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UNIFORM LOCALIZATION IS ALWAYS UNIFORM

RUI HAN

(Communicated by Michael Hitrik)

Abstract. In this note we show that if a family of ergodic Schrödinger oper-
ators on l2(Zγ) with continuous potentials have uniformly localized eigenfunc-
tions, then these eigenfunctions must be uniformly localized in a homogeneous
sense.

1. Introduction

Given a topological space Ω, let Ti : Ω → Ω be commuting homeomorphisms, and
let μ be an ergodic Borel measure on Ω. Let f : Ω → R be continuous and define
Vω(n) = f(Tnω) for n ∈ Zγ , where Tn = Tn1

1 . . . T
nγ
γ . Let Hω be the operator on

l2(Zγ),

(Hωu)(n) =
∑

|m−n|=1

u(m) + Vω(n)u(n).

The occurrence of pure point spectrum for the operators {Hω} is called phase
stable if it holds for every ω ∈ Ω.

For a self-adjoint operator H on l2(Zγ), we say that H has uniformly local-
ized eigenfunctions (ULE), if H has a complete set of orthonormal eigenfunctions
{φn}∞n=1, and there are α > 0, C > 0, such that

|φn(m)| ≤ Ce−α|m−mn|

for all eigenfunctions φn and suitable mn. It is known that ULE has a close
connection with phase stability of pure point spectrum. Actually, in paper [3],
Jitomirskaya pointed out that instability of pure point spectrum implies absence
of uniform localization. It is also shown in [5] that if Hω has ULE for ω in a
set of positive μ-measure, then Hω has pure point spectrum for any ω ∈ supp(μ).
The proof of this statement mainly relies on the fact that ULE implies uniform
dynamical localization (UDL), which means if Hω has ULE, then

|(δl, e−itHωδm)| ≤ Cωe
−αω |l−m|

for some constants αω, and Cω that depend on ω. Recently, in [1] and [2], Damanik
and Gan established ULE for a certain model and then proved that for this model,
actually Cω and αω can be chosen to be independent of ω. In this note we will
show that the latter property is always a corollary of ULE.
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2 RUI HAN

First, let us give a new definition.

Definition 1.1. Hω has uniform or homogeneous ULE in a set S means that Hω

has ULE for any ω in S and

|φω
n(m)| ≤ Ce−α|m−mω

n |

with constants α > 0 and C > 0 which do not depend on ω.

Then the main theorems in the note can be stated as follows:

Theorem 1.2. If Hω has ULE for ω in a positive μ-measure set, then Hω has
homogeneous ULE in supp(μ).

Theorem 1.2′. If T is minimal, and Hω has ULE at a single ω, then Hω has
homogenous ULE in Ω.

2. Proof of Theorem 1.2

Let {Uk} be a family of transitions on l2(Zγ) defined by (Uku)(m) := u(m−k).
Clearly, if {φω

n} is a complete set of eigenfunctions ofHω, then {Ukφ
ω
n} is a complete

set of eigenfunctions of HTkω. Also, if Hω has ULE, which means ∃ α0 > 0, C0 > 0
such that

|φω
n(m)| ≤ C0e

−α0|m−mω
n |

for all eigenfunctions φω
n and suitable mω

n , then HTkω also has ULE. In fact if we

let mTkω
n = mω

n + k, then

|φTkω
n (m)| = |(Ukφ

ω
n)(m)| ≤ C0e

−α0|m−mTkω
n |

for all eigenfunctions Ukφ
ω
n . Also notice that the constants C0 and α0 are the same

for Hω and HTkω.

Lemma 2.1. If Hω has ULE for ω in a positive μ-measure set S, then Hω has
ULE for a.e. ω ∈ Ω.

Proof. Hω has ULE in
⋃

k∈Zγ T kS, which is a transition invariant set, so

μ

(
Ω\

( ⋃
k∈Zγ

T kS

))
= 0. �

Theorem 2.2. If Hω has ULE for a.e. ω ∈ Ω, then ∃ α > 0 independent of ω,
such that

|φω
n(m)| ≤ Cωe

−α|m−mω
n |

for a.e. ω ∈ Ω and all eigenfunctions φω
n with suitable mω

n.

Proof. Let
⋃∞

j=1{ω| |φω
n(m)| ≤ Cωe

− 1
j |m−mω

n |, for all eigenfunctions φω
n and suitable

mω
n}:=

⋃∞
j=1 Aj . Aj is translation invariant. Since μ(

⋃∞
j=1 Aj) = 1, ∃ j0 such that

μ(Aj0) = 1. �
Now, let’s return to the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 2.2 and direct computation we have

|(δl, e−itHωδm)| ≤ Cωe
−α|l−m|

for a.e. ω. Let
F (ω) = sup

t∈Q, l,m∈Zγ

|(δl, e−itHωδm)|eα|l−m|.
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Then F (ω) < ∞ a.e. ω. It is also easy to see that F (ω) is measurable and translation
invariant. Therefore, by ergodicity, F (ω) = C a.e. ω. Hence |(δl, e−itHωδm)| ≤
Ce−α|l−m| a.e. ω. Then on a dense set in supp(μ),

|(δl, e−itHωδm)| ≤ Ce−α|l−m|.

By continuity, the inequality holds for any ω in supp(μ).

Then since Pω
{E} = s− limT→∞

1
2T

∫ T

−T
eiEse−iHωsds, we have

|(δl, Pω
{E}δm)| ≤ Ce−α|l−m|

for any E ∈ R. Therefore if we choose m̃ω
n so that |φω

n(m̃
ω
n)| = supm |φω

n(m)|, we
get

|φω
n(l)|2 ≤ |φω

n(l)||φω
n(m̃n)| ≤ Ce−α|l−m̃ω

n |.

�
Remark 2.3. For the proof of Theorem 1.2′, one needs to realize that when T is
minimal, F (ω) being translation invariant implies that F (ω) is constant in a dense
subset of Ω.

3. Generalization

In fact we can extend the result above to a more general case where f(x) is
allowed to have discontinuities.

Definition 3.1. We say f has invariant continuity filter in Ω if at every ω ∈ Ω,
there is a filter Fω, such that any Aω ∈ Fω satisfies the following conditions:

1. μ(Aω ∩B(ω, δ)) > 0, for any δ > 0,
2. limωk∈Aω ,ωk→ω f(ωk) → f(ω),
3. Tn(Aω) ∈ FTnω, for any n ∈ Zγ .

Example. Let Ω = T = R/Z, and μ be the Lebesgue measure for any θ ∈ Ω,
T (θ) = θ + α where α /∈ Q and f(x) = {x}. Define (Hθu)(n) = u(n + 1)+
u(n−1)+f(Tnθ)u(n). The reason why we are interested in this model is that ULE
has recently been shown for it in [4]. Obviously in this model f is not continuous
but it does have continuity invariant filter at every θ ∈ [0, 1]. In fact, the filter at
θ is the set of all intervals with left endpoint θ. Generally speaking, all the right
or left continuous function defined on R with direction preserving T has invariant
continuity filter at every point.

Now we have the following theorem:

Theorem 3.2. Assume f is bounded and has invariant continuity filter at every
ω ∈ Ω. Then if Hω has ULE in a positive μ-measure set, Hω has homogenous
ULE in supp(μ).

As before, we also have:

Theorem 3.2′. Assume f is bounded and has invariant continuity filter at every
ω ∈ Ω. Then if Hω has ULE at a single ω, Hω has homogenous ULE in Ω.

Proof. Notice that in the proof of Theorem 1.2, we only use the continuity of f in
the last step, which means we still have

(δl, e
−itHωδm) ≤ Ce−α|l−m|

for ω ∈ Ω0, where μ(Ω0) = 1.
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Now consider any ω0 /∈ Ω0. We know μ(Aω0
∩B(ω0,

1
k )) > 0, hence we can choose

ω
(0)
k ∈ Aω0

∩ B(ω0,
1
k ), ω

(0)
k ∈ Ω0 and |f(ω(0)

k ) − f(ω0)| < 1
2k
. Then Tmω

(0)
k ∈

TmAω0
, for any m ∈ Zγ . Tmω

(0)
k → Tmω0, therefore f(Tmω

(0)
k ) → f(Tmω0).

Hence we can choose a subsequence of {ω(0)
k }, say {ω(m)

k }, such that

|f(Tmω
(m)
k )− f(Tmω0)| <

1

2k
.

Notice that by the diagonal argument, we can find a sequence {ωk}, satisfying
ωk ∈ Ω0 and |f(T jωk)− f(T jω0)| < 1

2k
for any j ∈ Zγ and k ≥ |j|.

Now, let us show that for fixed l,m, t:

(δl, e
−itHωk δm) → (δl, e

−itHω0 δm).

Indeed: |(δl, e−itHωk δm)− (δl, e
−itHω0 δm)|

= |(δl, (e−it(Hωk
−Hω0

) − 1)e−itHω0 δm)|
= |(δl, (e−it(Hωk

−Hω0
) − 1)

∑∞
r=−∞ arδr)|

≤ |al|(e|t||f(T
lωk)−f(T lω0)| − 1) → 0, as k → ∞.

Hence |(δl, e−itHω0 δm)| ≤ Ce−α|l−m|. �
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