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Abstract of the Dissertation

Almost Commuting Elements in Non-Commutative Symmetric

Operator Spaces

By

Mustafa Said

Doctor of Philosophy in Mathematics
University of California, Irvine, 2014
Professor Sveltana Jitomirskaya, Chair

I. Almost Commuting Operators: John von Neumann, in his formulation of the

uncertainty principle [24] was the first to consider the classic problem which asks whether

two ”almost commuting” operators are small perturbations of commuting operators. Von

Neumann, however, did not mention any norm. The first appearance of the problem in

the literature is given by Rosenthal [22] and Halmos [11]. Although Rosenthal considers

the problem with respect to the Hilbert-Schmidt norm, historically most of the results are

with respect to the operator norm. In fact, the first positive result was proved by H. Lin

in [16] with respect to the operator norm. In 2009 Lev Glebsky in [10] proved an analog of

Lin’s theorem with respect to the normalized Hilbert-Schmidt norm. Glebsky’s result was

refined in [9] by Filonov and Kachkovskiy. Motivated by these results, we consider a natural

generalization of the problem. In particular, we look at the problem with respect to the

normalized Schatten p-norms for 1 ≤ p < ∞ and have established several theorems that are

analogs of Lin and Glebsky’s work. Moreover, for p $= 2 the corresponding Schatten space
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is not a Hilbert space and our results use general Banach space techniques along with some

tools from classical and harmonic analysis. For p = 2 we recover Filonov and Kachkovskiy’s

result with the same δ(ε) relationship. We have also extended our results to finite von

Neumann algebras equipped with an (n.s.f) trace which will be defined later.

II. Normal Completions: In this portion of the dissertation we take a detour and

consider another matrix problem. In [1] Bhatia and Choi ask the following question: What

pairs of matrices, (B,C) can be the off-diagonal entries of 2n × 2n normal matrices of the

form

N =




A B

C D





where A,B,C,D ∈ Mn(C)? We provide some explicit ”normal completions” for different

pairs of matrices (B,C) which do not appear in the literature.
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Introduction:

We investigate a variant of an old problem in linear algebra and operator theory that was

first considered by John von Neumann [24] and later popularized by Peter Rosenthal [22] and

Paul Halmos [11]: Must almost commuting matrices be near commuting matrices?

To be more precise, we consider the following classic problem:

Problem 1: Suppose that A,B ∈ Mn(C). Given ε > 0, is there a δ > 0 such that for each

n ∈ N with ||A||, ||B|| ≤ 1 and ||AB − BA|| < δ, then does there exist X, Y ∈ Mn(C) with

XY = Y X and ||A−X||+ ||B − Y || < ε?

Here, ||.|| denotes a norm on Mn(C). We also note that it is important that δ = δ(ε)

only depends on ε and not n, the dimension of our Hilbert space Mn(C). Surprisingly, the

answer to Problem 1 is negative in general, but positive for some special cases. We now

present a brief overview of the known results and defer the relevant notation and definitions

to Chapter 1 and Chapter 2.

0.1 Historical Results

The first results on our classic problem were dimension dependent. To be more specific,

the initial progress on the problem had δ in the statement of the theorem depend not only

on ε but on the dimension of the matrices. These results are not hard to obtain; many

of the proofs use a simple compactness argument. The next wave of progress consisted of

1



counter-examples. In the 1980’s a series of ”almost commuting” pairs of matrices which

are ”far” from any commuting approximates have been obtained. M-D Choi, for example,

in [4] proved that there exist A,B ∈ Mn(C) both contractions, with A a self-adjoint, and

||A||, ||B|| ≤ 1, such that:

||[A,B]|| < 2/n, but inf{(X,Y ):XY=Y X}{||A−X||+ ||B − Y ||} ≥ 1− 1/n.

Hence, for ε < 1/2 there does not exist a δ > 0 satisfying the hypothesis and conclusion of

Problem 1. In the same spirit, in 1989, Ruy Exel and Terry Loring in [8] gave an example

of a pair of of ”almost commuting” unitaries that are bounded away from any commuting

approximates. In particular, they used a family of unitary matrices, often referred to as

”Voiculescu’s Unitaries,” Un, Vn ∈ Mn(C) and showed that there exists a universal constant

C > 0 such that:

||[Un, Vn]|| → 0, n → ∞ yet ||Un −X||+ ||Vn − Y || > C > 0.

for all commuting matrices, XY = Y X. The norm under consideration here is the usual

operator norm. Earlier partial results were obtained by Voiculescu [23] and Davidson [6]. In

Chapter 7 we will take a close look at Exel and Loring’s counter-example and utilize their

argument, with modifications, to extend their result on the operator norm to the Schatten

p-norms for 1 < p ≤ ∞.

These results for Problem 1 do not seem encouraging. They seem to suggest that the

statement is false for most classes of matrices in Mn(C). However, in 1997 H. Lin [16] proved

that Problem 1 is true for almost commuting self-adjoint contractions A and B. Lin proved

that there exist a function f : (0,∞) → (0,∞) with limx→0+ f(x) = 0, such that

||A−X||+ ||B − Y || ≤ f(||AB − BA||) for all X, Y with XY = Y X.
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Lin, however, did not provide any estimates on f , but M. Hastings in [12] attempted to

provide a constructive proof of Lin’s theorem with explicit estimates on the function f .

In particular, he tried to show that there existence of f with limx→0+ f(x)/xα = 0 for any

α < 1/6. Recently, however, a error was found in Hastings proof. In a private communication

with Ilya Kachkovskiy the author has learned that Kachkovskiy and Safarov have established

a constructive version of Lin’s theorem with optimal exponent of 1/2.

Loring and Hastings conjectured [13] that, for several classes C ⊂ Mn of ”sufficiently

symmetric” matrices (arising from mathematical physics) for any two contractions A,B ∈ C,

with ||[A,B]|| < ε there exist commuting contractions, X, Y ∈ C such that ||A−X||+ ||B−

Y || < f(||[A,B]||).

In a series of papers Terry Loring and Adam Sorensen have extended Lin’s results to

classes of matrices other than self-adjoint ones. In [17], [18], and [19], Loring and Sorensen

show that almost commuting self-adjoint symmetric matrices are close to a pair of commut-

ing self-adjoint, symmetric matrices. They also prove that the same holds if symmetric is

replaced by self-dual and real orthogonal.

Although, historically, most of the research on the problem is done with respect to the

operator norm, Rosenthal’s original formulation of the problem in the literature [22] is with

respect to the Hilbert-Schmidt norm. In 2009, Lev Glebsky [10] proved an analog of H. Lin’s

theorem with the operator norm replaced by the normalized Hilbert-Schmidt norm.

Motivated by these results we examine Problem 1 for different classes of matrices in

Mn(C) and consider the ”almost commuting implies near commuting” problem for different

norms |||.|||. In particular we study Problem I with respect to the normalized Schatten p-

norms, which is defined for A ∈ Mn(C) as ||A||p = (1/n
∑n

j=1 sj(A)
p)1/p. Here 1 ≤ p < ∞
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and sj(A) denotes the jth singular value of the matrix A. Recall that the singular values

of an operator A are just the eigenvalues of
√
A∗A. Moreover, we have generalized our

results to the setting of von Neumann algebras equipped with a trace and our results for the

normalized Schatten p-norms, 1 ≤ p < ∞, arise as corollaries.

0.2 A Generalization of Problem 1

We may consider a more general formulation of Problem 1. In particular, we would like

to ask the following: Let ε > 0. If q(X1, ..., Xk) is a polynomial in several non-commutative

variables X1, ..., Xk in some Banach algebra (X , ||.||), does there exist δ > 0 such that if

Xj ∈ X with ||Xj|| ≤ 1 for 1 ≤ j ≤ k and ||q(X1, ..., Xk)|| < δ, then are there Y" ∈ X such

that q(Y1, ..., Yk) = 0 and
∑

j ||Xj − Yj|| < ε?

Remark 1. Note that when q(X, Y ) = XY − Y X and X = Mn(C) equipped with the

standard operator norm, our formulation is equivalent to the statement of Problem 1.

In [13] Hastings and Loring consider polynomials other than q(X, Y ) = XY − Y X and

determine whether almost solutions of these non-commutative polynomials are perturbations

of exact solutions. For example, they consider whether near solutions of the matrix equation

X2 + Y 2 + Z2 = I with [X, Y ] = [X,Z] = [Y, Z] = 0 are close to exact solutions.

In this framework, we have been able to establish several results which are analogues

of Lin’s theorem with the added advantage that our proofs are constructive and provide

an explicit δ = δ(ε) relationship. We have also recovered N. Filonov and I. Kachkovskiy

results [9] as special cases of a more general theorem with the same estimates. Note that

N. Filonov and I. Kachkovskiy proved the same theorem as L. Glebsky in [10] with better
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estimates. Although our work began with finite-dimensional operators, matrices, we have

extended most of our results to von Neumann algebras M that have a (n.s.f) trace τ and

we state our theorems in this setting. We will now formulate our main results and defer the

notation and preliminary definitions we will use to Chapter 1 and Chapter 2.

0.3 Main Results

Theorem 0.3.1. Consider the non-commutative polynomial q(x, y) = xy−yx. Let (M, τ) be

a von Neumann algebra with an (n.s.f) trace τ . Let ||.|| denote the usual operator norm and

suppose (E , |||.|||) is a rearrangement invariant Banach function space on [0, τ(1)), satisfying

the lower p-estimate for some p and constant 1, where 1 ≤ p < ∞. Assume that a ∈ Msa

is a self-adjoint operator such that ||a|| ≤ 1, and b ∈ E(M, τ) is an operator that satisfies

|||b||| ≤ 1. Then there exists operators ã, with ||ã|| ≤ ||a||, and an operator b̃, commuting

with ã, so that ||a − ã|| + |||b − b̃||| ≤ K|||q(a, b)|||
1

p+2 . Here, the constant K does not depend

on our von Neumann algebra. Moreover, if b is self-adjoint, then b̃ can also be chosen to be

self-adjoint as well.

Corollary 0.3.1. Consider the non-commutative polynomial q(X, Y ) = XY −Y X. Let ||.||

denote the usual operator norm and let ||.||p denote the normalized Schatten p-norm where

1 ≤ p < ∞, and let Hn be the class of hermitian matrices in Mn(C). Then for any matrix

A ∈ Hn such that ||A|| ≤ 1, and B ∈ Hn with ||B||p ≤ 1 there exists commuting contractions

X, Y with X ∈ Hn such that ||A−X||p + ||B − Y ||p ≤ K||q(A,B)||1/(p+2)
p . Here K = K(p)

is a constant independent of the dimension of our matrices. Moreover, if B ∈ Hn then Y

can also be chosen to be self-adjoint as well.
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Corollary 0.3.2. Suppose that A ∈ Mn(C) satisfies ||A|| ≤ 1 where ||.|| is the usual operator

norm. Let ||.||p denote the normalized Schatten p-norm 1 ≤ p < ∞. Then there exists a

normal matrix N such that ||N − A||p ≤ K||AA∗ − A∗A||1/(p+2)
p , where K = K(p) is a

universal constant independent of the dimension of the matrix A.

We prove the theorems stated above in Chapter 3. We also prove that almost ”anti-

commuting” self adjoint matrices are ”nearly anti-commuting.” In particular, we prove the

following result in Chapter 4:

Theorem 0.3.2. Consider the non-commutative polynomial q(x, y) = xy+yx. Let (M, τ) be

a von Neumann algebra with an (n.s.f) trace τ . Let ||.|| denote the usual operator norm and

suppose (E , |||.|||) is a rearrangement invariant Banach function space on [0, τ(1)), satisfying

the lower p-estimate for some p and constant 1, where 1 ≤ p < ∞. Assume that a ∈ Msa

is a self-adjoint operator such that ||a|| ≤ 1, and b ∈ E(M, τ) is an operator that satisfies

|||b||| ≤ 1. Then there exists operators ã, with ||ã|| ≤ ||a||, and an operator b̃, anti-commuting

with ã, so that ||a − ã|| + |||b − b̃||| ≤ K1|||q(a, b)|||
1

p+2 . Here, the constant K1 = K1(p) does

not depend on our von Neumann Algebra. Moreover, if b is self-adjoint, then b̃ can also be

chosen to be self-adjoint.

Corollary 0.3.3. Consider the non-commutative polynomial q(X, Y ) = XY +Y X. Let ||.||

denote the usual operator norm and let ||.||p denote the normalized Schatten p-norm where

1 ≤ p < ∞. Assume that A ∈ MN(C) is a self-adjoint matrix such that ||A|| ≤ 1, and

B ∈ MN(C) satisfies ||B||p ≤ 1. Then there exists anti-commuting matrices Ã, B̃ ∈ MN(C)

such that ||A − Ã||p + ||B − B̃||p ≤ K1||AB + BA||1/(p+2)
p where K1 = K1(p) is a constant

that does not depend on the dimension of our matrices. Moreover, Ã is self-adjoint and if B
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is self-adjoint, then B̃ can also be chosen to be self-adjoint.

Next, we look at the operator equation AB = ωBA and its approximate version. We

consider the case when ω ∈ T and provide the motivation for this restriction. In this setting,

we have been able to establish the following theorem in Chapter 5:

Theorem 0.3.3. Consider the non-commutative polynomial q(x, y) = xy−ωyx where ω is a

root of unity. Let (M, τ) be a von Neumann algebra with an (n.s.f) trace τ . Let ||.|| denote

the usual operator norm and suppose (E , |||.|||) is a rearrangement invariant function space

on [0, τ(1)), satisfying the lower p-estimate for some p and constant 1, where 1 ≤ p < ∞.

Assume that a ∈ M is a unitary operator, and b ∈ E(M, τ) satisfies |||b||| ≤ 1. Then there

exist operators ã, b̃ such that q(ã, b̃) = 0 and ||a − ã|| + |||b − b̃||| ≤ K2|||q(a, b)|||1/(p+2). Here

K2 = K2(p,ω) is a constant independent of the von Neumann algebra.

Corollary 0.3.4. Consider the non-commutative polynomial q(X, Y ) = XY −ωY X where ω

is a root of unity. Let ||.|| denote the usual operator norm and let ||.||p denote the normalized

Schatten p-norm where 1 ≤ p < ∞. Assume that A ∈ MN(C) is a unitary matrix and

B ∈ MN(C) satisfies ||B||p ≤ 1. Then there matrices Ã, B̃ ∈ MN(C) such that ÃB̃ = ωB̃Ã

and ||A− Ã||p+ ||B− B̃||p ≤ K2||AB−ωBA||1/(p+2)
p where K2 = K2(p,ω) is a constant that

does not depend on the dimension of our matrices.

We also look at the same problem with the added constraint that the operators a, b be

self-adjoint. Formally, we consider:

Equation 1. ab = ωba, with the restriction that a = a∗ and b = b∗.

As we will see, Equation 1 is quite restrictive as illustrated by the followig Proposition

which is proved in Chapter 6.

7



Proposition 0.3.1. If ω ∈ C − {−1,+1}, and a, b ∈ B(H) satisfy Equation 1, then

ab = ba = 0.

Hence, following the theme of our text, we look at the approximate version of Equation

1. That is, we consider the case when a = a∗, b = b∗ and |||ab − ωba||| is ”small” and show

that a and b can be approximated by ã and b̃, respectively, so that ||a− ã|| and |||b− b̃||| are

”small,” and ãb̃ = b̃ã = 0. In this situation, we have been able to establish the following

theorem in Chapter 6:

Theorem 0.3.4. Suppose (M, τ) is a tracial von Neumann algebra and let a ∈ Msa and

assume that ||.|| denotes the operator norm on M and let b ∈ E(M, τ), where |||.||| is the

norm inherited from E(M, τ). Now, let ω ∈ (−1, 1) and set κ = |||ab− ωba|||. Then, for any

ε > 0 the operator a has a spectral projection Q so that

(1)
(i) ||Qa|| ≤ ε

(ii) |||b−QbQ||| ≤ K(ω)ε−1κ,

Here K(ω) is a constant that depends only on ω.

Remark 2. Once this is established, we have that the self-adjoint pair of operators (a, b) is

close to a pair of operators (ã, b̃) that ”trivially” commute up to a factor in the sense that if

we take ã = Q⊥a and b̃ = QbQ, we have ||a− ã|| ≤ ε, |||b− b̃||| ≤ K(ω)ε−1κ, and ãb̃ = b̃ã = 0.

Hence, in particular, ãb̃ = ωb̃ã.

As a result, we get the following corollary,

Corollary 0.3.5. Suppose a = a∗, b = b∗, and ω ∈ (−1, 1). Then for every ε > 0 there

8



exists a δ > 0 so that, whenever ||a|| ≤ 1, and |||ab− ωba||| < δ, there exists b′ and a′ so that

|||b− b′||| < ε and ||a− a′|| < ε. Moreover, a′b′ = b′a′ = 0.

Next we turn to examples of almost solutions to non-commutative polynomials q for which

near solutions to the equation q(x, y) = 0 cannot be approximated by the exact solutions.

A sample result is Theorem 7.3.1. In this direction we have been able to establish two

counter-examples that do not appear in the literature.

Finally, in Chapter 8, we turn to the problem of finding normal completions of corners of

matrices. Perhaps the most interesting result we have established is the following Theorem:

Theorem 0.3.5. If B = diag(B1, B2) and C = diag(C1, C2) are 2n × 2n block-diagonal

self-adjoint matrices with real entries that satisfy the following system of matrix equations:

1. B2
1 +B2

2 = C2
1 + C2

2

2. B1C1 +B2C2 = C1B1 + C2B2

then matrix pair (B,C) admits a 4n× 4n normal completion.

9



Chapter 1

von Neumann Algebras

1.1 Topologies on B(H)

Throughout, we will let L(H,K) denote the set of all linear operators from a Hilbert space

H to K. Recall that an operator T ∈ L(H,K) is bounded if there exists a constant M such

that ||Tx||K ≤ M ||x||H for all x ∈ H. We denote ||T || to be the least constant M so that

the inequality above is satisfied. Let B(H) denote the set of all bounded linear operators

from H to itself.

We can equip B(H) with several different topologies:

• If ||Tn − T || → 0 as n → ∞ where ||.|| is the operator norm, then we say that Tn → T

in the norm or uniform topology.

• The topology on B(H) of pointwise convergence on H is called the strong operator

topology. A family of operators, {Tn ∈ B(H)} converges strongly to an operator T if

||Tn(x)− T (x)|| → 0 as n → ∞ for all x ∈ H

10



• If F (Tn(x)) → F (T (x)) for all linear functionals F on H, we say that Tn → T in the

weak operator topology on B(H)

Definition 1.1.1. A von Neumann Algebra M on H is a ∗-subalgebra of B(H) with 1 ∈ M

that is closed under the weak operator topology.

Remark 3. Note that for a ∗-algebra being closed in the strong operator topology (SOT) is

equivalent to being closed in the weak operator topology (WOT).

Definition 1.1.2. The real subspace of B(H) consisting of all self-adjoint operators is de-

noted by B(H)sa. The collection of all positive operators on H is denoted by B(H)+. More-

over, we let M+ = M ∩B (H)+ which is a proper closed generating cone in B(H)sa.

Von Neumann’s Double Commutant theorem shows that the analytic definition is equiv-

alent to a purely algebraic definition as an algebra of symmetries. To be more precise, von

Neumann proved the following:

Theorem 1.1.1. (Double Commutant Theorem) Let A be a subalgebra of B(H), then A is

a von Neumann algebra if and only if A = A′′ where A′ = {T ∈ B(H) : TS = ST for all

S ∈ B(H) .

We mention von Neumann’s Double Commutant theorem for its historical role as in this

dissertation we are mainly going to apply techniques from real and harmonic analysis to

establish our results in the von Neumann algebra setting.

11



1.2 Examples of von Neumann Algebras

1. B(H) itself, trivially.

2. Let (X,µ) be a finite measure space and consider M = L∞(X,µ) as a ∗-subalgebra

of B(L2(X,µ)). Here, M = L∞(X,µ) acts on L2(X,µ) as multiplication operators.

For every f ∈ L∞(X,µ), we can define the operator Mf : L2(X,µ) → L2(X,µ) by

Mf (g(x)) = f(x)g(x). Then it is easy to see that for each f ∈ L∞(X,µ), we have that

||Mf || = ||f ||∞ < ∞ so that these operators are bounded. The von Neumann algebra

generated by these operators is commutative and one can show that all commutative

von Neumann algebras arise from such multiplication operators.

3. Mn(C) the space of all n× n matrices over the complex field.

4. Let Γ be a discrete group and let l2(Γ) be the Hilbert space of all functions f : Γ → C

with
∑

γ∈Γ |f(γ)|2 < ∞ and inner product 〈f, g〉 =
∑

γ∈Γ f(γ)g(γ). An orthonormal

basis of l2(Γ) is given by the the {εγ} where εγ(γ′) = δγ,γ′ so that f =
∑

γ∈Γ f(γ)εγ

in the l2 sense. Now for each γ ∈ Γ define the unitary operators uγ by (uγf)(γ′) =

f(γ−1γ′). Note that uγuρ = uγρ and that uγ(ερ) = εγρ. Thus γ → uγ is a unitary group

representation called the left regular representation. The uγ are linearly independent

so the algebra they generate is isomorphic to the group algebra CΓ. The von Neumann

Algebra generated by the uγ is denoted here by vN(Γ) and it is known as the ”group

von Neumann algebra” of Γ.

For a more detailed treatment of von Neumann algebras, the reader is referred to excellent

exposition in [2] and [14].
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Chapter 2

Non-Commutative Banach Function

Spaces

2.1 Introduction

In this section we use the presentation found in [7] to review some parts of the theory of non-

commutative Banach function spaces, which are spaces of measurable operators associated

with a semi-finite von Neumann algebra. These spaces are also known as non-commutative

symmetric operator spaces. The theory of such spaces emerged as a common generalization

of the theory of classical, commutative, rearrangement invariant Banach function spaces and

of the theory of symmetrically normed ideals of bounded linear operators in a Hilbert space.

These two cases may be considered as the two extremes of the theory; in the first case the

underlying von Neumann algebra is the commutative algebra L∞ on some measure space with

integration as the trace; in the second case the underlying von Neumann algebra is B(H),

the algebra of all bounded operators on a Hilbert space with the standard trace. Important
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special cases of these non-commutative spaces are the non-commutative Lp-spaces, which

correspond in the commutative case with the usual Lp-spaces on a measure space, and in the

setting of symmetrically normed operator ideals they correspond to the Schatten p-classes

Sp(H).

2.2 von Neumann Algebras equipped with a trace

Let M be a von Neumann Algebra, and M+ its positive part.

Definition 2.2.1. A trace is a map τ : M+ → [1,∞) such that:

1. τ(x+ λy) = τ(x) + λτ(y) for all x, y ∈ M+ and λ ∈ R+

2. τ(x∗x) = τ(xx∗) for all x ∈ M

Definition 2.2.2. A trace is said to be:

1. normal if supi τ(xi) = τ(supi xi) for any bounded increasing net (xi) ∈ M+,

2. faithful if τ(x) = 0 implies that x = 0,

3. finite if τ(1) < ∞,

4. semifinite if for any non-zero x ∈ M+, there exists a non-zero y ∈ M+ such that

y ≤ x and τ(y) < ∞.

Definition 2.2.3. M is called semifinite if it admits a normal semifinite faithful (n.s.f.)

trace.

Remark 4. Although the trace is defined initially on M+, we can define the trace on the

linear span of all positive elements with finite trace. This just follows from linearity. Hence

if the trace is finite, we can extend it to the whole algebra M.
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Example 1. Let H be a Hilbert space and M = B(H). Given a maximal orthonormal

system {ξα} in H we define

τ(a) =
∑

α〈aξα, ξα〉, a ∈ B(H)+

The value of τ(a) does not depend on the particular choice of the maximal orthonormal

system in H and τ : B(H)+ → [0,∞] is a semi-finite faithful normal trace on B(H). This is

called the standard trace on B(H).

Definition 2.2.4. A measure space (X,Σ, ν) is Maharam if it has the finite subset property,

that is, for every A ∈ Σ with ν(A) > 0 there exists B ∈ Σ such that B ⊂ A and 0 < ν(B) <

∞.

Remark 5. We note that every sigma-finite measure space is Maharam.

Example 2. Let H = L2(ν), where (X,Σ, ν) is a Maharam measure space. On L2(ν) we

consider the von Neumann algebra M = L∞(ν). If we define τ : L∞(ν)+ → [0,∞] by

τ(f) =
∫
X fdν, 0 ≤ f ∈ L∞(ν),

then τ is a semi-finite normal trace on L∞(ν).

Example 3. Consider a discrete group Γ and let vN(Γ) ⊂ B(+2(Γ)) be the associated von

Neumann algebra generated by the left translations. Let τΓ be the canonical trace on vN(Γ),

defined as follows: τΓ(x) = 〈x(δe), δe〉 for any x ∈ vN(Γ), where (δg)g∈Γ denotes the canonical

basis of l2(Γ), and where e is the identity in Γ. This is a normal faithful normalized finite

trace on vN(Γ).
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2.3 Banach lattices and the lower p-estimate

We begin with some preliminary definitions to explain the concept of Banach lattices.

Definition 2.3.1. A real vector space E which is ordered by some order relation ≤ is called

a vector lattice if any two elements x, y ∈ E have a least upper bound denoted by x ∨ y =

sup(x, y) and the greatest lower bound denoted by x∧y = inf(x, y) and the following properties

are satisfied.

1. x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ E

2. 0 ≤ x implies 0 ≤ tx for al x ∈ E and t ∈ R+

Definition 2.3.2. A norm on a vector lattice E is called a lattice norm if

|x| ≤ |y| implies ||x|| ≤ ||y|| for x, y ∈ E

where |x| := x ∨ (−x)

Definition 2.3.3. A Banach lattice is a real Banach space E endowed with and ordering ≤

such that (E,≤) is a vector lattice and the norm on E is a lattice norm.

Now we will introduce the concept of a complex Banach lattice. The complexification of

a real Banach lattice E is the complex Banach space EC whose elements are pairs (x, y) ∈

E×E, with addition and scalar multiplication defined by (x0, y0)+(x1, y1) := (x0+x1, y0+y1)

and (a+ ib)(x, y) := (ax− by, ay + bx), and norm

||(x, y)|| := || sup0≤θ<2π(x sin θ + y cos θ)||

Definition 2.3.4. A complex Banach lattice is an ordered complex Banach space (EC,≤)

that arises as the complexification of a real Banach lattice E.
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Definition 2.3.5. A Banach lattice E satisfies a lower p-estimate with constant K if, for

any disjoint x1, ..., xn, we have that ||x1 + ...+ xn||p ≥ K(
∑

i ||xi||p)

Note that here, |x1+ ...+xn| = |x1|∨ ...∨ |xn|, by Theorem 1.1.1(i) in [21]. The existence

of a lower p-estimate and its connections to other properties of Banach lattices, have been

studied extensively, see e.g. [20].

2.4 Banach Function Spaces

We proceed by introducing commutative and non-commutative function and sequence spaces.

In general, our exposition follows [7] and the reader can consult that excellent survey paper

for further information.

Let ν be the usual Lebesgue measure associated to theMaharammeasure space (X,Σ, ν).

We also assume that (X,Σ, ν) is localizable, in other words, the measure algebra is a complete

Boolean algebra. The space of all complex valued Σ-measurable functions on X is denoted

by L0(ν).

Definition 2.4.1. A Banach function space on (X,Σ, ν) is an ideal E ⊂ L0(ν), that is, E is

a linear subspace of L0(ν) equipped with a norm, ||.||E such that (E , ||.||E) is a Banach lattice

with the additional property that if f ∈ L0(ν), g ∈ E and |f | ≤| g| implies that f ∈ E.

For f ∈ L0(ν) its distribution function df : [0,∞) → [0,∞] is defined by

df (λ) = ν({x ∈ X : |f(x)| > λ}), λ ≥ 0

Note that df is decreasing and right-continuous. Now we define

S(ν) = {f ∈ L0(ν) : ∃λ0 ≥ 0 such that df (λ0) < ∞}
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If f ∈ L0(ν), then f ∈ S(ν) if and only if f is bounded except on a set of finite measure.

Therefore, S(ν) is an ideal in L0(ν). For f ∈ S(ν) the decreasing rearrangement µ(f) :

[0,∞) → [0,∞] of |f | is defined by:

µ(f, t) = inf{λ ≥ 0 : df (λ ≤ t)}, t ≥ 0

Let E be a Banach function space on the Maharam measure space (X,Σ, ν).

Definition 2.4.2. The Banach function space E ⊂ S(ν) is called rearrangement invariant

if f ∈ E , g ∈ S(ν) and µ(g) = µ(f) imply that g ∈ E and ||g||E = ||f ||E .

Lemma 2.4.1. If E is a Banach lattice, whose norm ||| · ||| satisfies a lower p-estimate with

constant K, then E has an equivalent lattice norm ||| · |||0, satisfying a lower p-estimate with

constant 1, and such that ||| · ||| ≤ ||| · |||0 ≤ K||| · |||. Moreover, if the norm |||.||| is rearrangement

invariant, then the same is true for |||.|||0.

Proof. For x ∈ E define |||x|||0 = sup
(∑n

i=1 |||xi|||p
)1/p

, where the supremum runs over all

finite disjoint sequences (xi)ni=1 s.t. |x| = ∨i|xi|. Clearly, ||| · |||0 is a lattice quasi-norm, and

||| · ||| ≤ ||| · |||0 ≤ K||| · |||. It remains to show that ||| · ||| is indeed a lattice norm. So consider

0 ≤ y ≤ x. We show that |||y|||0 ≤ |||x|||0. Suppose x =
∑

i xi = ∨ixi is a ”finite disjoint

decomposition.” Then the elements yi = y ∧ xi are disjoint, and, by the distributive law,

Theorem 1.1.1(vii) in [21],

∑
i yi = ∨i(y ∧ xi) = y ∧ x = y

Taking the infimum over all allowable finite collections (xi), we get |||y|||0 ≤ |||x|||0. Finally,

assume that (E, |||.|||) is rearrangement invariant (r.i.), then so is (E, |||.|||0) due to the fact
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that, if the sequences (xi)ni=1 and (x′
i)
n
i=1 are disjoint, and xi and x′

i are equidistributed for

any i, then |x1| ∨ ... ∨ |xn| and |x′
1| ∨ ... ∨ |x′

n| are equidistributed as well.

2.5 Symmetric Operator Spaces

Now let H denote a Hilbert Space and let M ⊂ B(H) denote a von Neumann algebra with

an (n.s.f) trace τ . We denote this space by (M, τ). Recall that a closed densely defined

operator x on H is said to be affiliated with M if xu = ux for any unitary u ∈ M′, the

commutant of M. A closed densely defined operator x which is affiliated with M is called

τ -measurable or just measurable if given ε > 0, there exists an orthogonal projection p ∈ M

such that p(H) ⊂ Dom(x), τ(1− p) < ε and xp ∈ M. We denote L0(M, τ) as the set of all

τ -measurable operators. The set L0(M, τ) is a ∗-algebra and given a self-adjoint operator

x ∈ L0(M, τ), we denote by ex(.) its spectral measure. Now, recall that e|x|(B) ∈ M for all

Borel sets B ⊂ B where |x| = (x∗x)1/2 is the modulus of the operator x. Here, B denotes

the Borel σ-algebra.

For any measurable operator x we define the generalized singular numbers by

µt(x) = inf{λ > 0 : τ(e|x|(λ,∞)) ≤ t}, t > 0

Let E be a rearrangement invariant Banach function space on [0,∞), the symmetric operator

space associated with (M, τ) and E is defined by

E(M, τ) = {x ∈ L0(M, τ) : µ(x) ∈ E} and ||x||E(M,τ) = ||µ(x)||E

It should be noted that E(M, τ) is a Banach space, which is Theorem 8.11 in [15].
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Now consider the particular case of E = Lp. This is a non-commutative Lp-space associated

with (M, τ). To be more specific, we define non-commutative Lp by letting M be a von

Neumann algebra equipped with (n.s.f.) trace τ , and L0(M, τ) be the algebra of all τ -

measureable operators affiliated with M. Then we can define Lp(τ) = {a ∈ L0(M, τ) :

τ(|a|p) < ∞}. It is a Banach space with respect to the norm |||a|||p = (τ(|a|p))1/p for 1 ≤

p < ∞. We are primarily interested when M = B(H) for a separable Hilbert space H and

τ is the standard trace on B(H). In this case, the construction of Lp(τ) yields the Schatten

p-class Sp(H).

Also, one should note that, if E is a r.i. function space satisfying a lower p-estimate,

then the same is true for the corresponding non-commutative Banach function space. The

following lemma can easily be established:

Lemma 2.5.1. Suppose E is a r.i. function or sequence space, satisfying the lower p-estimate

with constant C. If x1, ..., xn are elements of E(M, τ) whose left and right support projections

are disjoint, then

||
∑

i xi|| ≥ C(
∑

i ||xi||p)1/p.
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Chapter 3

Almost Commuting Hermitian

Operators

3.1 Main Result

In this chapter we prove Theorem 0.3.1 and Corollary 0.3.2. which are re-stated below:

Theorem 3.1.1. Consider the non-commutative polynomial q(x, y) = xy − yx. Let (M, τ)

be a von Neumann algebra with a (n.s.f) trace τ . Let ||.|| denote the usual operator norm

and suppose (E , |||.|||) is a rearrangement invariant function space on [0, τ(1)), satisfying the

lower p-estimate for some p and constant 1, where 1 ≤ p < ∞. Assume that a ∈ Msa

is a self-adjoint operator such that ||a|| ≤ 1, and b ∈ E(M, τ) is an operator that satisfies

|||b||| ≤ 1. Then there exists operators ã, with ||ã|| ≤ ||a||, and an operator b̃, commuting with

ã, so that ||a− ã||+ |||b− b̃||| ≤ K1|||q(a, b)|||
1

p+2 where the constant K1 = K1(p) does not depend

on the von Neumann Algebra. Moreover, if b is self-adjoint, then b̃ can also be chosen to be
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self-adjoint.

As a result, we get the following corollaries,

Corollary 3.1.1. Suppose that q(X, Y ) = XY − Y X and let ||.|| denote the usual operator

norm. Let ||.||p be the normalized Schatten p-norm, where 1 ≤ p < ∞. Assume that

A ∈ MN(C) is a self-adjoint matrix such that ||A|| ≤ 1, and B ∈ MN(C) also satisfies

||B||p ≤ 1. Then there exists commuting matrices Ã, B̃ ∈ MN(C), q(Ã, B̃) = 0, such that

||A− Ã||p + ||B − B̃||p ≤ Kp||AB + BA||1/(p+2)
p . Here, the constant Kp does not depend on

the dimension of our matrices. Moreover, Ã is self-adjoint and if B is self-adjoint, then B̃

can also be chosen to be self-adjoint.

Corollary 3.1.2. Suppose that A ∈ Mn(C) satisfies ||A|| ≤ 1 where ||.|| is the usual operator

norm. Let ||.||p denote the normalized Schatten p-norm 1 ≤ p < ∞. Then there exists a

normal matrix N such that ||N − A||p ≤ K||AA∗ − A∗A||1/(p+2)
p , where K = K(p) is a

universal constant independent of the dimension of the matrix A.

3.2 Preliminaries

Throughout this chapter we use the notation of Theorem 3.1.1. Now let

F (x) =






(1− x2)4 |x| ≤ 1

0 |x| > 1

Note that this function is three times continuously differentiable. Well known harmonic

analysis results show that there exists a constant C > 0 so that F̂ (t) ≤ min{1, C/t3} for any

real number t.
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Now fix n,m ∈ N to be optimized later. Let a ∈ Msa with ||a|| ≤ 1, and note that for

any ε > 0, there exists N ∈ N and mutually orthogonal projections Q1, ..., QN summing to

the identity,
∑

Qj = 1, and a1, ..., aN ∈ R such that ||a −
∑N

j=1 ajQj|| < ε. Moreover, we

can choose {aj}Nj=1 ⊂ σ(a) ⊂ [−1, 1] and we can assume −1 ≤ a1 ≤ ... ≤ aN ≤ 1. Hence, we

may assume that a =
∑N

j=1 ajQj.

Next, we define intervals:

I1 = [−1,−1 + 2
mn ] and Ik = (−1 + 2(k−1)

mn ,−1 + 2k
mn ], for 2 ≤ k ≤ mn.

Let Pi = χIi(a) be the corresponding spectral projection and let δ = 2/(mn). Also, for k < 1

or k > mn, set Ik = {∅}, and Pk = 0.

3.3 Block Tri-diagonalization via Fourier Analysis

We start by perturbing the operator b to b′ that is ”block tri-diagonal” relative to a and does

not differ much from b in norm. To this end, define:

Equation 2. b′ = δ
∫∞

−∞eiatbe−iatF̂ (δt)dt

Lemma 3.3.1. The following hold for the operators defined above:

1. Pjb′Pi = 0 if |i− j| > 1.

2. |||b− b′||| ≤ C0δ−1|||ab− ba|||,where C0 is a universal constant.

3. |||b′||| ≤ 2 if δ ≥ C0|||ab− ba|||.

4. If the operator b is self-adjoint, then so is b′.
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Proof. Note that Range Pk = span[ Range Qr : ar ∈ Ik]. Therefore, (1) will be established

if we show that, for as ∈ Ii and ar ∈ Ij, with |i − j| > 1, ξ ∈ Range Qs, and η ∈Range Qr

we have 〈b′ξ, η〉 = 0. By Fourier Inversion Formula,

〈b′ξ, η〉 = δ
∫
〈eiatbe−iatξ, η〉F̂ (δt)dt

= δ
∫
〈be−iatξ, e−iatη〉F̂ (δt)dt

= δ
∫
〈be−iastξ, e−iartη〉F̂ (δt)dt

= 〈bξ, η〉
∫
δei(ar−as)tF̂ (δt)dt

= 〈bξ, η〉F (ar−as
δ )

Now if |i− j| > 1, then |ar − as| ≥ δ which implies that F (ar−as
δ ) = 0. To establish (2), note

that
∫
F̂ (t)dt = F (0) = 1, hence

b′ − b = δ
∫∞
−∞(eiatbe−iat − b)F̂ (δt)dt

which implies

|||b′ − b||| ≤ δ
∫∞
−∞ |||eiatbe−iat − b||||F̂ (δt)|dt

Now let g(t) = eiatbe−iat − b. Since g(0) = 0, by the Mean Value Theorem, |||g(t)||| ≤

|t| sup|s|≤|t| |||g′(s)|||. Here, g′(s) = ieias(ab − ba)e−ias, hence |||g′(s)||| ≤ |||ab − ba|||. Thus,

|||b − b′||| ≤ C0δ−1|||ab − ba|||, where C0 is the L1 norm of the function t → tF̂ (t). (3) follows

from (2) and the triangle inequality. Finally, (4) follows from the facts that the operators a

and b are self-adjoint and that F̂ is an even function.
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3.4 Pinching

For 0 ≤ i ≤ m− 1, let

ciu =
∑n−1

j=0 Pi+mjb′Pi+mj+1 and cil =
∑n−1

j=0 Pi+mj+1b′Pi+mj, ci = ciu + cil

Lemma 3.4.1. Suppose that |||.||| is a norm associated to a symmetric operator space E(M, τ)

and let {P1, ..., Pn} and {Q1, ..., Qn} be two sets of mutually orthogonal projections in a von

Neumann algebra M equipped with a (n.s.f) trace τ , then for any x ∈ E(M, τ) we have that:

|||
∑n

j=1 PjxQj||| ≤ |||x|||.

Proof. Without loss of generality, we may assume that x =
∑

i,j xi,j where xi,j = PixQj.

Proceed by letting

En = {(e1, ..., en) : ej ∈ {−1, 1}}

and for e ∈ En we let

Ue =
∑n

k=1 ekPk and Ve =
∑n

k=1 ekQk

Then we claim that the following equation holds:

Equation 3.
∑n

j=1 PjxQj =
1
2n

∑
e∈E UexVe.

To establish this identity, we observe that:

Uexi,jVe = (
∑n

k=1 ekPk)xi,j(
∑n

k=1 ekQk)

= (
∑n

k=1 ekPk)PixQj(
∑n

k=1 ekQk)

= eiejPixQj = eiejxi,j

25



We must show that, for a given pair (i, j) we have that
∑

e∈E eiej = 2n if i = j and 0 if

i $= j. The former is clear. For the latter, observe that |{e ∈ E : ei = ej = 1}| = |{e ∈ E :

ei = ej = −1}| = |{e ∈ E : ei = 1, ej = −1}| = |{e ∈ E : ei = −1, ej = 1}| = 2n−2.

Corollary 3.4.1. We have that |||
∑m−1

i=0 cui ||| ≤ |||b′||| and |||
∑m−1

i=0 cli||| ≤ |||b′|||.

Proof. Note that
∑m−1

i=0 cui =
∑mn−1

s=0 Psb′Ps+1 and
∑m−1

i=0 cli =
∑mn−1

s=0 Ps+1b′Ps and that the

spectral projections {Pj} have the property that PiPj = 0 for i $= j. In other words, they

are mutually orthogonal. Now just apply the previous lemma.

Lemma 3.4.2. There exists an index i so that |||ci||| ≤ 8m−1/p.

Proof. We have that |||
∑m−1

i=0 cil||| ≤ |||b′||| ≤ 2. But |||.||| satisfies the lower p-estimate with

constant 1 so

∑m−1
i=0 |||cil|||p ≤ |||

∑m−1
i=0 cil|||p ≤ |||b′|||p ≤ 2p.

Hence |||cil|||p > 2p+1

m for less than m/2 values of the indices i. In other words, |||cil||| ≤ 21+1/p

m1/p

for more than m/2 values of the indices i. Similarly, |||ciu||| ≤ 21+1/p

m1/p for more than m/2 values

of i. Therefore, by the pigeonhole principle, there exists an index i such that the upper

estimates for both |||cil||| and |||ciu||| hold. By the triangle inequality, |||ci||| ≤ 8
m1/p .
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3.5 Proof of Main Result

We proceed by perturbing the operator b′ to the operator b̃ which is ”block diagonal” with

larger blocks. To this end, for 0 ≤ j ≤ n, define the intervals:

Ĩj =
⋃i+mj

s=i+m(j−1)+1 Is

and their corresponding spectral projections

P̃j = χĨj
(a) =

∑i+mj
s=i+m(j−1)+1 Ps.

Denote the midpoint of Ĩj by ãj, let b̃ = b′ − ci, and ”rough grain” the operator a to

ã =
∑n

j=0 ãjP̃j. Note that since ãj ∈ R for all j and each of the operators P̃j are projections,

we see that ã is also self-adjoint.

Now we prove a lemma that will be used to prove our main result.

Lemma 3.5.1. For the operators we have defined, the following hold:

(1) ã commutes with b̃.

(2) ||a− ã|| ≤ 1
n .

(3) |||b̃− b||| ≤ C0δ−1|||ab− ba|||+ 8
m1/p , where C0 is a universal constant.

Proof. We begin proving (1) by first showing that for j $= k, P̃j b̃P̃k = 0. We consider only

the case when j < k, since j > k is dealt in a similar fashion. Using the definition of P̃j

and P̃k above and noting the fact that Psb′Pr = 0 if |s − r| > 1, we get that P̃jb′P̃k = 0 if

j < k− 1. Furthermore, in this situation P̃jciP̃k = 0. Thus, P̃j b̃P̃k = P̃j(b′ − ci)P̃k = 0. Now

suppose that j = k − 1, then

P̃jb′P̃k = Pi+mjb′Pi+mj+1 = Pi+mjciPi+mj+1,
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hence

P̃j b̃P̃k = P̃j(b′ − ci)P̃k = 0,

which implies that

b̃ =
∑n

j=0 P̃j b̃P̃j =
∑n

j=0 P̃jb′P̃j,

therefore, we have that |||b̃||| ≤ |||b′||| by Lemma 3.4.1 and it is clear that ã =
∑n

j=0 ãjP̃j

and b̃ =
∑n

j=0 P̃j b̃P̃j commute. For (2), note that if as ∈ Ĩj, then |as − ãj| ≤ n−1. Thus,

||a− ã|| ≤ n−1. To establish (3) we simply use the triangle inequality,

|||b− b̃||| ≤ |||b− b′|||+ |||ci||| ≤ C0δ−1|||ab− ba|||+ 8
m1/p .

Now we use our previous lemma to give a concise proof of our main result.

Proof of Theorem 3.1.1.

Proof. It remains to show that ||a − ã|| + |||b − b̃||| ≤ Kp|||ab − ba|||
1

p+2 . Let ε = |||ab − ba|||
1

p+2

and let n = 41/ε5 and m = 4(pn16 |||ab− ba|||)−p/(p+1)5. Then clearly ||a− ã|| ≤ ε. Now by (3)

of Lemma 3.5.2 above we have that

|||b− b̃||| ≤ C0δ−1|||ab− ba|||+ 8m−1/p

= C0
mn
2 |||ab− ba|||+ 8m−1/p.

and by our choice of n and m we have that ||a− ã||+ |||b− b̃||| ≤ K(p)|||ab−ba|||
1

p+2 where K(p)

is a constant that does not depend on our von Neumann algebra. Now if b is self-adjoint,

b = b∗ ⇒ b′ = b′∗ ⇒ (ciu)∗ = cil and (cil)∗ = ciu ⇒ ci = ci∗ ⇒ b̃ = b̃∗. Hence, if we have that

a, b are self-adjoint, then their commuting approximates are also self-adjoint.
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Proof of Corollary 3.1.2.: Let us write A = B + iC where B,C are self-adjoint

contractions. Note that [A,A∗] = 2i[B,C] Now, by Theorem 3.1.1. there exist com-

muting self-adjoint matrices B̃, C̃ such that ||B − B̃||p + ||C − C̃||p ≤ K||[B,C]||1/(p+2)
p ≤

K2||[A,A∗]||1/(p+2)
p so if we set N = B̃ + iC̃ then we have that ||N − A||p ≤ K2||AA∗ −

A∗A||1/(p+2)
p , where K2 = K2(p) is a universal constant independent of the dimension of the

matrix A.
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Chapter 4

Almost Anti-Commuting Hermitian

Operators

4.1 Main Result

In this chapter we prove the following theorem:

Theorem 4.1.1. Consider the non-commutative polynomial q(x, y) = xy+yx and let (M, τ)

be a von Neumann algebra with a (n.s.f) trace τ . Let ||.|| denote the usual operator norm and

suppose (E , |||.|||) is a rearrangement invariant Banach function space on [0, τ(1)), satisfying

the lower p-estimate for some p and constant 1, where 1 ≤ p < ∞. Assume that a ∈ Msa

is a self-adjoint operator such that ||a|| ≤ 1, and b ∈ E(M, τ) is an operator with |||b||| ≤ 1.

Then there exists operators ã, with ||ã|| ≤ ||a||, and an operator b̃, anti-commuting with

ã, that is, q(ã, b̃) = 0, with the property that ||a − ã|| + |||b − b̃||| ≤ K1|||q(a, b)|||
1

p+2 . Here,

the constant K1 = K1(p) does not depend on our von Neumann Algebra. Moreover, if b is
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self-adjoint, then b̃ can also be chosen to be self-adjoint.

As a corollary, we get

Corollary 4.1.1. Suppose that q(X, Y ) = XY + Y X and let ||.|| denote the usual operator

norm. Let ||.||p be the normalized Schatten p-norm, where 1 ≤ p < ∞. Assume that

A ∈ MN(C) is a self-adjoint matrix such that ||A|| ≤ 1, and B ∈ MN(C) also satisfies

||B||p ≤ 1. Then there exists anti-commuting matrices Ã, B̃ ∈ MN(C), q(Ã, B̃) = 0, such

that ||A− Ã||p + ||B − B̃||p ≤ Kp||AB +BA||1/(p+2)
p . Here, the constant Kp does not depend

on the dimension of our matrices. Moreover, Ã is self-adjoint and if B is self-adjoint, then

B̃ can also be chosen to be self-adjoint.

4.2 Preliminaries

Throughout this chapter we use the notation in Theorem 4.1.1. Now let

F (x) =






(1− x2)4 |x| ≤ 1

0 |x| > 1

Note that this function is three times continuously differentiable. Well known harmonic

analysis results show that there exists a constant C > 0 so that F̂ (t) ≤ min{1, C/t3} for any

real number t.

Now fix n,m ∈ N to be optimized later. Let a ∈ Msa with ||a|| ≤ 1, and note that for

any ε > 0, there exists N ∈ N and mutually orthogonal projections Q1, ..., QN summing to

the identity,
∑

Qj = 1, and a1, ..., aN ∈ R such that ||a −
∑N

j=1 ajQj|| < ε. Moreover, we

can choose {aj}Nj=1 ⊂ σ(a) ⊂ [−1, 1] and we can assume −1 ≤ a1 ≤ ... ≤ aN ≤ 1. Hence, we

may assume that a =
∑N

j=1 ajQj.
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Define the intervals,

I0 = (− 1
2mn ,

1
2mn)

Ii = (− 1
2mn + i

mn ,
1

2mn + i
mn ] for i < 0

Ii = [− 1
2mn + i

mn ,
1

2mn + i
mn) for i > 0

where −mn ≤ i ≤ mn. Now let Pi = χIi(a) be the corresponding spectral projection of the

operator a and let δ = 2/mn.

4.3 Skew Block Tri-diagonalization via Fourier Trans-

form

We begin by perturbing the operator b to a skew block-tridiagonal operator b′ that does not

”differ” much from b. To accomplish this, we define the operator:

Equation 4. b′ = δ
∫∞

−∞eiatbeiatF̂ (δt)dt

Lemma 4.3.1. The following hold properties hold for the operator b′:

1. Pjb′Pi = 0 if |i+ j| > 1.

2. |||b− b′||| ≤ C0δ−1|||ab+ ba|||,where C0 is a universal constant.

3. |||b′||| ≤ 2 if δ ≥ C0|||ab+ ba|||.

4. If the operator b is self-adjoint, then so is b′.
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Proof. Note that Range Pk = span[ Range Qr : ar ∈ Ik]. Therefore, (1) will be established

if we show that, for as ∈ Ii and ar ∈ Ij, with |i + j| > 1, ξ ∈ Range Qs, and η ∈Range Qr

we have 〈b′ξ, η〉 = 0. By Fourier Inversion Formula,

〈b′ξ, η〉 = δ
∫
〈eiatbeiatξ, η〉F̂ (δt)dt

= δ
∫
〈beiatξ, e−iatη〉F̂ (δt)dt

= δ
∫
〈beiastξ, e−iartη〉F̂ (δt)dt

= 〈bξ, η〉
∫
δei(ar+as)tF̂ (δt)dt

= 〈bξ, η〉F (ar+as
δ )

Now if |i+ j| > 1, then |ar + as| ≥ δ which implies that F (ar+as
δ ) = 0. To establish (2), note

that
∫
F̂ (t)dt = F (0) = 1, hence

b′ − b = δ
∫∞
−∞(eiatbeiat − b)F̂ (δt)dt

which implies

|||b′ − b||| ≤ δ
∫∞
−∞ |||eiatbeiat − b||||F̂ (δt)|dt

Now let g(t) = eiatbeiat − b. Since g(0) = 0, by the Mean Value Theorem, |||g(t)||| ≤

|t| sup|s|≤|t| |||g′(s)|||. Here, g′(s) = ieias(ab + ba)eias, hence |||g′(s)||| ≤ |||ab + ba|||. Thus,

|||b − b′||| ≤ C0δ−1|||ab + ba|||, where C0 is the L1 norm of the function t → tF̂ (t). (3) follows

from (2) and the triangle inequality. Now to establish (4) let us recall that the function F (x)

is an even function, hence so is F̂ (ξ). So we have that

(b′)∗ = (δ
∫∞

−∞eiatbeiatF̂ (δt)dt)∗ = δ
∫∞

−∞(eiatbeiatF̂ (δt))∗dt
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= δ
∫∞

−∞(eiatF̂ (δt))∗(eiatb)∗dt = δ
∫∞

−∞F̂ (δt)e−iatbe−iatdt

Now just let t → −t and since F is an even function we get that (b′)∗ = b′ as claimed.

4.4 Pinching

Now we make b′ into a skew block-diagonal operator b̃ which also does not ”differ” much

from the operator b. To this end, note that

b′ =
∑

k Pkb′P−k (main skew diagonal)

+
∑

k Pkb′P1−k (upper skew diagonal)

+
∑

k Pkb′P−1−k (lower skew diagonal)

where −mn ≤ k ≤ mn. For convienence, we set Pi = 0 for i /∈ {−mn, ...,mn}. Now

we use ”symmetric pinching” to get rid of some of the blocks above and below the main

skew-diagonal. So for 1 ≤ i ≤ m let

cui =
∑n

j=0(Pi+jmb′P1−(i+jm) + P1−(i+jm)b′Pi+jm) and

cli =
∑n

j=0(Pi+jm−1b′P−(i+jm) + P−(i+jm)b′Pi+jm−1)

and for 1 ≤ i ≤ m, set ci = cui + cli. Note that
∑

i c
l
i =

∑
k Pkb′P−1−k (the lower skew

diagonal) and
∑

i c
u
i =

∑
k Pkb′P1−k (the upper skew-diagonal). Henceforth, we assume that

δ ≥ C0|||ab+ ba|||.
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Lemma 4.4.1. There exists an index i such that |||ci||| ≤ 8
m1/p .

Proof. This follows from the same arguement used to establish Lemma 3.4.1 andCorollary

3.4.1. We have that |||
∑m

i=1 ci
l||| ≤ |||b′||| ≤ 2. But |||.||| satisfies the lower p-estimate with

constant 1 so

∑m
i=1 |||cil|||p ≤ |||

∑m−1
i=0 cil|||p ≤ |||b′|||p ≤ 2p

Hence |||cil|||p > 2p+1

m for less than m/2 values of i. In other words, |||cil||| ≤ 21+1/p

m1/p for more

than m/2 values of i. Similarly, |||ciu||| ≤ 21+1/p

m1/p for more than m/2 values of i. Therefore, by

the pigeonhole principle, there exists an index i such that the upper estimates for |||cil||| and

|||ciu||| hold. By the triangle inequality, |||ci||| ≤ 8
m1/p .
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4.5 Proof of Main Result

We keep the same notation that we have been using. Let F0 = {1− i, ..., i− 1} and for j > 0

we let Fj = {i +m(j − 1), ..., i +mj − 1}, and F−j = −Fj. Now for −n ≤ j ≤ n we define

the intervals,

Ĩj =
⋃

s∈Fj
Is

Consider the corresponding spectral projections P̃j = χĨj
(a) =

∑
s∈Fj

Ps. Denote the mid-

point of Ĩj by ãj and note that −Ĩ−j = Ĩj so we have that −ãj = ã−j. Let b̃ = b′ − ci. We

”rough grain” the operator a to ã where ã =
∑n

j=−n ãjP̃j.

Lemma 4.5.1. We claim that:

1. ‖a− ã‖ ≤ n−1

2. |||b− b̃||| ≤ C0δ−1 |||ab+ ba|||+ 8m−1/p

3. ã anti-commutes with b̃.

4. If b is self-adjoint, then so is b̃.

Proof. To prove (1), notice that if as ∈ Ĩj, then |as − ãj| ≤ n−1. Thus, we have that

||a− ã|| ≤ n−1.

For (2), we see that

|||b− b̃||| ≤ |||b− b′|||+ |||ci||| ≤ C0δ−1|||ab+ ba|||+ 8m−1/p.

We begin proving (3) by showing first that, for k $= −j, P̃j b̃P̃k = 0. Recall that P̃j =

∑
r∈Fj

Pr and that P̃jb′P̃k =
∑

r∈Fj ,l∈Fk
Prb′Pl. Now, Prb′Pl = 0 if |r + l| > 1 so that we

clearly have that P̃jb′P̃k = 0 for |j + k| > 1. Furthermore, in this situation P̃jciP̃k = 0. So
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now we need only to consider the case where k = 1 − j and the case where k = −1 − j is

done similarly. Then,

P̃jb′P̃1−j =
∑

r∈Fj ,l∈F1−j
Prb′Pl = Pr0b

′Pl0 = P̃jciP̃1−j

where r0 = i + m(j − 1), l0 = −(i + m(j − 1) − 1). Hence, we have shown that P̃j b̃P̃k =

P̃j(b′ − ci)P̃k = 0 for j $= −k and this leads us to conclude that b̃ =
∑

k P̃kb̃P̃−k, therefore

ãb̃ = (
∑

s ãsP̃s)(
∑

r P̃rb̃P̃−r) =
∑

s ãsP̃sb̃P̃−s

= (
∑

s P̃sb̃P̃−s)(−
∑

s ã−sP̃−s)

= −b̃ã

which is the desired anti-commutation. To establish (4) we note that by Lemma 4.3.1. we

know that if b is self-adjoint, then the same holds for b′. Now, b̃ = b′ − ci. But (cui )
∗ = (cli)

and (cli)
∗ = (cui ) so c∗i = ci and we deduce that b̃ is also self-adjoint if the operator b is.

Proof of Theorem 4.1.1. It remains to show that ||a − ã||, |||b − b̃||| ≤ K2|||ab + ba|||
1

p+2

where K2 = K2(p) does not depend on the von Neumann algebra. Let ε = |||ab+ ba|||
1

p+2 and

let n = 41/ε5. Then clearly ||a− ã|| ≤ ε. Now by (2) of Lemma 4.5.1. above we have that

|||b− b̃||| ≤ C0δ−1|||ab+ ba|||+ 8m−1/p

= C0
mn
2 |||ab+ ba|||+ 8m−1/p

Then for m = 4(pn16 |||ab + ba|||)−p/(p+1)5, we have that ||a − ã|| + |||b − b̃||| ≤ K2|||ab + ba|||
1

p+2

where K2 = K2(p) is a constant that does not depend on our von Neumann algebra.
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Chapter 5

Operators that Almost Commute up

to a Factor

5.1 Main Result

In this chapter we consider the approximate version of the operator equation, ab = ωba, where

ω ∈ C and a is a unitary operator. This corresponds to the polynomial q(x, y) = xy − ωyx

in our equivalent formulation of the problem which was defined in the introduction. In this

setting, we have established:

Theorem 5.1.1. Let (M, τ) be a von Neumann algebra with an (n.s.f) trace τ . Let ||.||

denote the usual operator norm and suppose (E , |||.|||) is a rearrangement invariant Banach

function space on [0, τ(1)), satisfying the lower p-estimate for some p and constant 1, where

1 ≤ p < ∞. Assume that a ∈ M is a unitary operator, and b ∈ E(M, τ) satisfies |||b||| ≤ 1.

Let ω be a root of unity and consider the non-commutative polynomial q(x, y) = xy − ωyx.
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Then there exist operators ã, b̃ with q(ã, b̃) = 0 and ||a− ã||+ |||b− b̃||| ≤ Kp,ω|||q(a, b)|||1/(p+2)

where Kp,ω is a constant that is independent of the von Neumann algebra. Moreover, ã is a

unitary operator.

Remark 6.1. In the general case, if b $= 0 and a is a unitary, and ab = ωba, then |ω| = 1.

Indeed, then b = ωa∗ba and taking norms of both sides yields the result. To show that ω

no longer needs to be a root of unity, let (ei)i∈Z be the canonical basis in +2(Z). Consider

the unitaries a and b, defined via aei = ei−1 and bei = ωiei.

2. In a similar fashion, one can show that, if a and b are n × n matrices with a unitary

and b not nilpotent, then ω is a root of unity. This can seen by considering the fact

that If ab = ωba, then b = ωa∗ba then clearly the spectra of b and ωa∗ba coincide, hence

σ(b) = ωσ(b) = ω2σ(b) = .... But the spectrum of a matrix is finite, hence the orbit of any

non-zero member of σ(b) under multiplication by ω is finite. This happens if and only if

ω is a root of unity. If b is allowed to be nilpotent, then ω does not need to be a root of

unity. Indeed one can consider 2× 2 matrices a and b of the form:

a =




1 0

0 ω





and

b =




0 1

0 0





3. It should be noted that, if A and B are two matrices, A is normal, B non-singular, and

AB = λBA $= 0, then λ is a root of unity. Indeed, then, by Theorem 2.5 of [5] AB is not

nilpotent. Now apply Theorem 2.4 of the same paper.
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5.2 Preliminaries

Throughout this chapter we use the notation of Theorem 5.1.1. So let ω = e2iπ
L0
M0 where

L0,M0 ∈ N are such that (L0,M0) = 1 and 0 ≤ L0 ≤ M0 − 1. Now, as in the self adjoint

case, for any unitary a ∈ M and for any ε > 0, there exists an N ∈ N, a1, ..., aN ∈ T

and mutually orthogonal projections {Qj}Nj=1 that sum to the identity, such that we have

||a−
∑N

j=1 ajQj|| < ε. Moreover, we may choose aj ∈ σ(a) ⊂ T. Hence, we may assume that

a =
∑N

s=1 asQs. Let M,m, and n be a fixed positive integers such that M = M0mn and let

δ = 2π/M . Now represent the unit circle as a disjoint union of arcs of length δ, that is

Ik = {eit : t ∈ [(k − 1)δ, kδ)} for 1 ≤ k ≤ M

and let Pk = χIk(a) be the corresponding spectral projection of a. As in Chapters 3 and

4 the main step consists of perturbing b slightly, to obtain a ”shifted” block tri-diagonal

operator b′. To this end, define the function Fδ(x) on [−π, π] identified with the unit circle

T by setting:

Fδ(x) =






(1− (x/δ)2)3 |x| ≤ δ

0 |x| > δ

Now for any k ∈ Z,

F̂δ(k) =
∫ π

−π(1− (x/δ)2)3e−ikxdx = δ
∫
R(1− y2)3e−ikδydy

= δF̂ (δk) ≤






δ |k| ≤ δ−1

C0δ−2k−3 |k| ≥ δ−1

Here, C0 is a constant independent of k and δ.
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5.3 Block Tri-Diagonalization via Fourier Series

We proceed, as in the self-adjoint case, by perturbing the operator b to an operator b′ that

consists of two block tri-diagonal pieces, and has the property that b′ not ”differ” much from

the operator b. We use a similar method for achieving our goal with the modification that

we use Fourier Series rather than the Fourier Transform. So we define:

Equation 5. b′ =
∑

k∈Z F̂δ(k)ω−ka−kbak

Lemma 5.3.1. The following properties hold for the operators just defined:

1. Pjb′Pi = 0 if (i− j) mod M /∈ {L0mn− 1, L0mn,L0mn+ 1}.

2. |||b− b′||| ≤ C1δ−1|||ab− ωba|||, where C1 is a universal constant.

3. |||b′||| ≤ 2 if δ ≥ C0|||ab− ωba|||.

Proof. Note that RangePk = span [Range Qr : ar ∈ Ik]. Therefore, (1) will be established

if we show that, for as = eius ∈ Ii and ar = eiur ∈ Ij, with the property that i − j

mod M /∈ {L0mn− 1, L0mn,L0mn+1} we have that 〈b′ξ, η〉 = 0 for ξ ∈ Range Qs and η ∈

Range Qr.

Now, by Fourier inversion,

〈b′ξ, η〉 =
∑

k∈Z F̂δ(k)〈ω−ka−kbakξ, η〉

=
∑

k∈Z F̂δ(k)〈ω−kbakξ, akη〉

=
∑

k∈Z F̂δ(k)〈bω−k(as)kξ, (ar)kη〉

= 〈bξ, η〉
∑

k∈Z F̂δ(k)(as/ωar)k
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= 〈bξ, η〉Fδ(usr − 2π L0
M0

)

where usr = us − ur. So we have that 〈b′ξ, η〉 = 0 if |us − ur − 2π L0
M0

| ≥ δ where the addition

is modulo 2π.

On the other hand, when |us − ur − 2π L0
M0

| < δ, we have two possible cases:

1. − 2π
M0mn < usr − 2π L0

M0
< 2π

M0mn

2. − 2π
M0mn < usr − 2π L0

M0
+ 2π < 2π

M0mn

In the first situation we get

δ(L0mn− 1) < us − ur < δ(L0mn+ 1)

which implies that i− j ∈ {L0mn− 1, L0mn,L0mn+ 1}. In the second scenario,

δ(L0mn− 1) < us − ur − 2π L0
M0

< δ(L0mn+ 1)

which implies that i− j+M ∈ {L0mn−1, L0mn,L0mn+1}. Note that 1 ≤ i, j ≤ M , hence

−(M − 1) ≤ i− j ≤ M − 1. To establish (2), note that
∑

k∈Z F̂δ(k) = Fδ(0) = 1. Therefore,

|||b′ − b||| = |||
∑

k∈Z F̂δ(k)(ω−ka−kbak − b)|||

≤
∑

k∈Z |F̂δ(k)||||ω−ka−kbak − b|||

Next we show that |||ω−ka−kbak − b||| ≤ |k||||ab− ωba|||. It is enough to consider k > 0. Write

ω−ka−kbak − b =
∑k

j=1(ω
−ja−jbaj − ω−(j−1)a−(j−1)baj−1). Since a is unitary, we have that

|||(ω−ja−jbaj − ω−(j−1)a−(j−1)baj−1)|||

= |||ω−j(a−jbaj − ωa−(j−1)baj−1)|||

= |||a−jbaj − ωa−(j−1)baj−1||| = |||a−j(ba− ωab)aj−1||| = |||ab− ωba|||
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The triangle inequality implies that

|||ω−ka−kbak − b||| ≤ |k||||ab− ωba|||

Therefore,

|||b′ − b||| ≤ |||ab− ωba|||
∑

k∈Z |δF̂ (δk)||k|

Hence, we have the following estimate,

|||b′ − b||| ≤ |||ab− ωba|||× (δ
∑

|k|≤δ−1 |k|+ δ−2
∑

|k|>δ−1 |k||k|−3)

≤ C1δ−1|||ab− ωba|||

where C1 is a universal constant. This proves (2). Now (3) follows from (2) and the triangle

inequality.

5.4 Pinching

Now we use a surgery procedure to take the tri-diagonal pieces of b′ and make them block

diagonal. As in the self-adjoint case, we accomplish this by a ”pinching.” To this end, note

that by the previous lemma, by identifying 0 = 1 − 1 with M and adding integers modulo

M , we can write

b′ =
∑M

s=1 Ps+L0mnb′Ps +
∑M

s=1(Ps+L0mn−1b′Ps + Ps+L0mnb′Ps−1)

For 1 ≤ i ≤ n, set

cui =
M0m−1∑

j=0

PL0mn+jn+i−1b
′Pjn+i, c"i =

M0m−1∑

j=0

PL0mn+jn+ib
′Pjn+i−1, ci = cui + c"i .

43



Then
n∑

i=1

cui =
M∑

s=1

PL0mn+s−1b
′Ps and

n∑

i=1

c"i =
M∑

s=1

PL0mn+sb
′Ps−1.

We combine Lemma 3.4.1 with the lower p-estimate, to get

2p ≥ |||b′|||p ≥ |||
n∑

i=1

cui |||p ≥
n∑

i=1

|||cui |||p,

and similarly, 2p ≥ |||b′|||p ≥
∑n

i=1 |||c"i |||p. Thus, as in the previous proof of almost commuting

self-adjoint operators, we use the pigeonhole principle to deduce that there exists and index

i so that |||ci||| ≤ 8n−1/p.

5.5 Proof of Theorem 5.1.1.

We proceed by defining the intervals Fj (0 ≤ j ≤ M0m− 1) as Fj = [jn+ i, (j+1)n+ i− 1].

Here we are adding integers modulo M , so FM0m−1 = {M0mn − n + i, . . . ,M, 1, . . . , i − 1}.

Let P̃j =
∑

s∈Fj
Ps be the spectral projection of a, corresponding to the arc Ĩj = ∪s∈FjIs.

That is,

Ĩj =
{
eιt : t ∈

[
(jn+ i− 1)δ, ((j + 1)n+ i− 1)δ

)}

These arcs are mutually disjoint, and their union is the whole unit circle T. The length of

each of these arcs equals δn = 2πM−1
0 m−1.

Finally, let us define

b̃ =
∑M0m−1

j=0 P̃j+L0mb
′P̃j

Lemma 5.5.1. The following equation holds, b′ = b̃+ ci.
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Once the Lemma 5.5.1. is established, we are almost done. Set

ã =
∑M0m−1

j=0 α̃jP̃j,

where α̃j is the midpoint of the arc Ĩj. More specifically,

α̃j = exp(ιδ((j + 1/2
)
n+ i− 1)),

hence in particular,

α̃j+L0m

α̃j
= exp

(
ιδL0mn

)
= exp(2πi

L0

M0
) = ω.

In other words, we can use the functional calculus for unitary operators and set ã = f(a),

where f =
∑

j α̃jχĨj
. Moreover, a = g(a), where g is the identity function, hence,

‖a− ã‖ ≤ ‖f − g‖∞ =
π

M0m
.

By the triangle inequality,

|||b− b̃||| ≤ |||b− b′|||+ |||ci||| ≤
C0M0mn

2π
|||ab− ωba|||+ 8n−1/p.

Putting everything together, we have

ãb̃ =
(∑M0m−1

j=1 α̃L0m+jP̃L0m+j

)(∑M0m−1
j=1 P̃j+L0mb

′P̃j

)

=
∑M0m−1

j=1 α̃L0m+jP̃j+L0mb
′P̃j = ω

∑M0m−1
j=1 α̃jP̃j+L0mb

′P̃j

= ω
(∑M0m−1

j=1 P̃j+L0mb
′P̃j

)(∑M0m−1
j=1 α̃jP̃j

)
= ωb̃ã.

which is equivalent to q(ã, b̃) = 0. Moreoever, ã and b̃ can be chosen as in the statement

of the theorem by appropriate choice of m and n. Let ε = |||ab − ωba|||
1

p+2 . Since we have
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already established the estimate, ‖a− ã‖ ≤ ‖f − g‖∞ = π
M0m

, just choose m = 4M0
πε 5. Then

we clearly have that ‖a− ã‖ ≤ ε. Now, as in the proof presented in the previous chapter, by

minimizing the right hand side of the expression

|||b− b̃||| ≤ C0M0mn
2π |||ab− ωba|||+ 8n−1/p

with respect to n, gives us our estimate,

||a− ã||+ |||b− b̃||| ≤ Kp,ω|||ab− ωba|||1/(p+2).

Hence it remains to prove the lemma.

Proof of Lemma 5.5.1:

Proof. To establish the equation, b′ = b̃ + ci, we note that b′ − b̃ is the sum of the terms of

the form Psb′Pr so that |s − L0mn − r| ≤ 1, and s ∈ Fk, r ∈ Fj for k $= j + L0m. This is

only possible in two cases:

1. r ∈ Fj, s = L0mn + r + 1 ∈ Fj+L0m+1 and this happens when the index s is the left

endpoint of Fj+L0m+1, and r is the right endpoint of Fj. In particular, r = (j+1)n+ i−1,

and s = (j + L0m + 1)n + i. In this case, the term Psb′Pr is accounted for in cui . For

all other pairs, (s, r) coming from the intervals Fj+L0m+1 and Fj respectively, we have

|s− r| > L0mn+ 1.

2. r ∈ Fj, s = L0mn+ r − 1 ∈ Fj+L0m−1. Then Psb′Pr is accounted for in c"i .
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Chapter 6

Self-Adjoint Operators that Almost

Commute up to a Factor

6.1 Main Result

In this chapter we prove the following result:

Theorem 6.1.1. Suppose (M, τ) is a tracial von Neumann algebra and let a ∈ Msa equipped

with the operator norm ||.|| on M and let b ∈ E(M, τ), where |||.||| is the norm inherited from

(E , |||.|||). Now, let ω ∈ (−1, 1) and set κ = |||ab − ωba|||. Then, for any ε > 0 the operator a

has a spectral projection Q so that

(6.1)
(i) ||Qa|| ≤ ε

(ii) |||b−QbQ||| ≤ K(ω)ε−1κ,

Here K(ω) is a constant that depends only on ω.
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Remark 7. Once this is established, we have that the self-adjoint pair of operators (a, b) is

close to a pair of operators (ã, b̃) that ”trivially” commute up to a factor in the sense that if

we take ã = Q⊥a and b̃ = QbQ, we have |||a− ã||| ≤ ε, |||b− b̃||| ≤ K(ω)ε−1κ, and ãb̃ = b̃ã = 0.

Hence, in particular, ãb̃ = ωb̃ã.

Remark 8. Unlike the previous sections, we do not impose any special restriction on the

symmetric function space involved. In particular, we can take E = L∞, then the correspond-

ing non-commutative symmetric space will be our von Neumann algebra M, with its operator

norm.

As a result of Theorem 6.1.1., we get the following corollary,

Corollary 6.1.1. Suppose a = a∗, b = b∗, and ω ∈ (−1, 1). Then for every ε > 0 there

exists a δ > 0 so that, whenever ||a|| ≤ 1, and |||ab− ωba||| < δ, there exists b′ and a′ so that

|||b− b′||| < ε and ||a− a′|| < ε. Moreover, a′b′ = b′a′ = 0.

Proof. Let Q as in Theorem 6.1.1. Then we have that a = QaQ+Q⊥aQ⊥. So since we know

a′ = Q⊥aQ⊥, by functional calculus, |||a− a′||| ≤ ε as well and furthermore a′b′ = b′a′ = 0.

6.2 Motivation for our Result

In this chapter we look at the same operator equation as the last chapter with the constraint

that the operators a, b be self-adjoint. Formally, we consider:

Equation 6. ab = ωba, with the restriction that a = a∗ and b = b∗ a, b ∈ B(H).
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It turns out that Equation 6 is quite restrictive in the sense that if ω ∈ C− {−1,+1},

and a, b ∈ B(H) satisfy Equation 6, then ab = ba = 0. Formally, we have:

Proposition 6.2.1. Suppose ω ∈ C− {−1, 1}, and a, b ∈ B(H) satisfy Equation 6. Then

there exists a projection P so that a = PaP and b = P⊥bP⊥ and consequently, ab = ba = 0.

This proposition clearly fails for ω = ±1, even when both a and b are assumed to be

self-adjoint. Counterexamples are witnessed by any pair of commuting self-adjoint operators

(for ω = 1), or by anticommuting Pauli matrices (ω = −1; such matrices are self-adjoint

unitaries) which can also be found in [5]. Also, the Proposition fails if a and b are not

self-adjoint, but merely normal. Indeed, denote by (ek) the canonical basis in +2(Z). For

|ω| = 1, define a and b via

aek = ek+1, bek = ω−kek (k ∈ Z).

Clearly, ab = ωba. For |ω| > 1, this construction can be modified, with a being a one-sided

(as opposed to bilateral) shift (hence a is no longer normal; however, b is self-adjoint when

ω ∈ R).

In our proof below, we use the following result (Theorem 1.1 in [5]).

Theorem: Let A,B be bounded operators such that AB $= 0 and AB = ωBA, where

ω ∈ C. Then:

1. if A or B is self-adjoint then ω ∈ R;

2. if both A and B are self-adjoint then ω ∈ {−1,+1};

3. if A and B are self-adjoint and one of them is positive then ω = 1.
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Proof of Proposition 6.2.1.

Proof. So suppose that a = a∗, b = b∗, and ab = ωba = 0 for some ω /∈ {−1,+1}, then

ab = ba = 0. Indeed by Theorem 1.1 of [5], ab = 0, then ba = (ab)∗ = 0. Now let P be

the spectral projection onto the closure of the range of the operator a. Then P⊥ is the

projection on the kernel of the operator a. Since P is a spectral projection of a, we have

that a = PaP . Moreover, for any x ∈ Range(P ), ax $= 0, therefore Pb = 0. Suppose not,

then pick a vector y so that Pby $= 0, then aPby = aby $= 0, a contradiction. Moreover,

we also have that bP = (Pb)∗ = 0, so we conclude that b = P⊥bP⊥.

6.3 Preliminaries

We begin with a proposition that will be used to prove our main result.

Proposition 6.3.1. Suppose a = a∗, ||a|| ≤ 1, ω ∈ (−1, 1), and δ ∈ (0, 1 − |ω|). Let

P = χ[−(|ω|+δ),|ω|+δ](a) be a spectral projection of a. Then for any operator b there exists a

perturbation b′ so that |||b− b′||| ≤ C0δ−1|||ab− ωba|||, and b′P⊥ = 0 (here, C0 is an absolute

constant).

Proof. We can assume that a =
∑S

s=1 αsRs, with αs ∈ [−1, 1], and Rs being mutually

orthogonal projections (instead of a, we can consider H(a), where H is an appropriate

step function). Note that the spectral projections of H(a) are spectral projections of the

operator a as well. For t ∈ R let g(t) = eιatbe−ιωat−b, and b′ = δ
∫
R(g(t)+b)F̂ (δt)dt. Here,
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F is the function defined in beginning of Section 3.2. The integral converges. Furthermore,

b′− b = δ
∫
R g(t)F̂ (δt)dt. We have g′(t) = ιeιat(ab−ωba)e−ιωat, hence |||g′(t)||| = |||ab−ωba|||

for any t. Consequently, |||b− b′||| ≤ C0δ−1|||ab− ωba|||.

Now suppose ξs ∈ Range Rs, and ξr ∈ Range Rr. Then

〈b′ξs, ξr〉 = δ
∫
R

〈
eιatbe−ιωatξs, ξr

〉
F̂ (δt)dt

= δ
∫
R

〈
be−ιatξs, e−ιωatξr

〉
F̂ (δt)dt = δ

∫
R

〈
e−ιαstbξs, e−ιωαrtξr

〉
F̂ (δt)dt

= 〈bξs, ξr〉
∫
R δe

ι(ωαr−αs)tF̂ (δt)dt

= 〈bξs, ξr〉F
(

ωαr−αs
δ

)
.

If |αs| > |ω|+ δ, then F ((ωαr −αs)/δ) = 0. Thus, b′ξs = 0. If P = χ[−(|ω|+δ),|ω|+δ](a), then

Range P⊥ = ∨|αs|>|ω|+δ Range Rs. Thus, b′P⊥ = 0.

Corollary 6.3.1. Suppose a = a∗, b = b∗, ||a|| ≤ 1, ω ∈ (−1, 1), and δ ∈ (0, 1 − |ω|).

Consider the spectral projection P1 = χ[−(|ω|+δ),|ω|+δ](a), and let a1 = P1aP1 = aP1 = P1a,

and b1 = P1bP1. Then

(6.2)

(i) ab1 − ωb1a = a1b1 − ωb1a1 = P1(ab− ωba)P1

(ii) |||a1b1 − ωb1a1||| ≤ |||ab− ωba|||

(iii) |||b1 − b||| ≤ cδ−1|||ab− ωba|||

where c is a universal constant.
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Proof. First we note that the operator b′ comes from Proposition 6.3.1. Now, we begin

by proving (iii) first: Let b1 = P1bP1, then b1 = b∗1. We have bP⊥
1 = (b − b′)P⊥

1 , hence

|||b− bP1||| = |||bP⊥
1 ||| = |||(b− b′)P⊥

1 ||| ≤ |||b− b′|||.

Furthermore, |||b − b1||| = |||(b − bP1) + (b − bP1)∗P1||| ≤ 2|||b − bP1||| ≤ 2C0δ−1|||ab − ωba|||

which yields (iii).

For (i), we have that |||ab1 − ωb1a||| ≤ |||ab− ωba|||. Indeed,

a = P1aP1 + P⊥
1 aP⊥

1

hence

ab− ωba = (P1aP1b− ωbP1aP1) + (P⊥
1 aP⊥

1 b− ωbP⊥
1 aP⊥

1 ).

Furthermore,

ab1 − ωb1a = P1aP1bP1 − ωP1bP1aP1 = P1(ab− ωba)P1.

So (ii) follows from the fact that P1 is a contraction.
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Corollary 6.3.2. Suppose a = a∗, b = b∗, ω ∈ (−1, 1), δ ∈ (0, 1 − |ω|), and C ≥ ||a||.

Then a has a spectral projection R so that, for a1 = RaR = aR = Ra, and b1 = RbR, we

have:

(6.3)

(i) ||Ra|| ≤ (|ω|+ δ)C

(ii) ab1 − ωb1a = a1b1 − ωb1a1 = R(ab− ωba)R

(iii) |||a1b1 − ωb1a1||| ≤ |||ab− ωba|||

(iv) |||b1 − b||| ≤ cδ−1|||ab− ωba|||

Sketch of a proof. Apply Corollary 6.3.1.to the operators a0 = a/C and b.

6.4 Proof of Main Result

Proof of Theorem 6.1.1.

Pick δ ∈ (0, 1− |ω|) and let α = 1
|ω|+δ > 1.

We now use an iterative procedure by repeated applications of Corollary 6.3.2:

Starting conditions: Let a0 = a, b0 = b, C0 = ||a0||,κ = |||a0b0 − ωb0a0|||

Iteration 1: Apply Corollary 6.3.2 to our initial data to obtain spectral projection P1

of a and operators a1 and b1 such that:

a1 = P1aP1 = aP1 = P1a, b1 = P1bP1

||a1|| ≤ C1 = C0/α, |||b1 − b0||| ≤ cδ−1κ/C0,

|||a1b1 − ωb1a1||| ≤ κ
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Iteration at step k: Apply Corollary 6.3.2 to the operators in the previous iteration

to obtain spectral projection Pk of a and operators ak and bk such that:

ak = Pkak−1Pk = ak−1Pk = Pkak−1, bk = Pkbk−1Pk

||ak|| ≤ Ck = C0/αk, |||bk−bk−1||| ≤ cδ−1κ/Ck−1 ≤ cδ−1αk−1κ/C0, and |||akbk−ωbkak||| ≤ κ.

End of Iteration: Let us stop after m steps where m is the least integer so that

||a0||α−m ≤ ε. Then we get ||am|| ≤ ε, and ||a0||/ε ≤ αm < ||a0||α/ε.

Moreover,

|||bm − b0||| ≤
∑m

k=1 |||bk − bk−1||| ≤ cδ−1||a||−1κ
∑m

k=1 α
k−1

≤ cδ−1(αm − 1)(α− 1)−1κ||a||−1 ≤ cδ−1αm(α− 1)−1κ||a||−1.

However, αm ≤ ||a0||α/ε, so by setting b̃ := bm we get that |||b̃ − b0||| ≤ Kε−1κ, where

K = cδ−1(α − 1)−1α. Finally, note that by setting ã = am, we get that ||ã|| ≤ ε and by

repeated applications of Corollary 6.3.2 there exists a spectral projection Q = Pm of a

such that am = Qam. Hence, ||Qa|| ≤ ||PmaPm|| = ||am|| ≤ ε.

Remark 9. In the proof above we use the fact that the operators Pk are in fact spectral

projections of the operator a.

For instance, P2 is a spectral projection of the operator a. Recall that P1 = χ[−c1,c1](a) for

some c1 > 0. Now define the functions:

f(t) =






t |t| ∈ [−c1, c1]

0 t /∈ [−c1, c1]
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g(t) =






t |t| /∈ [−c1, c1]

0 t ∈ [−c1, c1]

Then a1 = f(a), and a − a1 = g(a). Furthermore, P2 = χ[−c2,c2](a1) for some c2 ≤ c1.

In other words, P2 = χ[−c2,c2](f(a)). By functional calculus, the right hand side equals

(χ[−c2,c2] ◦ f)(a), where ◦ denotes the composition of functions. But χ[−c2,c2] ◦ f = χ[−c2,c2].
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Chapter 7

Counter-examples

7.1 Voiculescu’s Unitaries

The following n× n unitary matrices,

Sn =





0 0 0 · · · 1

1 0 0 · · · 0

... 1
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0





Tn =





cn 0 0 · · · 0

0 c2n 0 · · · 0

...
...

. . .
...

...

0 0 · · · cn−1
n 0

0 0 · · · 0 cnn





(7.1)

are named after Dan Voiculescu who provided the first counter-example to Problem 1 in

[30]. Here cn = e2πi/n is a root of unity. To be more specific, Voiculescu proved:

Theorem 7.1.1. (Voiculescu 1983)Let ||.|| denote the operator norm. Then we have that

limn→∞ ||[Sn, Tn]|| = 0 but there do not exist unitary {S ′
n} and {T ′

n} such that [S ′
n, T

′
n] =
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0 and limn→∞(||Sn − S ′
n||+ ||Tn − T ′

n||) = 0.

In [12] Ruy Exel and Terry Loring use Voiculescu’s Unitaries in a very elegant and ele-

mentary proof to establish:

Theorem 7.1.2. There exist Tn, Sn ∈ Mn such that limn→∞ ||[Sn, Tn]|| = 0, yet if X, Y ∈

Mn commute, then max{||X−Tn||, ||Y −Sn||} ≥
√

2− |1− cn|−1, where cn = e2πi/n and

||.|| is the usual operator norm.

7.2 A Counter-Example with respect to the Schatten

p-norms for 1 < p ≤ ∞.

In this section we use Voiculescu’s Unitaries and Exel and Loring’s method of proof, with

modifications, to establish:

Theorem 7.2.1. Let |||.|||p denote the Schatten p-norm. For 1 < p ≤ ∞ there exist

unitaries Tn, Sn ∈ Mn(C) such that limn→∞ |||[Sn, Tn]|||p = 0, yet if X, Y ∈ Mn(C) commute,

then max{|||X−Tn|||p, |||Y −Sn|||p} ≥ max{||X−Tn||, ||Y −Sn||} ≥
√

2− |1− cn|−1, where

cn = e2πi/n.

Proof. We borrow heavily on Exel and Loring’s method of proof with some minor modi-

fications. Once again, we make use of Voiculuescu’s Unitaries Sn and Tn.

A simple computation shows that:
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√
(SnTn − TnSn)∗(SnTn − TnSn) =





|1− cn| 0 0 · · · 0

0 |1− cn| 0 · · · 0

...
...

. . .
...

...

0 0 · · · |1− cn| 0

0 0 · · · 0 |1− cn|





(7.2)

A few well known facts about Sn and Tn:

(a) ||TnSn − SnTn|| = |1− cn|

(b) |||TnSn − SnTn|||pp = n|1− cn|p

(c) det(Tn) = det(Sn) = (−1)n+1

(d) SnTnS∗
n = cnTn

Note that for p > 1 we have that |||TnSn − SnTn|||p = n1/p|1− cn| = 2n1/p sin(π/n) → 0 as

n → ∞. Now let X, Y ∈ Mn be commuting matrices and let d = max{|||X − Tn|||p, |||Y −

Sn|||p}. Now note that d ≥ max{||X − Sn||, ||Y − Tn||} since the Schatten p-norm of a

matrix is always greater than the operator norm of the same matrix. Hence, we can just

invoke Exel and Loring’s theorem to deduce our result:

max{|||X − Tn|||p, |||Y − Sn|||p} ≥
√

2− |1− cn|− 1.
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7.3 A Counter-example on Unitary Matrices that Al-

most Commute up to a Factor.

Recall that in chapter 5 we looked at the operator equation:

ab = ωba where ω ∈ T

and its approximate version. Assuming that the operator a is unitary, we were able to

show that operators, a and b which almost commute up to a factor with respect to the

normalized Schatten p-norm are near operators ã and b̃ that commute up to the same

factor and approximate the operators a and b. We have discovered that in the matricial

setting, Exel and Loring method of proof, with modifications, also yields the following

result:

Theorem 7.3.1. Let ωn = e2πik/n ∈ T and fix ε > 0. Then there is a natural number

N such that if m ≥ N has the same parity as n then there exist unitary matrices A,B ∈

Mmn×mn such that ||AB − ωnBA|| < ε, yet if XY = ωnY X, then max{||X − A||, ||Y −

B||} > C > 0 for some universal constant C.

Proof. In this proof we will use the Kronecker product of two matrices and its relation to

other matrix operations.

Definition 7.3.1. If A is an m× n matrix and B is a p× q matrix, then the Kronecker

product A⊗ B is the mp× nq block matrix:
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A⊗ B =





a1,1B · · · a1,nB

...
...

am,1B · · · am,nB





For our purposes, will use the following properties of the Kronecker product:

(a) A⊗ (B + C) = A⊗ B + A⊗ C

(b) (A+B)⊗ C = A⊗ C +B ⊗ C

(c) (kA)⊗ B = A⊗ (kB) = k(A⊗ B)

(d) (A⊗ B)⊗ C = A⊗ (B ⊗ C)

(e) (A⊗ B)(C ⊗D) = (AC ⊗ BD)

(f) (A⊗ B)∗ = (A∗ ⊗ B∗)

(g) If A ∈ Mn(C), B ∈ Mp(C) then det(A⊗ B) = (detA)p(detB)n.

Now we continue on as before, borrowing heavily from Excel and Loring’s proof with

modifications. Fix ε > 0. Now, choose N large enough so that for m ≥ N , |1− cm| < ε

where cm = e2πi/m. Assume that m has the same parity as n. Set A = Sm⊗T ′
n and B =

Tm ⊗ Sn where Sn, Tn are Voiculescu’s unitaries of size n, while Sm, Tm are Voiculescu’s

unitaries of size m. Now let T ′
n = diag(ωn,ω2

n, ...,ω
n
n). That is, A,B ∈ Mmn×mn have

the following explicit forms:
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A = Sm ⊗ T ′
n =





ωnSm 0 0 · · · 0

0 ω2
nSm 0 · · · 0

...
...

. . .
...

...

0 0 · · · ωn−1
n Sm 0

0 0 · · · 0 ωn
nSm





and

B = Tm ⊗ Sn =





0 0 0 · · · Tm

Tm 0 0 · · · 0

... Tm
. . .

...
...

0 0 · · · 0 0

0 0 · · · Tm 0





So that

AB − ωnBA =





0 0 0 · · · ωnSmTm − ωnTmSm

ω2
nSmTm − ω2

nTmSm 0 0 · · · 0

...
. . . . . .

...
...

0 0
. . . 0 0

0 0 · · · ωn
nSmTm − ωn

nTmSm 0




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Then ||AB − ωnBA|| = ||SmTm − TmSm|| = |1 − cm| < ε. Now suppose that X, Y ∈

Mmn×mn such that XY = ωnY X and set

d = max{||X − A||, ||Y − B||}

For t ∈ [0, 1] let At = A+ t(X − A), Bt = B + t(Y − B) and let

γt(r) = det((1− r)AtBt + rωnBtAt) for r ∈ [0, 1]

Note that

det(A) = det(Sm ⊗ T ′
n) = det(Sm)n det(T ′

n)
m

= (−1)(m+1)n(det(T ′
n))

m = (−1)mn+n(ω1+...+n−1
n )m

= (−1)mn+n(ω1+...+n−1
n )m = (−1)mn+n(ωn(n−1)/2

n )m

= (−1)mn+n(−1)mk(n−1) = (−1)n(m+1)+mk(n−1) = 1 .

if m and n have the same parity. Now,

det(B) = det(Tm ⊗ Sn) = det(Tm)n det(Sn)m

= (−1)n(m+1)(−1)mn+1 = (−1)m+n = 1

if m and n have the same parity. For t = 1, At = X and Bt = Y which commute up to

the factor ωn, so γ1(r) = det(XY ) for all r ∈ [0, 1] which is just a constant curve. When

t = 0, however, we have that At = A and Bt = B. Now we make a computation to help

us compute a determinant that we will use shortly. To this end we use the properties

of the Kronecker product outlined in the beginning of the proof.
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In particular, we have that,

BAB∗ = (Tm ⊗ Sn)(Sm ⊗ T ′
n)(T

∗
m ⊗ S∗

n)

= (TmSmT ∗
m ⊗ SnT ′

nS
∗
n) = (cmSm ⊗ SnT ′

nS
∗
n)

= (cmSm ⊗ ωn−1
n T ′

n) = cmωn−1
n (Sm ⊗ T ′

n)

= cmωn−1
n A

Hence,

γ0(r) = det((1− r)AB + rωnBA) = det((1− r)A+ rωnBAB∗) det(B)

= det((1− r)A+ rωncmω
(n−1)
n A) det(B) = (1− r + rcm)mn det(B) det(A)

= (1− r + rcm)mn

when m and n have the same parity. As the parameter r goes from 0 to 1, (1− r+ rcm)

moves along the line segment joining 1 to cm = e2πi/n. It follows that γ0(r) is never

zero and that it winds around the origin counterclockwise at least once. Now, since the

winding number is a homotopy invariant of closed curves in the complex plane excluding

the origin, we will get a contradiction as soon as we prove that γt(r) is never zero. Hence,

it suffices to show that matrices (1− r)AtBt + rωnBtAt are invertible for all t, r ∈ [0, 1].

We will accomplish this by showing that the latter matrix is at a distance less than one

from the unitary matrix AB.

We have,
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||(1− r)AtBt + rωnBtAt − AB|| ≤ (1− r)||AtBt − AB||+ r||ωnBtAt − AB||

≤ (1− r)(||AtBt − AtB||+ ||AtB − AB||)+

r(||ωnBtAt − ωnBAt||+ ||ωnBAt − ωnBA||+ ||ωnBA− AB||)

≤ (1− r)(||At||||Bt − B||+ ||At − A||||B||)+

r(||Bt − B||||At||+ ||B||||At − A||+ |1− cm|)

≤ (1− r)((1 + d)d+ d) + r(d(1 + d) + d+ |1− cm|)

= (1 + d)d+ d+ r|1− cm| ≤ d2 + 2d+ |1− cm|.

Now, if d <
√

2− |1− cm|− 1 we have that d2 + 2d+ |1− cm| < 1. A contradiction.
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Chapter 8

Normal Completions

8.1 Introduction

In [1] R. Bhatia and M. Choi ask the following question: What matrix pairs (B,C) can

be the off-diagonal entries of a 2n× 2n normal matrix N of the form

N =




A B

C D





The Matrix N is said to be a ”Normal Completion” for the matrix pair (B,C) ∈ Mn(C)×

Mn(C). We begin our investigation of this problem by studying the normality condition

NN∗ = N∗N which gives us a system of matrix equations:

(1) AA∗ − A∗A = C∗C − BB∗

(2) DD∗ −D∗D = B∗B − CC∗

(3) AC∗ − C∗D = A∗B − BD∗
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This reduces the problem to finding matrices A,D ∈ Mn(C) satisfying these three equa-

tions. We do not know of any general algorithm for solving such systems of equations and

for many pairs of matrices (B,C) we cannot even determine whether or not a solution

exists.

8.2 Results

Theorem 8.2.1. If B and C are commuting normal matrices, then (B,C) admits a

normal completion with A = D = O, the n× n zero matrix.

Proof. Since B and C are normal and commute, we may simultaneously diagonalize them.

That is, there exists an unitary matrix P such that P ∗CP and P ∗BP are diagonal matrices.

So we may assume that:

C =





c1,1 0 · · · 0

0 c2,2 · · · 0

...
...

. . .
...

0 0 · · · cn,n





and

B =





b1,1 0 · · · 0

0 b2,2 · · · 0

...
...

. . .
...

0 0 · · · bn,n




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Now we want to find n× n matrices A and D such that the following matrix:

N =




A B

C D





is normal.

When we choose A and D both to be the n× n zero matrix we get:

NN∗ =





|b1,1|2 0 · · · 0 0 0 · · · 0

0 |b2,2|2 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · |bn,n|2 0 0 · · · 0

0 0 · · · 0 |c1,1|2 0 · · · 0

0 0 · · · 0 0 |c2,2|2 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · |cn,n|2





and
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N∗N =





|c1,1|2 0 · · · 0 0 0 · · · 0

0 |c2,2|2 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · |cn,n|2 0 0 · · · 0

0 0 · · · 0 |b1,1|2 0 · · · 0

0 0 · · · 0 0 |b2,2|2 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · |bn,n|2





Hence, since BC = CB, we see that in this case that the matrix N is normal since

|bi,i| = |ci.i| for all 1 ≤ i ≤ n.

Theorem 8.2.2. If B = diag(B1, B2) and C = diag(C1, C2) are 2n × 2n block-diagonal

self-adjoint matrices with real entries that satisfy the following system of matrix equations:

(8.1)
(i) B2

1 +B2
2 = C2

1 + C2
2

(ii) B1C1 +B2C2 = C1B1 + C2B2

then matrix pair (B,C) admits a 4n× 4n normal completion.

68



Proof. Let

N =





0 B2 B1 0

C2 0 0 B2

C1 0 0 B1

0 C2 C1 0





where Bj, Cj ∈ Mn(R). Note that if we view this matrix as a part of a chessboard then

the configuration or placement of the matrices Bj, Cj are a ”knights move” away from

themselves. By comparing the entries in the normality equation, NN∗ = N∗N , we see

that (B,C) admits a normal completion if equations (i) and (ii) are satisfied.

Remark 10. One set of solutions to the matrix equations in the previous theorem can

be constructed from solutions of the quartic V (a2 + b2 = c2 + d2) whose solutions can be

parameterized by (a, b, c, d) = (pr+qs, qr−ps, pr−qs, ps+qr) where p, q, r, s are arbitrary

real numbers. A simple calculation, then, shows that if we choose B1 = diag(a, ..., a), B2 =

diag(b, ..., b), C1 = diag(c, ..., c), C2 = diag(d, ..., d) then the set of matrix equations are

satisfied and hence we have constructed an explicit class of matrices that admit normal

completions.
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8.3 Projections of the same rank

Theorem 8.3.1. Suppose that B,C ∈ Mn(C) are projections of the same rank, then the

matrix pair (B,C) admits a normal completion.

Proof. Recall that if a, b ∈ H where H is a Hilbert space, then we may define an operator

from H
⊕

H → H by setting (a⊗ b)(h) = 〈h, b〉a.

Some properties of these operators that we will use are:

(1) (a⊗ b)∗ = (b⊗ a)

(2) (a⊗ b)(c⊗ d) = 〈c, b〉(a⊗ d)

Let H = Range(B) and K = Range(C). By assumption, r = dim(H) = dim(K). We

find orthonormal basis (ξj)rj=1, and (ζj)rj=1 in K and H respectively, so that:

(1) 〈ξi, ζi〉 is real for all 1 ≤ i ≤ r, and

(2) 〈ξi, ζj〉 = 0 for i $= j.

Assume, for the sake of simplicity that B|K has trivial kernel. We may assume further,

that (ξj) is the orthonormal basis corresponding to the singular values of B|K , that is,

Bξj = cjζj where cj = ||Bξj||. Now, for i $= j we claim that 〈ξi, ζj〉 = 0. Note that

ξj = cjζj + ηj where ηj = B⊥ζj ⊥ H. Then, we have that 〈ξi, ζj〉 = 〈ciζi + ηi, ζj〉 = 0, as

claimed. Now we can write B =
∑r

j=1 ζj ⊗ ζj and C =
∑r

j=1 ξj ⊗ ξj. By first looking at

the case where r = 1, we found that good candidates for A and D are
∑r

j=1 ξj ⊗ ζj and

∑r
j=1 ζj ⊗ ξj, respectively.
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Recall that for matrices of the type:

N =




A B

C D





the normality condition, NN∗ = N∗N gives us a system of matrix equations which we

will state again for the sake of the reader:

(1) AA∗ − A∗A = C∗C − BB∗

(2) DD∗ −D∗D = B∗B − CC∗

(3) AC∗ − C∗D = A∗B − BD∗

Hence, we will be done once we show that our matrices, A,B,C,D ∈ Mn, satisfy (1), (2),

and (3).

To establish (1), note that

AA∗ = (
∑r

j=1 ξj ⊗ ζj)(
∑r

j=1 ζj ⊗ ξj)

=
∑r

j=1〈ζj, ζj〉(ξj ⊗ ξj) +
∑

i *=j(ξi ⊗ ζi)(ζj ⊗ ξj)

=
∑r

j=1(ξj ⊗ ξj) +
∑

i *=j〈ζj, ζi〉(ξi ⊗ ξj)

=
∑r

j=1(ξj ⊗ ξj) = C∗C

Similarly,

A∗A = (
∑r

j=1 ξj ⊗ ζj)∗(
∑r

j=1 ξj ⊗ ζj)

= (
∑r

j=1 ζj ⊗ ξj)(
∑r

j=1 ξj ⊗ ζj)
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=
∑r

j=1(ζj ⊗ ζj) +
∑

i *=j〈ζj, ζi〉(ξi ⊗ ζj)

=
∑r

j=1(ζj ⊗ ζj) = BB∗

which shows that (1) is satisfied. Moreover,

DD∗ = (
∑r

j=1 ζj ⊗ ξj)(
∑r

j=1 ξj ⊗ ζj)

=
∑r

j=1〈ξj, ξj〉(ζj ⊗ ζj) +
∑

i *=j(ζi ⊗ ξi)(ξj ⊗ ζj)

=
∑r

j=1(ζj ⊗ ζj) +
∑

i *=j〈ξj, ξi〉(ζi ⊗ ζj)

=
∑r

j=1(ζj ⊗ ζj) = B∗B

and

D∗D = (
∑r

j=1 ξj ⊗ ζj)(
∑r

j=1 ζj ⊗ ξj)

=
∑r

j=1〈ζj, ζj〉(ξj ⊗ ξj) +
∑

i *=j(ξi ⊗ ζi)(ζj ⊗ ξj)

=
∑r

j=1(ξj ⊗ ξj) +
∑

i *=j〈ξj, ξi〉(ζi ⊗ ζj)

=
∑r

j=1(ξj ⊗ ξj) = C∗C

which shows that equation (2) is satisfied. We also have that

AC∗ = (
∑r

j=1 ξj ⊗ ζj)(
∑r

j=1 ξj ⊗ ξj)

=
∑r

j=1〈ξj, ζj〉(ξj ⊗ ξj) +
∑

i *=j(ξi ⊗ ζi)(ξj ⊗ ξj)

=
∑r

j=1〈ξj, ζj〉(ξj ⊗ ξj) +
∑

i *=j〈ξj, ζi〉(ξi ⊗ ξj)

72



=
∑r

j=1〈ξj, ζj〉(ξj ⊗ ξj)

and

C∗D = (
∑r

j=1 ξj ⊗ ξj)(
∑r

j=1 ζj ⊗ ξj)

=
∑r

j=1〈ζj, ξj〉(ξj ⊗ ξj) +
∑

i *=j(ξi ⊗ ξi)(ζj ⊗ ξj)

=
∑r

j=1〈ζj, ξj〉(ξj ⊗ ξj) +
∑

i *=j〈ζj, ξi〉(ξi ⊗ ξj)

=
∑r

j=1〈ζj, ξj〉(ξj ⊗ ξj)

which shows that AC∗ − C∗D = O. A similar calculation shows that we also have that

A∗B − BD∗ = O. Hence, equation (3) is also satisfied and so our matrix:

N =





∑r
j=1(ξj ⊗ ζj)

∑r
j=1(ζj ⊗ ζj)

∑r
j=1(ξj ⊗ ξj)

∑r
j=1(ζj ⊗ ξj)





is normal.
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