PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY http://dx.doi.org/10.1090/proc12713 Article electronically published on May 28, 2015

UNIFORM LOCALIZATION IS ALWAYS UNIFORM

RUI HAN

(Communicated by Michael Hitrik)

ABSTRACT. In this note we show that if a family of ergodic Schrödinger operators on $l^2(\mathbb{Z}^{\gamma})$ with continuous potentials have uniformly localized eigenfunctions, then these eigenfunctions must be uniformly localized in a homogeneous sense.

1. INTRODUCTION

Given a topological space Ω , let $T_i : \Omega \to \Omega$ be commuting homeomorphisms, and let μ be an ergodic Borel measure on Ω . Let $f : \Omega \to \mathbb{R}$ be continuous and define $V_{\omega}(n) = f(T^n \omega)$ for $n \in \mathbb{Z}^{\gamma}$, where $T^n = T_1^{n_1} \dots T_{\gamma}^{n_{\gamma}}$. Let H_{ω} be the operator on $l^2(\mathbb{Z}^{\gamma})$,

$$(H_{\omega}u)(n) = \sum_{|m-n|=1} u(m) + V_{\omega}(n)u(n).$$

The occurrence of pure point spectrum for the operators $\{H_{\omega}\}$ is called *phase* stable if it holds for every $\omega \in \Omega$.

For a self-adjoint operator H on $l^2(\mathbb{Z}^{\gamma})$, we say that H has uniformly localized eigenfunctions (ULE), if H has a complete set of orthonormal eigenfunctions $\{\phi_n\}_{n=1}^{\infty}$, and there are $\alpha > 0$, C > 0, such that

$$|\phi_n(m)| < Ce^{-\alpha|m-m_n|}$$

for all eigenfunctions ϕ_n and suitable m_n . It is known that ULE has a close connection with phase stability of pure point spectrum. Actually, in paper [3], Jitomirskaya pointed out that instability of pure point spectrum implies absence of uniform localization. It is also shown in [5] that if H_{ω} has ULE for ω in a set of positive μ -measure, then H_{ω} has pure point spectrum for any $\omega \in supp(\mu)$. The proof of this statement mainly relies on the fact that ULE implies uniform dynamical localization (UDL), which means if H_{ω} has ULE, then

$$|(\delta_l, e^{-itH_\omega}\delta_m)| \le C_\omega e^{-\alpha_\omega |l-m|}$$

for some constants α_{ω} , and C_{ω} that depend on ω . Recently, in [1] and [2], Damanik and Gan established *ULE* for a certain model and then proved that for this model, actually C_{ω} and α_{ω} can be chosen to be independent of ω . In this note we will show that the latter property is always a corollary of *ULE*.

©2015 American Mathematical Society

Received by the editors October 8, 2014 and, in revised form, January 5, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B36; Secondary 81Q10.

This work was partially supported by DMS-1401204.

First, let us give a new definition.

Definition 1.1. H_{ω} has uniform or homogeneous ULE in a set S means that H_{ω} has ULE for any ω in S and

$$|\phi_n^{\omega}(m)| \le C e^{-\alpha |m - m_n^{\omega}|}$$

with constants $\alpha > 0$ and C > 0 which do not depend on ω .

Then the main theorems in the note can be stated as follows:

Theorem 1.2. If H_{ω} has ULE for ω in a positive μ -measure set, then H_{ω} has homogeneous ULE in $supp(\mu)$.

Theorem 1.2'. If T is minimal, and H_{ω} has ULE at a single ω , then H_{ω} has homogenous ULE in Ω .

2. Proof of Theorem 1.2

Let $\{\mathbf{U}_k\}$ be a family of transitions on $l^2(\mathbb{Z}^{\gamma})$ defined by $(\mathbf{U}_k u)(m) := u(m-k)$. Clearly, if $\{\phi_n^{\omega}\}$ is a complete set of eigenfunctions of H_{ω} , then $\{\mathbf{U}_k\phi_n^{\omega}\}$ is a complete set of eigenfunctions of $H_{T^k\omega}$. Also, if H_{ω} has ULE, which means $\exists \alpha_0 > 0, C_0 > 0$ such that

$$|\phi_n^{\omega}(m)| \le C_0 e^{-\alpha_0 |m - m_n^{\omega}|}$$

for all eigenfunctions ϕ_n^{ω} and suitable m_n^{ω} , then $H_{T^k\omega}$ also has *ULE*. In fact if we let $m_n^{T^k\omega} = m_n^{\omega} + k$, then

$$|\phi_n^{T^k\omega}(m)| = |(\mathbf{U}_k\phi_n^{\omega})(m)| \le C_0 e^{-\alpha_0|m - m_n^{T^k\omega}}$$

for all eigenfunctions $\mathbf{U}_k \phi_n^{\omega}$. Also notice that the constants C_0 and α_0 are the same for H_{ω} and $H_{T^k \omega}$.

Lemma 2.1. If H_{ω} has ULE for ω in a positive μ -measure set S, then H_{ω} has ULE for a.e. $\omega \in \Omega$.

Proof. H_{ω} has ULE in $\bigcup_{k \in \mathbb{Z}^{\gamma}} T^k S$, which is a transition invariant set, so

$$\mu\left(\Omega\backslash\left(\bigcup_{k\in\mathbb{Z}^{\gamma}}T^{k}S\right)\right)=0.$$

Theorem 2.2. If H_{ω} has ULE for a.e. $\omega \in \Omega$, then $\exists \alpha > 0$ independent of ω , such that

$$|\phi_n^{\omega}(m)| \le C_{\omega} e^{-\alpha |m - m_n^{\omega}|}$$

for a.e. $\omega \in \Omega$ and all eigenfunctions ϕ_n^{ω} with suitable m_n^{ω} .

Proof. Let $\bigcup_{j=1}^{\infty} \{\omega \mid |\phi_n^{\omega}(m)| \leq C_{\omega} e^{-\frac{1}{j}|m-m_n^{\omega}|}$, for all eigenfunctions ϕ_n^{ω} and suitable $m_n^{\omega}\} := \bigcup_{j=1}^{\infty} A_j$. A_j is translation invariant. Since $\mu(\bigcup_{j=1}^{\infty} A_j) = 1, \exists j_0$ such that $\mu(A_{j_0}) = 1$.

Now, let's return to the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 2.2 and direct computation we have

$$|(\delta_l, e^{-itH_\omega}\delta_m)| \le C_\omega e^{-\alpha|l-m}$$

for a.e. $\omega.$ Let

$$F(\omega) = \sup_{t \in \mathbb{Q}, \ l,m \in \mathbb{Z}^{\gamma}} |(\delta_l, e^{-itH_{\omega}} \delta_m)| e^{\alpha |l-m|}.$$

 $\mathbf{2}$

Then $F(\omega) < \infty$ a.e. ω . It is also easy to see that $F(\omega)$ is measurable and translation invariant. Therefore, by ergodicity, $F(\omega) = C$ a.e. ω . Hence $|(\delta_l, e^{-itH_\omega}\delta_m)| \leq |\delta_l| + |\delta_$ $Ce^{-\alpha|l-m|}$ a.e. ω . Then on a dense set in $supp(\mu)$,

$$|(\delta_l, e^{-itH_\omega}\delta_m)| \le Ce^{-\alpha|l-m|}$$

By continuity, the inequality holds for any ω in $supp(\mu)$.

Then since $P_{\{E\}}^{\omega} = s - \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{iEs} e^{-iH_{\omega}s} ds$, we have

$$|(\delta_l, P^{\omega}_{\{E\}}\delta_m)| \le Ce^{-\alpha|l-r}$$

for any $E \in \mathbb{R}$. Therefore if we choose \tilde{m}_n^{ω} so that $|\phi_n^{\omega}(\tilde{m}_n^{\omega})| = \sup_m |\phi_n^{\omega}(m)|$, we get

$$|\phi_n^{\omega}(l)|^2 \le |\phi_n^{\omega}(l)| |\phi_n^{\omega}(\tilde{m}_n)| \le C e^{-\alpha |l - \tilde{m}_n^{\omega}|}.$$

Remark 2.3. For the proof of Theorem 1.2', one needs to realize that when T is minimal, $F(\omega)$ being translation invariant implies that $F(\omega)$ is constant in a dense subset of Ω .

3. Generalization

In fact we can extend the result above to a more general case where f(x) is allowed to have discontinuities.

Definition 3.1. We say f has invariant continuity filter in Ω if at every $\omega \in \Omega$, there is a filter F_{ω} , such that any $A_{\omega} \in F_{\omega}$ satisfies the following conditions:

1. $\mu(A_{\omega} \cap B(\omega, \delta)) > 0$, for any $\delta > 0$,

2. $\lim_{\omega_k \in A_\omega, \omega_k \to \omega} f(\omega_k) \to f(\omega),$ 3. $T^n(A_\omega) \in F_{T^n\omega}$, for any $n \in \mathbb{Z}^{\gamma}$.

Example. Let $\Omega = \mathbb{T} = \mathbb{R}/\mathbb{Z}$, and μ be the Lebesgue measure for any $\theta \in \Omega$, $T(\theta) = \theta + \alpha$ where $\alpha \notin \mathbb{Q}$ and $f(x) = \{x\}$. Define $(H_{\theta}u)(n) = u(n+1) + u(n+1)$ $u(n-1) + f(T^n\theta)u(n)$. The reason why we are interested in this model is that ULE has recently been shown for it in [4]. Obviously in this model f is not continuous but it does have continuity invariant filter at every $\theta \in [0, 1]$. In fact, the filter at θ is the set of all intervals with left endpoint θ . Generally speaking, all the right or left continuous function defined on \mathbb{R} with direction preserving T has invariant continuity filter at every point.

Now we have the following theorem:

Theorem 3.2. Assume f is bounded and has invariant continuity filter at every $\omega \in \Omega$. Then if H_{ω} has ULE in a positive μ -measure set, H_{ω} has homogenous ULE in $supp(\mu)$.

As before, we also have:

Theorem 3.2'. Assume f is bounded and has invariant continuity filter at every $\omega \in \Omega$. Then if H_{ω} has ULE at a single ω , H_{ω} has homogenous ULE in Ω .

Proof. Notice that in the proof of Theorem 1.2, we only use the continuity of f in the last step, which means we still have

$$(\delta_l, e^{-itH_\omega}\delta_m) \le Ce^{-\alpha|l-m|}$$

for $\omega \in \Omega_0$, where $\mu(\Omega_0) = 1$.

RUI HAN

Now consider any $\omega_0 \notin \Omega_0$. We know $\mu(A_{\omega_0} \cap B(\omega_0, \frac{1}{k})) > 0$, hence we can choose $\omega_k^{(0)} \in A_{\omega_0} \cap B(\omega_0, \frac{1}{k}), \ \omega_k^{(0)} \in \Omega_0$ and $|f(\omega_k^{(0)}) - f(\omega_0)| < \frac{1}{2^k}$. Then $T^m \omega_k^{(0)} \in T^m A_{\omega_0}$, for any $m \in \mathbb{Z}^{\gamma}$. $T^m \omega_k^{(0)} \to T^m \omega_0$, therefore $f(T^m \omega_k^{(0)}) \to f(T^m \omega_0)$. Hence we can choose a subsequence of $\{\omega_k^{(0)}\}$, say $\{\omega_k^{(m)}\}$, such that

$$|f(T^m\omega_k^{(m)}) - f(T^m\omega_0)| < \frac{1}{2^k}$$

Notice that by the diagonal argument, we can find a sequence $\{\omega_k\}$, satisfying $\omega_k \in \Omega_0$ and $|f(T^j \omega_k) - f(T^j \omega_0)| < \frac{1}{2^k}$ for any $j \in \mathbb{Z}^{\gamma}$ and $k \ge |j|$.

Now, let us show that for fixed l, m, t:

$$(\delta_l, e^{-itH_{\omega_k}}\delta_m) \to (\delta_l, e^{-itH_{\omega_0}}\delta_m).$$

Indeed:
$$\begin{aligned} |(\delta_l, e^{-itH_{\omega_k}} \delta_m) - (\delta_l, e^{-itH_{\omega_0}} \delta_m)| \\ &= |(\delta_l, (e^{-it(H_{\omega_k} - H_{\omega_0})} - 1)e^{-itH_{\omega_0}} \delta_m)| \\ &= |(\delta_l, (e^{-it(H_{\omega_k} - H_{\omega_0})} - 1)\sum_{r=-\infty}^{\infty} a_r \delta_r)| \\ &\leq |a_l|(e^{|t||f(T^l\omega_k) - f(T^l\omega_0)|} - 1) \to 0, \text{ as } k \to \infty. \\ &\text{ Hence } |(\delta_l, e^{-itH_{\omega_0}} \delta_m)| \leq Ce^{-\alpha|l-m|}. \end{aligned}$$

Acknowledgement

The author would like to thank Svetlana Jitomirskaya for her guidance and inspiring discussions on this subject.

References

- David Damanik and Zheng Gan, Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents, J. Funct. Anal. 258 (2010), no. 12, 4010–4025, DOI 10.1016/j.jfa.2010.03.002. MR2609536 (2011b:47091)
- [2] David Damanik and Zheng Gan, Limit-periodic Schrödinger operators with uniformly localized eigenfunctions, J. Anal. Math. 115 (2011), 33–49, DOI 10.1007/s11854-011-0022-y. MR2855032 (2012j:39018)
- [3] Svetlana Ya. Jitomirskaya, Continuous spectrum and uniform localization for ergodic Schrödinger operators, J. Funct. Anal. 145 (1997), no. 2, 312–322, DOI 10.1006/jfan.1996.3019. MR1444085 (98f:39014)
- [4] S. Jitomirskaya and I. Kachkovskiy, In preparation.
- [5] R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), 153–200, DOI 10.1007/BF02787106. MR1428099 (97m:47002)

Department of Mathematics, University of California, Irvine, Irvine, California 92697

E-mail address: rhan2@uci.edu