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Abstract

We study discrete quasiperiodic Schrödinger operators on `2(Z) with potentials defined by γ-Hölder
functions. We prove a general statement that for γ > 1/2 and under the condition of positive Lyapunov
exponents, measure of the spectrum at irrational frequencies is the limit of measures of spectra of periodic
approximants. An important ingredient in our analysis is a general result on uniformity of the upper
Lyapunov exponent of strictly ergodic cocycles.

1 Introduction

Consider quasiperiodic operators acting on l2(Z) and given by:

(hω,θψ)(n) = ψ(n− 1) + ψ(n+ 1) + f(ωn+ θ)ψ(n), n = . . . ,−1, 0, 1, . . . , (1.1)

where f(x) is a real-valued sampling function of period 1. Denote by S(ω, θ) the spectrum of hω,θ. For
rational α = p/q the spectrum consists of at most q intervals. Let S(ω) =

⋃
θ∈R S (ω, θ) . Note that for

irrational ω the spectrum of H (as a set) is independent of θ (see, e.g., [10]), and therefore S(ω, θ) = S(ω).
In this paper we study continuity of S(ω) and its measure upon rational approximation of ω , for rough
sampling functions f.

The last decade has seen an explosion of general results for operators (1.1) with analytic f, see e.g. [7, 15]
and references therein, and by now even the global theory of such operators is well developed [2, 3]. There
are very few complete results, however, beyond the analytic category. Indeed, not only the methods of the
mentioned papers intrinsically require analyticity or at least Gevrey (e.g. the large deviation theorems),
but it is essential for some results too. For example, continuity of the Lyapunov exponent [8], an important
ingredient of many later developments, may not hold in the case of even C∞ regularity [31] (see also [18]).

In this paper we show that, under certain conditions, for the question of continuity in ω analyticity is not
essential. Namely, in the regime of positive Lyapunov exponents, spectra of rational approximants converge
a.e. to S(ω) for all f, even with very low regularity: Hölder-1/2+ continuity is sufficient. To our knowledge,
other than the very basic facts that require, at most, continuity of f, there are no other results that do
not require exclusion of potentially relevant parameteres or additional assumptions (e.g. transversality) and
work for potentials that rough, particularly beyond the Lipshitz condition.

The fact that various quantities could be easier to analyze and sometimes are even computable for
periodic operators, Hp/q,θ, makes results on continuity in ω particularly important. For example, the famous
Hofstadter butterfly [13] is a plot of the almost Mathieu spectra for 50 rational values of ω and visually based
inferences about the spectrum for irrational ω implicitly assume continuity. It is therefore an important and
natural question if and in what sense the spectral properties of such rational approximants relate to those
of the quasi-periodic operator Hω,θ.

∗The work was supported by NSF Grant DMS-1101578.
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The history of this question was centered around the Aubry conjecture on the measure of the spectrum [1],
popularized by B. Simon [28, 29] : that for the almost Mathieu operator given by (1.1) with f(θ) = 2λ cos 2πθ,
for irrational ω and all real λ, θ there is an equality

|Sλ(ω, θ)| = 4|1− |λ||. (1.2)

Here, for sets, we use | · | to denote the Lebesgue measure.
Avron,van Mouche, Simon [5] proved that, for |λ| 6= 1, |Sλ(pn/qn)| → 4|1 − |λ|| as qn → ∞, and Last

[26] established this fact for |λ| = 1. Given these theorems, the proof of the Aubry-Andre conjecture was
reduced to a continuity result.

The continuity in ω of S(ω) in Hausdorff metric was proven in [6, 11]. Continuity of the measure of
the spectrum is a more delicate issue, since, in particular, |S(ω)| can be (and is, for the almost Mathieu
operator) discontinuous at rational ω. We will actually use an even stronger notion of a.e. setwise continuity.
Namely, we say limn→∞Bn = B if and only if

lim sup
n→∞

Bn = lim inf
n→∞

Bn = B ⇐⇒ lim
n→∞

χBn = χB Lebesgue a.e. (1.3)

.
Establishing continuity at irrational ω requires quantitative estimates on the Hausdorff continuity of

the spectrum. The first such result, namely the Hölder- 1
3 continuity was proved in [9], where it was used

to establish a zero-measure spectrum (and therefore the Aubry-Andre conjecture) for the almost Mathieu
operator with Liouville frequencies ω at the critical coupling λ = 1. That argument was improved to the
Hölder-1/2 continuity (for arbitrary f ∈ C1) in [5] and subsequently used in [25, 26] to establish (1.2) for
the almost Mathieu operator for ω with unbounded continuous fraction expansion, therefore proving the
Aubry-Andre conjecture for a.e. (but not all) ω. The extension to all irrational ω is due to [16, 4]1.

It was argued in [5] that Hölder continuity of any order larger than 1/2 would imply the desired continuity
property of the measure of the spectrum for all ω. It was first noted in [20] that in the regime of semi-
uniform localization, the appropriate cut-offs of the exponentially localized eigenfunctions provide good
enough approximate eigenvectors for a perturbed operator to establish almost Lipshitz continuity (thus
establishing the Aubry-Andre conjecture in the localization regime available at that time). The idea of [16]
was that for Diophantine ω and analytic f one can extract such eigenvectors (and thus establish almost
Lipshitz continuity of S) by finding the cut-off places at distance L from each other where the generalized
eigenfunction is exponentially small in L, simply as a corollary of positive Lyapunov exponents, without
establishing localization. This led to establishing that, in the regime of positive Lyapunov exponents, for
any analytic f, |S(pnqn )| → |S(ω)| for every Diophantine ω and its approximants pn

qn
. Recently, it was shown

in [19] that positivity of the Lyapunov exponent is not needed for this result, in particular, for analytic f,
and all irrational ω, S(pnqn )→ S(ω).

Our goal is to show that bringing back the condition of positivity of the Lyapunov exponent, allows to
significantly relax the required regularity of f.

For a given energy E ∈ R, a formal solution u of

hu = Eu (1.4)

with operator h given by (1.1) can be reconstructed from its values at two consecutive points via(
u(n+ 1)
u(n)

)
= AE(θ + nω)

(
u(n)

u(n− 1)

)
. (1.5)

The function

AE(θ) =

(
E − f(θ) −1

1 0

)
(1.6)

1It should be noted that the argument of [4] that, in particular, completed the result for the critical value of λ, did not
involve continuity in frequency
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maps T into SL2(R). Setting R : T → T, Rx := x + ω, the pair (ω,AE) viewed as a linear skew-product

(x, v)→ (Rx,A(x)v), x ∈ T, v ∈ R2
, is the called the corresponding Schrödinger cocycle. The iterations of

the cocycle A for k ≥ 0 are given by

AEk (θ) = AE(R(k−1)θ) · · ·AE(R1θ)AE(θ), A0 = I. (1.7)

and
AEk (θ) =

(
AE−k(Rkθ)

)−1
; k < 0. (1.8)

Therefore, it can be seen from (1.5) that a solution to (1.4) for chosen initial conditions (u(0), u(−1)) for all
k ∈ Z is given by, (

u(k)
u(k − 1)

)
= Ak(θ,E)

(
u(0)
u(−1)

)
. (1.9)

From general properties of subadditive ergodic cocycles, we can define the Lyapunov exponent

L(E) = lim
k

1

k

∫
ln ‖AEk (θ)‖dθ = inf

k

1

k

∫
ln ‖Ak(θ)‖dθ, (1.10)

furthermore, L(E) = limk
1
k ln ‖AEk (θ)‖ for almost all θ ∈ T.

As mentioned above, L may be discontinuous in the non-analytic category. Set L+(ω) := {E : L(E) > 0}.
Our main result is

Theorem 1.1 For every irrational ω, there exists a sequence of rationals pn
qn
→ ω such that for any f ∈

Cγ(T) with γ > 1
2

S

(
pn
qn

)
∩ L+(ω)→ S (ω) ∩ L+(ω). (1.11)

Remark 1. The convergence holds in the strong sense of (1.3).

2. The sequence pn
qn

will be the full sequence of continued fraction approximants of ω in the Diophantine
case, and an appropriate subsequence of it otherwise. For practical purposes of making conclusions

about S(α) based on the information on S
(
pn
qn

)
it is sufficient to have convergence along a subsequence.

3. It is an interesting question whether γ = 1/2 represents a sharp regularity threshold for this result for
a.e. ω.

4. Lower regularity is sufficient for a measure zero set of non-Diophantine ω, see Theorem 2.2

5. It is also interesting to find out what is the lowest regularity requirement for the convergence of
full union spectra, without condition of positive L, and for the related Last’s intersection spectrum
conjecture. Both are more delicate and currently established only for analytic f ([19], see also [27]). We
expect that higher than 1/2 regularity should be required for those results, but that analytic condition
is improvable.

6. If we replace f in (1.1) with λf , then L is expected to be positive for most f and large λ through most
of the spectrum, creating a wide range of applicability for Theorem 1.1. For analytic f this is known
to hold uniformly in (E,ω) f or large λ. For the rough case, the relevant results are [30, 21]

Theorem 1.1 certainly has an immediate corollary:

Corollary 1.2 For every irrational ω, there exists a sequence of rationals pn
qn
→ ω such that for any f ∈

Cγ(T) with γ > 1
2

|S
(
pn
qn

)
∩ L+(ω)| → |S (ω) ∩ L+(ω)|. (1.12)
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This corollary for analytic f was the main result of [16] and our proof borrows some important ingredients
from that work. The main idea of the current paper is to show that, for Diophantine frequencies, γ-Hölder
continuity of f is sufficient to find the cut-off places at distance L from each other where the generalized
eigenfunction is polynomially small in L, thus establishing β-Hölder continuity of the spectrum with β < γ.
The requirement γ > 1/2 comes from the application of the original argument in [5]. For non-Diophantine
frequencies we obtain the statement by extending the Hölder continuity theorem of [5] in the following way:
for γ-Hölder functions f the spectrum is γ

1+γ -Hölder continuous, which is sufficient, under an appropriate
anti-Diophantine condition, even without positivity of the Lyapunov exponent, see Theorem 5.2.

The proof requires very tight control on the perturbations of cocycles, in absence of continuity of the
Lyapunov exponent. To this end, we show that generally, for cocycles over uniquely ergodic dynamics, upper
bound is uniform in phases and neighborhoods (Theorem 3.2), a theorem that extends a uniformity result
of Furman [12] and should be applicable to a variety of questions.

The main part of the proof of Theorem 1.1 follows from Hölder continuity properties of the spectrum
in the Hausdorff metric which are stated in section 5. The argument for the positive Lyapunov exponent
regime uses tight bounds on matrix cocycle approximation covered in Section 4 which in turn depend on
a general result on uniform upper-semicontinuity of Lyapunov exponents for cocycles over uniquely ergodic
dynamics, that may be of independent interest, and is proven in Section 3. Section 6 completes the proof of
Theorem 1.1.

2 Continued fraction approximants

For κ ≥ 0, ω ∈ R is said to be κ-Diophantine if there exists some Cω > 0 so that

‖nω‖ > C

n1+κ
(2.1)

for all n ∈ Z, where ‖ · ‖ denotes distance to the integers. For κ > 0 a.e. ω ∈ T is κ-Diophantine. For κ = 0
this condition is equivalent to having bounded type, so a.e. ω ∈ T is not 0-Diophantine.

Writing ω in continued fraction expansion,

ω = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

= [a0; a1, a2, . . .],

the truncations pn/qn = [a0; a1, a2, . . . , an] are known as the continued fraction approximants. From the
theory of continued fractions [24], for κ-Diophantine ω and n > nω we have for some Cω > 0,

Cω

q2+κ
n

<

∣∣∣∣ω − pn
qn

∣∣∣∣ ≤ 1

qnqn+1
<

1

q2
n

. (2.2)

We will also need the following fact:

Lemma 2.1 (e.g. [17]) For an interval I ⊂ T, if n is such that |I| > 1
qn

then for any θ ∈ T there is
0 ≤ j ≤ qn + qn−1 − 1 so that θ + jω ∈ I.

We are now ready to formulate a more detailed version of the main Theorem

Theorem 2.2 Assume f ∈ Cγ(T) with 1 ≥ γ > 0. Then

1. If ω is κ-Diophantine, κ > 0, and γ > 1
2 , then

S

(
pn
qn

)
∩ L+(ω)→ S (ω) ∩ L+(ω). (2.3)

for pn/qn the sequence of continued fraction approximants of ω.

4



2. If ω is not κ-Diophantine with κ = γ−1 − 1, then

S

(
pn
qn

)
→ S (ω) (2.4)

for a subsequence of approximants

Remark 1. Thus, for Lipshitz f (2.4) holds for a.e. ω (all except possibly for the bounded type). This
is already implicit in [25].

2. Theorem 2.2 certainly implies Theorem 1.1

3 Uniform upper semicontinuity of the upper Lyapunov exponent

This section is devoted to some fundamental properties of the Lyapunov exponent in the general setting.
It is well known that the Lyapunov exponent of ergodic cocycles is upper semicontinuous. For a uniquely
ergodic underlying dynamics, Furman [12] has shown, by an elegant subadditivity argument originally used
by Katznelson and Weiss [23] to prove Kingman’s ergodic theorem, that rate of convergence of a cocycle
from above can be bounded uniformly in the phase. Now we investigate the coincidence of these properties.

Assume (X,T, µ) is an ergodic Borel probability space. We use the notation {f} for a sequence (fn) ∈
C(X,R) ∩ L1(X,µ) which is a continuous subadditive cocycle with respect to T, that is

fn+m(x) ≤ fn(x) + fm(Tnx).

The category of continuous subadditive cocycles will be denoted Γ(X). We define the Lyapunov exponent
as,

Λ(f) = lim
n

1

n

∫
X

fn(x)µ(dx).

By Kingman’s subadditive ergodic theorem we have, for almost all x ∈ X,

lim
n

1

n
fn(x) = inf

n

1

n

∫
X

fn(x)µ(dx) = Λ(f). (3.1)

To proceed it will be useful to introduce a metric on Γ(X). For two continuous cocycles {g}, {f} ∈ Γ(X)
define

d ({g}, {f}) =
∑
n≥1

1

2n
‖gn − fn‖0

1 + ‖gn − fn‖0
.

Then (Γ(X),d) is a metric topology. Since for any n the map {f} → 1
n

∫
X
fn is continuous in (Γ(X), d), it

follows that the infimum

{f} → inf
n

1

n

∫
X

fn = Λ(f)

is upper semicontinuous in (Γ(X),d).2 On the other hand, for a fixed cocycle over uniquely ergodic dynamics
the convergence is uniform in the phase.

Theorem 3.1 (Furman [12]) Let {f} be a continuous subadditive cocycle on a compact uniquely ergodic
space (X,T, µ). Given ε > 0, there exists nε so that for n > nε any x ∈ X has

1

n
fn(x) < Λ(f) + ε.

2This is true for general L1 cocycles, with no continuity required.
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We will combine these properties to obtain uniform uppersemicontinuity in both the cocycle and phase.
We now inspect in further detail the convergence for any initial phase.

Theorem 3.2 Let (X,T, µ) be a compact uniquely ergodic dynamical system (X,µ, T ). Then Λ : Γ(X)→ R
is uniformly in x upper semicontinuous with respect to d.

Proof We are to prove that given ε there exist δε, nε such that for g with d(f, g) < δε and n > nε, for all
x ∈ X,

1

n
gn(x) ≤ Λ(f) + ε.

Given small ε > 0, for x ∈ X let

n(x) = inf{n ∈ N|fn(x) < n (Λ(f) + ε)}

be the minimum time the cocycle {fn} arrives near the Lyapunov exponent. Furthermore, define the open
sets

AN := {x ∈ X|n(x) ≤ N} =

N⋃
n=1

{x ∈ X|fn(x) < n (Λ(f) + ε)}.

Let Nε be large enough that, N ≥ Nε implies µ (AN ) > 1− ε. Fix some N > Nε for the rest of the proof
and let

Nε =
{
{g} : d({f}, {g}) < ε

2N+1

}
.

This implies, for x ∈ AN and g ∈ Nε, that

gn(x) < fn(x) + ε < n(x) (Λ(f) + 2ε) . (3.2)

In other words, if we define the set

BK =

K⋃
n=1

{x ∈ X|gn(x) ≤ n (Λ(f) + 2ε)},

then BK ⊃ AK for K ≤ N and g ∈ Nε.
For any x ∈ X construct a sequence (xi) in X in the following way. For i = 1 let x1 = x and for

subsequent terms let xi+1 = Tnixi; where ni is defined as

ni = ni(x) =

{
n(xi), if xi ∈ AN

1, otherwise
.

Notice that 1 ≤ nj ≤ N .
We now consider the cocycles for a sufficiently large index. Let Q = sup{‖g1‖0 : g ∈ Nε}, note if ε is

small then Q < ‖f1‖0 + 4ε. Let M > NQ
ε , and choose p so that

n1 + · · ·+ np−1 ≤M < n1 + · · ·+ np.

Let K = M − (n1 + · · ·+ np−1) ≤ N . For g ∈ Nε, by subadditivity,

gM (x) ≤
p−1∑
i=1

gni(xi) + gK(xp) ≤
p−1∑
i=1

gni(xi) +NQ.

We use the definition of ni and inequality (3.2),

gM (x) ≤
p−1∑
i=1

[
ni (Λ(f) + 2ε)1AN (xi) +Q · 1X\AN (xi)

]
+NQ.
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Note, X\AN is a closed set of µ measure less than ε. By regularity of the Borel measure, there is an open
set D containing X\AN of measure less than 2ε, and by Urysohn’s lemma there is a continuous function g
so that g|X\AN = 1 and g|Dc = 0. Therefore, for large M we have uniformly in x,

1

M

p−1∑
i=1

Q · 1X\AN (xi) ≤
1

M

M∑
i=1

Q · 1X\AN (T ix) ≤ 1

M

M∑
i=1

Qg(T ix) < 3Qε

Substituting this into the complete sum,

1

M
gM (x) ≤ 1

M

p−1∑
i=1

ni (Λ(f) + 2ε)1AN (xi) +
1

M

M∑
i=1

Q · 1X\AN (T ix) +
NQ

M
(3.3)

≤ (Λ(f) + 2ε) + 3Qε+
NQ

M
(3.4)

≤ Λ(f) + 6Qε. (3.5)

4 Rate of convergence for matrix cocycles

The first application of Theorem 3.2 is to approximations of matrix cocycles. Consider a continuous matrix
A ∈ C (X,GLn(C)) defined on a compact uniquely ergodic space (X,µ, T ). Let the metric on C (X,GLn(C))
be defined by the norm ‖A‖0 = maxθ ‖A(θ)‖. Then

ln ‖An(θ)‖ := ln ‖A(Tn−1x) · · ·A(x)‖, A0 = I,

is a subadditive cocycle and its Lyapunov exponent is defined by

L(A) = inf
n

1

n

∫
X

ln ‖A(Tn−1x) · · ·A(x)‖.

Immediately, an application of Theorem 3.2 results in uniform uppersemicontinuity of the Lyapunov
exponent: given ε, for D near A and large k, we have

‖Dk(x)‖ ≤ exp{k(L(A) + ε)} (4.1)

uniformly in x, since D in a small C0 neighborhood of A implies {ln ‖Dn‖} in a small d beighborhood of
{ln ‖An‖}. This observation leads to the following

Corollary 4.1 Let ε > 0, and A ∈ C (X,GLn(C)) . For small enough δ and large kε, if

‖D −A‖0 < δ

and k ≥ kε, then
‖Ak −Dk‖0 ≤ δe{k(L(A)+ε)}. (4.2)

Proof By iterating the calculation,

Ak(θ) = A(T k−1θ) ◦ · · · ◦A(Tθ) ◦A(θ)

= D(T k−1θ) ◦Ak−1(θ) + (A−D) (T k−1θ) ◦Ak−1(θ) (4.3)

we obtain the error bound

‖Ak(θ)−Dk(θ)‖ ≤
∑

0≤`≤k−1

‖D`(T
k−`θ)(D −A)(T k−1−`θ)Ak−1−`(θ)‖

≤
∑

0≤`≤k−1

‖D`‖0‖D −A‖0‖Ak−1−`‖0.

(4.4)
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Now we invoke Theorem 3.2 for 0 < ε′ < ε to obtain δ > 0 and k(ε′) large so that ‖D − A‖0 < δ and
k > 2k(ε′) implies

‖Ak(θ)−Dk(θ)‖ ≤

 ∑
0≤`≤kε′−1

+
∑

kε′≤`≤k−kε′−2

+
∑

k−kε′−1≤`≤k−1

 ‖D`‖0‖D −A‖0‖Ak−1−`‖0 (4.5)

≤ δ
∑

kε′≤`≤k−kε′−2

‖D`‖0‖Ak−1−`‖0 + 2δe{(k−1)(L+ε′)}
∑

0≤`≤kε−1

(‖A‖+ δ)
`

(4.6)

≤ δe{(k−1)(L+ε′)}

k + 2
∑

0≤`≤kε′−1

(‖A‖+ δ)
`

 (4.7)

≤ δe{k(L+ε)} (4.8)

for large enough k > kε.

Remark A standard argument would easily obtain (4.2) with exp{k(L+ ε)} replaced by C‖A‖k0 . The issue
here is tight control on the exponential rate of growth of the error, without assuming continuity of L.

5 Hölder Continuity in Frequency

If I = [u, v] ⊂ Z we write
hI;θ = h[u,v],θ := RIhθRI

where RI projects onto the subspace of coordinates restricted to I. The Green’s function for the interval is
the inverse of the restriction GI(i, j) = δTi h

−1
I δj . The determinants of the truncated matrix will be labeled

PEk (θ) := det(h[0,k−1];θ − E). The truncated Hamiltonian relates to the cocycle matrices by the equation

AEk (θ) =

[
PEk (θ) −PEk−1(θ + ω)
PEk−1(θ) −PEk−1(θ + ω)

]
. (5.1)

The following simple lemma allows to bound |Pk| from above uniformly in θ and for a large measure
subset of the spectrum

Lemma 5.1 For any ζ, η > 0 there exists a set F (ζ, η) ⊂ S(ω), |F (δ, η)| < ζ, and k(ω, ζ, η) = kF so that
E ∈ S(ω)\F (ζ, η) and k > kF implies

|PEk (θ)| < ek(L(E)+η). (5.2)

Furthermore there is some δF > 0 so that uniform upper convergence in the sense of Lemma 4.1 holds. Thus,
E ∈ S\F (ζ, η) implies if ‖D −AE‖ < δF and k > kF then (4.2) holds.

Proof For all E there exists kE,η and δE so that Corollary 4.1 holds. Thus,

|{E : kE,η > k}| → 0 as k →∞

and
|{E : δE < δ}| → 0 as δ → 0.

Therefore,
F (ζ, η) = {E : δE < δ} ∪ {E : kE,η > k}

for small enough δ and large enough k = kF so that |F (ζ, η)| < ζ.
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5.1 The general case

Here we observe that a result of Avron, Mouche and Simon on 1/2-Hölder continuity of the spectrum easily
generalizes from f ∈ C1 to γ-Hölder case.

Theorem 5.2 Suppose f ∈ Cγ(T), 1 ≥ γ > 0. Then E ∈ S(ω) and for small enough |ω − ω′|, there exists

an E′ ∈ S(ω′) so that |E − E′| < Cf |ω − ω′|
γ

1+γ , for some constant Cf > 0 not depending on ω or ω′.

Note that by Cf we mean a constant that depends only on f. Different such constants are denoted by
the same Cf in the proofs below. The proof is very similar to that of [5]. Starting with an approximate
eigenfunction for hω,θ − E and using the same test function as in [5], upon a cutoff at a distance L we
obtain an approximate eigenfunction for hω′,θ′ with an error in the kinetic energy of order L−1. The main
difference is that the potential energy error is now bounded by CL|ω − ω′|γ , so the choice of L is optimized

by L = Cf |ω − ω′|−
γ

1+γ .
More precisely, given ε > 0 and E ∈ S(ω), there exists an approximate eigenfunction φε ∈ `2(Z) so that

‖(hα,θ − E)φε‖ < ε‖φε‖. Set gj,L(n) =
(

1− |j−n|L

)+

, where g+(n) = g(n), n ≥ 0 and g+(n) = 0 otherwise.

Avron-van Mouche-Simon [5] prove that for sufficiently large L for any bounded f : T→ R there exists
j such that gj,Lφε 6= 0,and for any ε > 0,

‖(hω,θ − E)gj,Lφε‖2 ≤ C
(
ε2 + L−2

)
‖gj,Lφε‖2, (5.3)

where C is universal. Now let θ′ be given by ωj + θ = ω′j + θ′. By the Hölder assumption on f and
j − L ≤ n ≤ j + L, observe that

|f(θ + nω)− f(θ′ + nω′)| ≤ Cf (L|ω − ω′|)γ

Thus,

‖(hω′,θ′ − E)gj,Lφε‖ ≤ ‖(hω′,θ′ − hω,θ)gj,Lφε‖+ ‖(hω,θ − E)gj,Lφε‖

≤
(
Cf (L|ω − ω′|)γ + C

(
ε2 + L−2

)1/2) ‖gj,Lφε‖. (5.4)

Since ε can be arbitrarily small, choosing L = Cf |ω − ω′|−
γ

1+γ , to make both addends on the right-hand
side of (5.4) equal, we obtain the statement of Theorem 5.2 by the variational principle.

5.2 Diophantine case

As mentioned in [5] for Diophantine rotations 1/2-Hölder continuity of the spectrum (the best that can be
obtained from Theorem 5.2) is not sufficient, so that is what we aim to improve.

Theorem 5.3 Suppose hω,θ is an operator of the form (1.1) where f ∈ Cγ , 1 ≥ γ > 0, ω ∈ [0, 1] is κ-
Diophantine, κ > 0. Fix 0 < β < γ. Given ζ > 0 there is a Bζ , 0 < |Bζ | < ζ so that for E ∈ S(ω)∩L+(ω)\Bζ
and any ω′ near ω, there exists E′ ∈ S(ω′) such that

|E − E′| < Cf |ω − ω′|β .

Remark The theorem holds for γ > β > 0, but the application we are interested in will require γ > β > 1
2 .

Proof We assume L+(ω) ∩ S(ω) 6= ∅ otherwise the Theorem holds vacuously. Suppose f is γ-Hölder. Let
0 < β < γ. Let Eχ = {E ∈ S(ω) : L(E) ∩ L+(ω) < χ}, with χ > 0 so small that |Eχ| < ζ

2 . By upper
semicontinuity of the Lyapunov exponent, the Lyapunov exponent is bounded on compact sets. Let χ̄ > 0

9



be an upper bound of the Lyapunov exponent on S(ω). Let 1 > c > 3
4 . Choose d so that c − 1

2 > d > 1
4 .

Choose

0 < τ < ς <
γ − β

β + 1− β
γ

d

(1 + 2κ)
; 1 > b > max(1− χ

χ̄
τ, c) and b < a < 1. (5.5)

Finally, let η > 0 be such that

0 < η < min{χτ − χ̄(1− b), χ(1− a), χ(c− d− 1

2
)}. (5.6)

Define Bζ = Eχ ∪ F (ζ/2, η) with F (·, ·) from Lemma 5.1 with associated kF and δF . Take E ∈ S(ω) ∩
L+(ω)\Bζ .We now find an Nth degree trigonometric polynomial fN that approximates f. Namely, for γ-
Hölder functions f , we have

‖fN − f‖ < CfN
−γ

where

fN (θ) := KN ∗ f(θ) =
∑

−N≤j≤N

(
1− |j|

N + 1

)
f̂(j)eijθ,

KN being the Fejer’s summability kernel,

KN (θ) =

(
sin
(
N+1

2 θ
)

sin
(

1
2θ
) )2

=
∑

−N≤j≤N

(
1− j

N + 1

)
eijθ.

see for example [22].
Set

N = exp

{
χk

τ

γ

}
and let A(N),E be the cocycle matrix defined by the potential determined by the sampling function fN .

For a map B : T→ SL2(R) and associated cocycle set

Vk (t, B) =

{
θ ∈ T :

1

k
ln ‖Bk(θ)‖ > t

}
⊂ T. (5.7)

The measure of this set for large enough k can be bounded below by use of Corollary 4.1. Indeed, for k > kF
we have for all θ, 1

k ln ‖AEk (θ)‖ < L(E) + η, thus using (1.10) and (4.1),

L(E) ≤
∫
T

1

k
ln ‖AEk (θ)‖dθ ≤ |Vk

(
aL(E), AE

)
|(L(E) + η) +

(
1−

∣∣Vk (aL(E), AE
)∣∣) aL(E). (5.8)

Furthermore, we make the following claim regarding the sets Vk(·, ·) for k > kG = max {kF , ka,b,c}, and

|E − Ē|, |E − ¯̄E| < exp{−χτk},

Vk(aL(E), AE) ⊂ Vk(bL(E), A(N),Ē) ⊂ Vk(cL(E), A
¯̄E). (5.9)

The left inclusion of (5.9), by (5.6), follows from

θ ∈ Vk
(
aL(E), AE

)
=⇒∥∥∥A(N),Ē

k (θ)
∥∥∥ > eakL(E) − C

(∣∣E − Ē∣∣+N−γ
)
ek(L(E)+η) > eakL(E) − Cek(L(E)+η−χτ) > ebkL(E).

The right inclusion of (5.9) is similar, with comparisons (applications of Corollary 4.1) made to AE ,

θ ∈ Vk

(
bL(E), A(N),Ē

)
=⇒∥∥∥A ¯̄E

k (θ)
∥∥∥ > ebkL(E) − (CN−γ +

∣∣∣Ē − ¯̄E
∣∣∣)ek(L(E)+η) > ebkL(E) − Cek(L(E)+η−χτ) > eckL(E),
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again using (5.6). Using (5.9) and (5.8) we have∣∣∣Vk(bL(E), A(N),Ē)
∣∣∣ ≥ χ

χ+ η/(1− a)
≥ 1

2
. (5.10)

Thus Vk(bL(E), A(N),E), being defined by a polynomial of order 4k exp{χkτ/γ}, contains an interval of
length exp{−χkς/γ}, for sufficiently large k. It follows from (5.9) that Vk(cL(E), AĒ) also contains an
interval of length exp{−χkς/γ}.

Now we move on to constructing the approximate eigenfunction. Let E0 be a generalized eigenvalue of
hω,θ so that |E − E0| < e−(χ̄+η)k, with generalized eigenvector ψ. By Sch’nol’s theorem, for spectrally a.e.
E, |ψ(x)| = o((1 + |x|)1/2+ε), so we assume E0 is such a value. Thus there exists an xm so that

|ψ(xm)|
(|xm|+ 1)

≥ |ψ(x)|
(|x|+ 1)

for all x ∈ Z. Normalize ψ so that,
|ψ(xm)|

(|xm|+ 1)
= 1.

From (5.9) Vk(cL(E), AĒ) contains an interval of length exp{−χkς/γ}.
For any k sufficiently large there exists a denominator of an approximant, qn such that

exp{kχς/γ} ≤ qn < exp {kχς(1 + 2κ)/γ} . (5.11)

Using Lemma 2.1, (5.9) and (5.11) there exists an x′1, with xm − 2qn − k ≤ x′1 < xm − k,

‖AE0

k (T x
′
1θ)‖ > ecLk.

Similarly, there exists x′3, with xm < x′3 ≤ xm + 2qn, such that∥∥∥AE0

k (T x
′
3θ)
∥∥∥ > ecL(E)k.

By (5.1), for some k`, kr = k, k − 1, or k − 2 and x′1 = x1 or x1 + 1 and x′3 = x3 or x3 + 1, we have

|PE0

k`
(T x1θ)|, |PE0

kr
(T x3θ)| > 1

4
ecL(E)k.

Let

x` = x1 +

[
k`
2

]
; xr = x3 +

[
kr
2

]
.

Set also x2 = x1 + k` and x4 = x3 + kr. Using Cramer’s rule, as in [14] for ι = `, r and i = 1, 3 respectively,

|GE0

[xi,xi+1](xι, xi)| <
|PE0

(xi+1−xι)(T
xιθ)|

|PE0

kι
(T xiθ)|

< C
(1 + exp {−(χ̄+ η)kι}) exp

{
(L(E) + η)kι2

}
exp {cL(E)kι}

< exp {−dkιL(E)}

(5.12)
with the numerator in the second inequality bounded above with (4.2) and the last inequality following from
(5.6) for sufficiently large k; a similar statement holds for xι = x` − 1, xr + 1 and i = 1, 3 respectively. Let

Λ = [x`, xr] and let ψΛ be the truncation of ψ to Λ or ψΛ = RΛψ. We have |Λ| ≤ 4qn+k < 5 exp
{
kχ ς(1+2κ)

γ

}
by Lemma 2.1 and (5.11). Now, by choice of xm,

|ψ(xι)|
|xm|+ 1

=
|ψ(xι)|
|xm|+ 1

|xι|+ 1

|xι|+ 1
≤ |xι|+ 1

|xm|+ 1
(5.13)

≤ |xm|+ |xι − xm|+ 1

|xm|+ 1
≤ 1 + |xι − xm| ≤ 1 + 2qn + k/2 < 3 exp

{
kχ
ς(1 + 2κ)

γ

}
.
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Formal eigenfunctions ψ satisfy, for x1 ≤ x ≤ x2,

ψ(x) = −GE0

[x1,x2](x, x1)ψ(x1 − 1)−GE0

[x1,x2](x, x2)ψ(x2 + 1), (5.14)

and similarly for x3, x4. Applying both (5.13) and (5.12) to (5.14) we obtain end point bound for Λ,

ψ(x`), ψ(x` − 1), ψ(xr), ψ(xr + 1) ≤ C(|xm + 1|) exp

{
kχ
ς(1 + 2κ)

γ

}
exp {−kdL(E)} (5.15)

The cutoff function then satisfies,

‖(hω,θ − E0)ψΛ‖ ≤ C(|xm + 1|) exp

{
−k
(
dL(E)− χς(1 + 2κ)

γ

)}
Define φΛ = ψΛ/‖ψΛ‖. Now note that ‖ψΛ‖ ≥ |xm|+ 1 ≥ 1 so that

‖(hω,θ − E0)φΛ‖ ≤
1

|xm + 1|
‖(hω − E0)ψΛ‖ ≤ C exp

{
−k
(
dL(E)− χς(1 + 2κ)

γ

)}
.

For ω′ ∈ T set θ′ = θ − xr+x`
2 (ω − ω′). Then, perturbing the Hamiltonian’s frequency,

‖(hω,θ − hω′,θ′)φΛ‖ ≤ max
x`≤x≤xr

|f(θ′+xω′)−f(θ+xω)| ≤ Cf (|Λ| · |ω′ − ω|)γ < Cf |ω′−ω|γ exp{kχς(1+2κ)}

(5.16)
Thus

‖(E − hω′,θ′)φΛ‖ ≤ |E − E0|+ ‖(E0 − hω,θ)φΛ‖+ ‖(hω,θ − hω′,θ′)φΛ‖ (5.17)

≤ |E − E0|+ C exp

{
−k
(
dL(E)− χς(1 + 2κ)

γ

)}
+ Cf |ω′ − ω|γ exp{kχς(1 + 2κ)}

≤ C exp

{
−k
(
dL(E)− χς(1 + 2κ)

γ

)}
+ Cf |ω′ − ω|γ exp{kχς(1 + 2κ)}. (5.18)

Thus, by the variation principle, there exists an E′ in S(ω′) so that

|E′ − E| ≤ ‖(E − hω′,θ′)φΛ‖ . (5.19)

If we take k > kG such that

−β ln |ω − ω′|

χ
(
d− ς

γ (1 + 2κ)
) ≤ k ≤ −(γ − β) ln |ω − ω′|

χς(1 + 2κ)
,

which we can do, by (5.5), for sufficiently small |ω−ω′|, we obtain E′−E| < |ω−ω′|β . The required smallness
of |ω − ω′| depends only on chosen parameters, therefore on ω (through its Diophantine parameters), β, ζ
and f.

6 The strong continuity. Proof of Theorem 2.2

This argument is very similar to that of [16] (which in turn is a modification of the proof in [25]). First,
continuity of S+(α) in Hausdorff metric [5] implies

lim sup
p
q→α

S+

(
p

q

)
⊆ Σ(α) , (6.1)
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for any irrational α ∈ T (inclusion holds set-wise, not just a.e, and for any continuous f), which immediately
implies the corresponding inclusion in Theorem 2.2. For the opposite inclusion we need to consider continued
fraction approximants pn

qn
. Note that because of continuity in θ, the set S+(pn/qn) consists of at most qn

disjoint intervals, say S+(pn/qn) = ∪q
′
n

i=1[an,i, bn,i], q
′
n ≤ qn.

We now treat Diophantine and non-Diophantine cases separately.
For a Diophantine ω, Theorem 5.3 implies that for n > n(ω, β, ζ, f),

S(ω) ∩ L+(ω) ⊂ ∪q
′
n

i=1[an,i − Cf |ω −
pn
qn
|β , bn,i + Cf |ω −

pn
qn
|β ] ∪Bζ

thus
|(S(ω) ∩ L+(ω)\Bζ)\S+(pn/qn)| < 2Cfqn|ω −

pn
qn
|β → 0

since β > 1/2.
Therefore, for every ζ > 0, we have |S(ω) ∩ L+(ω)\Bζ)\ lim infpn/qn→ω S+(pn/qn)| = 0. Thus

|S(ω) ∩ L+(ω)\ ∩ζ>0 Bζ)\ lim inf
pn/qn→ω

S+(pn/qn)| = 0,

which gives the desired inclusion in Theorem 1.1.
Now, consider the irrational ω so that there exists a sequence of rational pn

qn
so that pn and qn are

mutually prime and

q
1+γ
γ

n

∣∣∣∣ω − pn
qn

∣∣∣∣→ 0, (6.2)

so that, ω is not κ Diophantine for κ > 1
γ − 1. Similar to the above calculation, we have, letting S

(
pn
qn

)
=

∪1≤i≤q′n [an,i, bn,i], and using Theorem 5.2 that

S(ω) ⊂
⋃

1≤i≤qn

[
an,i − Cf

∣∣∣∣ω − pn
qn

∣∣∣∣
γ

1+γ

, bn,i + Cf

∣∣∣∣ω − pn
qn

∣∣∣∣
γ

1+γ

]

Thus, by (6.2),

S(ω) ⊂ lim inf
pn/qn→ω

S

(
pn
qn

)
.
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