

WEAK TRIANGLE INEQUALITIES FOR WEAK L_1 NORM

ROMAN VERSHYNIN

The weak L_p norm of a random variable X is defined as

$$\|X\|_{p,\infty} = \left(\sup_{t>0} t^p \mathbb{P}\{|X| > t\} \right)^{1/p}, \quad 0 < p < \infty.$$

It is not a norm but equivalent to a norm if $p > 1$. For $p = 1$ there is no equivalent norm, see a simple example in [1] where

$$(1) \quad \left\| \sum_{i=1}^N X_i \right\|_{1,\infty} \sim \log N \quad \text{while all} \quad \|X_i\|_{1,\infty} = 1/N.$$

In this note we discuss two surrogates of triangle inequality for the weak L_1 norm.

Proposition 1. *For any finite sequence of random variables X_i and for any $1 < p < \infty$, one has*

$$\left\| \left(\sum_{i=1}^N |X_i|^p \right)^{1/p} \right\|_{1,\infty} \leq \frac{2p}{p-1} \sum_{i=1}^N \|X_i\|_{1,\infty}.$$

This inequality was proved in [1] for $p = 2$ but the argument there is valid for all $p > 1$. We repeat it below.

Proof. For $M > 0$, consider the truncation $X_{i,M} := X_i \mathbf{1}_{\{|X_i| > M\}}$. Then for $u > 0$ we can estimate the tail as

$$\mathbb{P} \left\{ \left(\sum_{i=1}^N |X_i|^p \right)^{1/p} > u \right\} \leq \mathbb{P} \left\{ \left(\sum_{i=1}^N |X_{i,M}|^p \right)^{1/p} > u \right\} + \sum_{i=1}^N \mathbb{P} \{ |X_i| > M \} =: p_1 + p_2.$$

By Chebyshev's inequality,

$$p_1 \leq \frac{1}{u^p} \mathbb{E} \sum_{i=1}^N |X_{i,M}|^p = \frac{1}{u^p} \sum_{i=1}^N \mathbb{E} |X_{i,M}|^p.$$

The p -th moment can be estimated using the identity $\mathbb{E} Z = \int_0^\infty \mathbb{P}\{Z > t\} dt$, which is valid for any non-negative random variable Z . Since $|X_{i,M}|^p$ is bounded by M^p , it yields

$$\mathbb{E} |X_{i,M}|^p = \int_0^{M^p} \mathbb{P}\{|X_{i,M}|^p > t\} dt \leq \int_0^{M^p} \frac{\|X_{i,M}\|_{1,\infty}}{t^{1/p}} dt \leq \frac{p}{p-1} M^{p-1} \|X_i\|_{1,\infty}.$$

Therefore

$$p_1 \leq \frac{1}{u^p} \frac{p}{p-1} M^{p-1} \sum_{i=1}^N \|X_i\|_{1,\infty}.$$

Next, a bound on p_2 follows from Chebychev's inequality:

$$p_2 \leq \sum_{i=1}^N \frac{1}{M} \|X_i\|_{1,\infty}$$

Thus we have proved that

$$p_1 + p_2 \leq \left(\frac{1}{u^p} \frac{p}{p-1} M^{p-1} + \frac{1}{M} \right) \sum_{i=1}^N \|X_i\|_{1,\infty}.$$

The choice of $M = u$ yields

$$p_1 + p_2 \leq \frac{1}{u} \cdot \frac{2p}{p-1} \sum_{i=1}^N \|X_i\|_{1,\infty}.$$

Since this tail bound is valid for all $u > 0$, the proof is complete. \square

Let us apply Proposition 1 for p satisfying $(p-1)/p = \log N$ and using that $\sum_{i=1}^N X_i \leq e \left(\sum_{i=1}^N |X_i|^p \right)^{1/p}$ for this p , we obtain:

Corollary 2. *For any finite sequence of random variables X_i , one has*

$$\left\| \sum_{i=1}^N X_i \right\|_{1,\infty} \leq 2e \log N \cdot \sum_{i=1}^N \|X_i\|_{1,\infty}.$$

The logarithmic factor is sharp, as can be seen from example (1).

E. Stein and G. Weiss proved a related inequality, see [1].

REFERENCES

- [1] P. Hagelstein, *Weak L^1 norms of random sums*, Proc. Amer. Math. Soc. 133 (2005), 2327–2334