
j=1

‖qnαj‖T2 ≤
2Γ(d2 + 1)

1
d

√
πq

1
d
n+1

.

By the definition of Diophantine and weak-Diophantine condition.

(1) If α ∈ DC(c, τ), then

(2.7) ‖〈~k, α〉‖T ≥
c

r(~k)τ
for any ~k ∈ Zd\{~0}.

(2) If α ∈WDC(c, τ), then

(2.8) max
1≤j≤d

‖kαj‖T ≥
c

|k|τ
for any k ∈ Z\{~0}.

In particular combining (2.6) with (2.8), we have for α ∈WDC(τ),

(2.9) c′q
1
d
n+1 ≤ qτn for some constant c′.

(3) If α /∈ WDC(τ), there exists a subsequence of the best simultaneous Diophantine approxi-

mation { ~pnkqnk
} so that

(2.10) lim
k→∞

qτnk max
1≤j≤d

‖qnkαj‖T = 0.
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2.3. Covering Td with the orbit of a ball. We say a point x in Td is (T, r,M)-dense for some

r > 0, M ≥ 1, if ∪r−Mj=0 Dr(T
jx) = Td. This means, the ball Dr(x) with radius r will cover the whole

Td in r−M steps under the map T . We say (Td, T ) is strongly M -dense if there exists r0 > 0 such
that any point in Td is (T, r,M)-dense. We say (Td, T ) is weakly M -dense if there exists a sequence
rk → 0 as k →∞ such that any point in Td is (T, rk,M)-dense.

The following lemmas are extracted from section 3 of [8].

Lemma 2.1. Let Ts be an irrational shift on Td and Tss be a skew-shift. We have,

• if α ∈ DC(τ) ⊂ Td, then (Td, Ts) is strongly M -dense for some M ≥ 1.
• if α ∈ DC(τ) ⊂ T, then (Td, Tss) is strongly M -dense for some M ≥ 1.
• if α /∈ DC(d) ⊂ T, then (Td, Tss) is weakly M -dense for some M ≥ 1.
• if α ∈WDC(τ) ⊂ T2, then (T2, Ts) is weakly M -dense for some M ≥ 1.

2.4. Upper and lower bounds on transfer matrices. The following lemma on the uniform
upper bound of transfer matrix is essentially from [13], we have adapted it into the following form
for convenience.

Lemma 2.2. [13] Let f be a function whose discontinuity set has Lebesgue measure 0 and T be a
uniquely ergodic map on Td. Let L(E) be positive on a Borel set U and µ be a measure such that
µ(U) > 0. Then for any ζ, ε > 0 there exists a number Dζ > 0, a set Bζ,ε with 0 < µ(Bζ,ε) < ζ, and
an integer Nζ,ε such that for any E ∈ U\Bζ,ε:

• L(E) ≥ Dζ ,
• for n > Nζ,ε, |z − E| < e−4εn and θ ∈ Td, we have 1

n ln ‖An(θ, z)‖ < L(E) + ε.

We also have the following lemma on the lower bound of transfer matrix.

Lemma 2.3. [8] Let f ∈ Cγ(Td) with 1 ≥ γ > 0 and T∗,α = Ts,α or Tss,α. Let L(E) be positive on
a Borel set U and a measure µ with µ(U) > 0. For any ζ, ε, let Dζ , Bζ,ε and Nζ,ε be defined as in
Lemma 2.2. Then

(1) if (Td, T∗,α) is strongly M -dense for some M > 0, then for n > N ′ζ,ε, any E ∈ U\Bζ,ε,
|z − E| < e−4εn and θ ∈ Td we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ

n

‖An(T j∗,αθ, z)‖ ≥ en(L(E)−3ε).

(2) if (Td, T∗,α) is weakly M -dense for some M > 0, then there exists a sequence {nk(ε)} such
that for any k > kζ,ε, any E ∈ U\Bζ,ε, |z − E| < e−4εnk and θ ∈ Td we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ

nk

‖Ank(T j∗,αθ, z)‖ ≥ enk(L(E)−3ε).

2.5. Continuity of the spectrum for well approximated frequencies. The following lemma
enables us to establish the continuity of the spectrum at frequencies that are well approximated by
the rationals, it is an extension of the (T,Ts,α) case in [5, 12].

Lemma 2.4. Let f ∈ Cγ(Td) with 1 ≥ γ > 0 and T∗,α = Ts,α or Tss,α. Then for each E ∈ S(α),
for ‖α′ − α‖Td0 small enough, there exists E′ ∈ S(α′) such that

|E − E′| < Cf‖α− α′‖
γ

1+d1γ

Td0
.(2.11)

Two direct corollaries of Lemma 2.4 are:
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Lemma 2.5. Let T = Ts,α. If α /∈ WDC( 1
γ ), then there exists a proper subsequence of the best

simultaneous approximation { ~pnkqnk
} of α, such that for any f ∈ Cγ(Td), we have

S(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).(2.12)

Lemma 2.6. Let T = Tss,α. If α /∈ DC(d − 1 + 1
γ ), then there exists a proper subsequence of the

continued fraction approximants {pnkqnk
} of α, such that for any f ∈ Cγ(Td), we have

S(α) ⊆ lim inf
k→∞

S(
pnk
qnk

).(2.13)

The proofs of Lemmas 2.4, 2.5, 2.6 will be included in the appendix.
In the next sections, we therefore focus on the Diophantine α.

3. Key Lemmas

Lemma 3.1. Let f ∈ Cγ(Td) with 1 ≥ γ > 0 and T∗,α = Ts,α or Tss,α. Recall that d0 = d, d1 = 1
for Tss,α and d0 = 1, d1 = d for Tss,α. Then

(1) for any ζ, ε > 0, let Dζ , Bζ,ε and Nζ,ε be defined as in Lemma 2.2. If (Td, T∗,α) is strongly
M -dense, then for n > N ′ζ,ε, where N ′ζ,ε is defined as in Lemma 2.3, E ∈ S(α)∩L+(α)\Bζ,ε
and ‖α′ − α‖Td0 small enough, there exists E′ ∈ S(α′) so that

|E − E′| ≤ Ce−n(
Dζ
4 −

5Mε
γ ) + Cf‖α− α′‖γTd0

e5Mεd1n,(3.1)

where C is an absolute constant.
(2) for any ζ, ε > 0, let Bζ,ε and Nζ,ε be defined as in Lemma 2.2. If (Td, T∗,α) is weakly

M -dense, then for k > kζ,ε, where {nk(ε)} and kζ,ε are defined as in Lemma 2.3, E ∈
S(α) ∩ Lε0+(α) \Bζ,ε and ‖α′ − α‖Td0 small enough, there exists E′ ∈ S(α′) so that

|E − E′| ≤ Ce−nk(
ε0
4 −

5Mε
γ ) + Cf‖α− α′‖γTd0

e5Mεd1nk ,(3.2)

where C is an absolute constant.

Proof of Lemma 3.1. We will prove part (2). Part (1) will be discussed briefly at the end of the
proof. For E ∈ S(α) ∩ Lε0+ \Bζ,ε, by Lemma 2.2, for n > Nζ,ε and |z − E| < e−4εn we have

‖An(θ, z)‖ ≤ en(L(E)+ε).(3.3)

By Lemma 2.3, for k > kζ,ε, |z − E| < e−4εnk and any θ ∈ Td we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ

nk

‖Ank(T j∗,αθ, z)‖ ≥ enk(L(E)−3ε).(3.4)

Let E0 be a generalized eigenvalue of Hf,T∗,α,θ such that |E−E0| < e−nk(L(E)+4ε), with generalized

eigenvector ψ satisfying |ψ(x)| = o((1 + |x|)1/2+ε). Then there exists xm so that

(3.5)
|ψ(xm)|
1 + |xm|

= max
x

|ψ(x)|
1 + |x|

.

Let ψ be normalized so that

(3.6)
|ψ(xm)|
1 + |xm|

= 1.
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For k > kζ,ε, let Qnk = e
5Mε
γ nk . There exists an x′1 with xm −Qnk − nk ≤ x′1 ≤ xm − nk such that

‖Ank(T
x′1
∗,αθ,E0)‖ > enk(L(E)−3ε). Similarly there exists an x′3 with xm ≤ x′3 ≤ xm +Qnk such that

‖Ank(T
x′3
∗,αθ,E0)‖ > enk(L(E)−3ε). In general, we have

An(T l∗,αθ, z) =

(
Pn(T l∗,αθ, z) −Pn−1(T l−1

∗,α θ, z)
Pn−1(T l−1

∗,α θ, z) −Pn−2(T l−2
∗,α θ, z)

)
.

This implies for x1 = x′1 or x′1 − 1 and kl = nk, nk − 1 or nk − 2, we have

(3.7) |Pkl(T x1
∗,αθ,E0)| > 1

4
ekl(L(E)−3ε).

Similarly, for x3 = x′3 or x′3 − 1 and kr = nk, nk − 1 or nk − 2, we have

(3.8) |Pkr (T x3
∗,αθ,E0)| > 1

4
ekr(L(E)−3ε).

Let

(3.9) xl = x1 +

[
kl
2

]
; xr = x3 +

[
kr
2

]
.

Also set x2 = x1 + kl − 1 and x4 = x3 + kr − 1. By Cramer’s rule and (3.3), (3.7),

|GE0

[x1,x2](xl, x1)| = |
Px2−xl(T

xl+1
∗,α θ,E0)

Pkl(T
x1
∗,αθ,E0)

| ≤ e
kl
2 (L(E)+ε)

1
4e
kl(L(E)−3ε)

< e−
nk
4 L(E).(3.10)

Similarly

|GE0

[x3,x4](xr, x3)| < e−
nk
4 L(E).(3.11)

For similar reasons, (3.10) holds if we replace (xl, x1) with (xl, x2), (xl− 1, x1) or (xl− 1, x2); (3.11)
holds if we replace (xr, x3) with (xr, x4), (xr + 1, x3) or (xr + 1, x4). Let Λ = [xl, xr], we have

|Λ| < 3Qnk = 3e
5Mε
γ nk . Let ψΛ be the truncation of ψ to Λ. For x = xi ± 1, i = 1, 2, 3, 4, by (3.5)

and (3.6),

|ψ(x)|
1 + |xm|

=
|ψ(x)|
1 + |x|

· 1 + |x|
1 + |xm|

≤ 1 + |xm|+ |xm − x|
1 + |xm|

≤ 2e
5Mε
γ nk .(3.12)

For x1 ≤ x ≤ x2,

ψ(x) = −GE0

[x1,x2](x, x1)ψ(x1 − 1)−GE0

[x1,x2](x, x2)ψ(x2 + 1).(3.13)

Thus by (3.10) and (3.12),

|ψ(xl)| ≤ 4(1 + |xm|)e−nk(
L(E)

4 − 5Mε
γ ).

Similarly

|ψ(xr)| ≤ 4(1 + |xm|)e−nk(
L(E)

4 − 5Mε
γ ).

Hence the cut-off function satisfies

‖(Hf,T∗,α,θ − E0)ψΛ‖ ≤ C(1 + |xm|)e−nk(
L(E)

4 − 5Mε
γ ).

Let φΛ = ψΛ

‖ψΛ‖ . Then by (3.6),

‖(Hf,T∗,α,θ − E0)φΛ‖ ≤ Ce−nk(
L(E)

4 − 5Mε
γ ).(3.14)
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For T∗,α′ , set θ′ = T
− xl+xr2

∗,α′ T
xl+xr

2
∗,α θ. Then T

xl+xr
2

∗,α′ θ′ = T
xl+xr

2
∗,α θ, furthermore for |k| ≤ xr−xl

2 ,

‖T k+
xl+xr

2

∗,α′ θ′ − T k+
xl+xr

2
∗,α θ‖ = ‖T k∗,α′T

xl+xr
2

∗,α θ − T k∗,αT
xl+xr

2
∗,α θ‖ ≤ C|k|d1‖α− α′‖Td0 .(3.15)

Thus since f ∈ Cγ(Td),

‖(Hf,T∗,α,θ −Hf,T∗,α′ ,θ
′)φΛ‖ ≤ max

|k|≤(xr−xl)/2
|f(T

k+
xl+xr

2
∗,α θ)− f(T

k+
xl+xr

2

∗,α′ θ′)|(3.16)

≤ Cf (|Λ|d1‖α− α′‖d0)γ

= Cf‖α− α′‖γTd0
e5Mεd1nk .

Then by the choice of E0 and (3.14), (3.16),

‖(E −Hf,T∗,α′ ,θ
′)φΛ‖ ≤ |E − E0|+ ‖(E0 −Hf,T∗,α,θ)φΛ‖+ ‖(Hf,T∗,α,θ −Hf,T∗,α′ ,θ

′)φΛ‖(3.17)

≤ Ce−nk(
L(E)

4 − 5Mε
γ ) + Cf‖α− α′‖γTd0

e5Mεd1nk .

This implies there exists E′ ∈ S(α′) so that

|E − E′| ≤ Ce−nk(
ε0
4 −

5Mε
γ ) + Cf‖α− α′‖γTd0

e5Mεd1nk .

Remark 3.1. Part (1) can be proved by considering S(α) ∩ L+(α) instead of S(α) ∩ Lε0+(α) and
without taking a subsequence {nk(ε)}. �

Lemma 3.2. Let f ∈ Cγ(Td) with 1 ≥ γ > 0 and T∗,α = Ts,α or Tss,α.

(1) If (Td, T∗,α) is strongly M -dense for some M > 1, then for any ζ > 0 and γ > β > 0 there

exists a set Bβζ with 0 < |Bβζ | < ζ such that for any E ∈ S(α) ∩L+(α)\Bβζ and ‖α′ − α‖Td0

small enough, there exists E′ ∈ S(α′) satisfying

|E − E′| < Cf‖α− α′‖βTd0
.

(2) Let d = 2, T = Ts,α and α ∈ WDC( 1
γ ). Then for any ε0 > 0 and γ > β > 0 there exists

a sequence
~pmk
qmk

→ α, with the property that for any ζ > 0 there exists a set Bβ,ε0ζ with

0 < |Bβ,ε0ζ | < ζ such that for any E ∈ S(α) ∩ Lε0+(α)\Bβ,ε0ζ there exists E′ ∈ S(
~pmk
qmk

)

satisfying

|E − E′| < Cf‖α−
~pmk
qmk
‖βT2 .

Proof of Lemma 3.2.

Part (1). Given ζ > 0, let Dζ > 0 be from Lemma 2.2. Fix ε = ε(ζ, β) =
γ(γ−β)Dζ

20M(γ−β+4d1γβ) <
Dζ
4 .

Let Bβζ := Bζ,ε(ζ,β), N
β
ζ := Nζ,ε(ζ,β) with Bζ,ε, Nζ,ε as in Lemma 2.2. Let Ñβ

ζ := N ′ζ,ε(ζ,β) be defined

as in Lemma 2.3. By Lemma 3.1, for any n > Ñβ
ζ , E ∈ S(α) ∩ L+(α) \ Bβζ and ‖α′ − α‖Td0 small

enough, there exists E′ ∈ S(α′) so that E′ is close to E, namely,

|E − E′| ≤ Ce−n(
Dζ
4 −

5Mε
γ ) + Cf‖α− α′‖γTd0

e5Mεd1n.(3.18)

There exists a small constant %ζ,β > 0 so that when ‖α− α′‖Td0 < %ζ,β we have

N ′ζ,β <
γ − β + 2d1γβ

d1γDζ
(− ln ‖α− α′‖Td0 ).
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Then we could take n > N ′ζ,β satisfying

γ − β + 4d1γβ

d1γDζ
(− ln ‖α− α′‖Td0 ) ≤ n ≤ 4(γ − β + 4d1γβ)

d1γDζ
(− ln ‖α− α′‖Td0 ),

so that by (3.18) there exists E′ ∈ S(α′) with

|E − E′| < Cf‖α− α′‖βTd0
.(3.19)

�

Part (2). For ε0 > 0, fix a constant ε = ε(β, ε0) = γ(γ−β)ε0
20M(γ−β+4β) <

ε0
4 . For any ζ > 0, let Bβ,ε0ζ :=

Bζ,ε(β,ε0) and Nβ,ε0
ζ := Nζ,ε(β,ε0) be as in Lemma 2.2. Let {nk(β, ε0)} := {nk(ε(β, ε0))} and kβ,ε0ζ :=

kζ,ε(β,ε0) be as in Lemma 2.3. By Lemma 3.1, for any k > kβ,ε0ζ , E ∈ S(α) ∩ Lε0+(α) \ Bβ,ε0ζ and

‖α′ − α‖T2 small enough, there exists E′ ∈ S(α′) so that

|E − E′| ≤ Ce−nk(
ε0
4 −

5Mε
γ ) + Cf‖α− α′‖γT2e

5Mεnk .(3.20)

α ∈ WDC(c, 1
γ ) for some c > 0. Take the sequence of best simultaneous approximation { ~pmqm }. By

(2.9) we have qm ≥ cγq
γ
2
m+1. Combining this with (2.8) and (2.6), we have

‖α− ~pm+1

qm+1
‖T2 ≥ c

q
1+ 1

γ

m+1

≥ c( 1

qm

1
√
qm+1

)
2
γ ≥ c‖α− ~pm

qm
‖

2
γ

T2 .

Which implies

− ln ‖α− ~pm
qm
‖T2 < − ln ‖α− ~pm+1

qm+1
‖T2 . − 2

γ
ln ‖α− ~pm

qm
‖T2 .

Therefore for each nk(β, ε0) there must be a corresponding mk(β, ε0) such that that

γε0
4(γ − β + 4β)

nk ≤ − ln ‖α− ~pmk
qmk
‖T2 ≤ ε0

γ − β + 4β
nk.

By (3.20) and the choice of mk, there exists E′ ∈ S(
~pmk
qmk

) so that

|E − E′| ≤ Cf‖α−
~pmk
qmk
‖βT2 .(3.21)

�

4. Proof of Theorems 1.1, 1.3 and 1.5

First of all, the continuity of S(α) in the Hausdorff metric implies that for any sequence ~pn
qn
→ α,

lim sup
n→∞

S(
~pn
qn

) ⊆ S(α).(4.1)

By (4.1) and Lemmas 2.5, 2.6, the proofs are all reduced to proving a statement of the following
type

S(α) ∩ L+(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).

Since the proofs for (Td, Ts,α), (Td, Tss,α) and (T2, Ts,α) (weakly M -dense) relying on Lemma 3.2
are quite similar, we will only give the proof for (Td, Tss,α) in detail. The other two proofs will be
discussed briefly at the end of this section.
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Proof of Theorem 1.3. Let pn
qn

be the full sequence of continued fraction approximants of α. Since

γ > 1
2 , we could fix 1

2 < β < γ. By Lemma 3.2, for any ζ > 0 there exists Bζ := Bβζ , 0 < |Bζ | < ζ,
such that for n large enough we have

S(α) ∩ L+(α) \Bζ ⊂ ∪
q′n
i=1[an,i − Cf‖α−

pn
qn
‖βT, bn,i + Cf‖α−

pn
qn
‖βT] := S(

pn
qn

) ∪ Fn,

where q′n ≤ qn and

S(
pn
qn

) = ∪q
′
n
i=1[an,i, bn,i].

This implies

S(α) ∩ L+(α) \Bζ ⊂ lim inf
n→∞

S(
pn
qn

) ∪ Fn,

furthermore,

|S(α) ∩ L+(α) \ (lim inf
n→∞

S(
pn
qn

) ∪ Fn)| < ζ.(4.2)

By (2.2),

|Fn| ≤ 2Cfqn‖α−
pn
qn
‖βT ≤ 2Cfq

1−2β
n+1 ,(4.3)

which implies
∑
n |Fn| <∞, thus | lim supn→∞ Fn| = 0. This implies

| lim inf
n→∞

S(
pn
qn

) ∪ Fn| = | lim inf
n→∞

S(
pn
qn

)|.(4.4)

Combining (4.2) with (4.4), we have

|S(α) ∩ L+(α) \ lim inf
n→∞

S(
pn
qn

)| < ζ

for any ζ > 0. Thus

S(α) ∩ L+(α) ⊆ lim inf
n→∞

S(
pn
qn

).(4.5)

�
Theorem 1.1 could be proved by taking ~pn

qn
to be the full sequence of best simultaneous approxi-

mation. One needs to apply (2.7) to obtain the following (similar to (4.3))

|Fn| ≤ 2Cfq
1− d+1

d β
n+1 .(4.6)

Theorem 1.5 could be proved by applying part (2) of Lemma 3.2. �

Appendix A. Proofs of Lemmas 2.4, 2.5, 2.6

A.1. Lemma 2.4. The proof is very similar to that of [5, 12]. Given ε > 0 and E ∈ S(α),
there exists an approximate eigenfunction φε ∈ l2(Z) such that ‖(HT∗,α,θ − E)φε‖ < ε‖φε‖. Set

gj,L(n) = max (1− |j−n|L , 0). Avron-van Mouche-Simon [5] proved that for sufficiently large L, for

any bounded f : Td → R there exists j such that gj,Lφε 6= 0 and for any ε > 0,

‖(HT∗,α,θ − E)gj,Lφε‖2 ≤ C(ε2 + L−2)‖gj,Lφε‖2,(A.1)

where C is universal. Now let θ′ = T−j∗,α′T
j
∗,αθ. By the Hölder assumption on f and j−L ≤ n ≤ j+L,

we have

|f(Tn∗,α′θ
′)− f(Tn∗,αθ)| ≤ Cf (Ld1‖α′ − α‖Td0 )γ .
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Thus,

‖(HT∗,α′θ
′ − E)gj,Lφε‖ ≤ ‖(HT∗,α′θ

′ −HT∗,α,θ)gj,Lφε‖+ ‖(HT∗,α,θ − E)gj,Lφε‖(A.2)

≤ (Cf (Ld1‖α′ − α‖Td0 )γ + C(ε2 + L−2)
1
2 )‖gj,Lφε‖.(A.3)

Choosing ε = L−1 = Cf‖α− α′‖
− γ

1+d1γ

Td0
, we obtain the statement of Lemma 2.4. �

A.2. Lemma 2.5. Assume α /∈ WDC( 1
γ ). Then by (2.10), there exists a subsequence of the best

simultaneous Diophantine approximation { ~pnkqnk
} so that

lim
k→∞

q
1

1+γ
nk max

1≤j≤d
‖qnkαj‖

γ
1+γ

T = 0.(A.4)

By Lemma 2.4, we have

S(α) ⊂ ∪
q′nk
i=1[ank,i − Cf‖α−

~pnk
qnk
‖

γ
1+γ

Td , bnk,i + Cf‖α−
~pnk
qnk
‖

γ
1+γ

Td ] := S(
~pnk
qnk

) ∪ Fnk ,

where q′nk ≤ qnk and

S(
~pnk
qnk

) = ∪
q′nk
i=1[ank,i, bnk,i].

Thus, by (A.4),

S(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).

�

A.3. Lemma 2.6. Assume α /∈ DC(d− 1 + 1
γ ). Then by (2.10), there exists a subsequence of the

continued fraction approximants
pnk
qnk

so that

lim
k→∞

q
1+(d−1)γ

1+dγ
nk ‖qnkα‖

γ
1+dγ

T = 0(A.5)

By Lemma 2.4, we have

S(α) ⊂ ∪
q′nk
i=1[ank,i − Cf‖α−

pnk
qnk
‖

γ
1+dγ

T , bnk,i + Cf‖α−
pnk
qnk
‖

γ
1+dγ

T ] := S(
pnk
qnk

) ∪ Fnk ,

where q′nk ≤ qnk and

S(
pnk
qnk

) = ∪
q′nk
i=1[ank,i, bnk,i].

Thus, by (A.5),

S(α) ⊆ lim inf
k→∞

S(
pnk
qnk

).

�
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