TRY ALL 10 PROBLEMS.

G1. Prove that any group of order $2p$, where p is a prime is solvable. A group G is **solvable** if there is a sequence $\{1\} \leq H_1 \leq \cdots \leq H_n = G$ of subgroups of G where each subgroup H_i is normal in the next subgroup H_{i+1} and the quotient H_{i+1}/H_i is abelian.
G2. Prove that $13^{20} - 1$ is divisible by 33.
G3. Let G be a group of order p^nm, where $p \nmid m$. Let $S \in \text{Syl}_p(G)$. Prove that if S is self-normalizing, that is, if $S = N_G(S)$, then $n_p = m$. (As always n_p denotes the number of Sylow p-subgroups of G.pagination
R4. Let R be a commutative ring with identity and with a unique maximal ideal M. Show that every nonunit $x \in R$ is in M.
R5. Let I be an ideal of a commutative ring R with identity and let

$\text{Nil}(I) = \{ r \in R \mid r^n \in I \text{ for some } n \geq 0 \}$

a) Prove that $\text{Nil}(I)$ is an ideal of R.
b) Prove that $\text{Nil(}\text{Nil}(I)) = \text{Nil}(I)$.

F7. Let F and E be finite fields with $F < E$. Prove that the cardinality of E is an integral power of the cardinality of F, that is, $|E| = |F|^k$ for some integer k.
L8. Let S be a proper subspace of a finite-dimensional vector space V and let $v \in V \setminus S$. Show that there is a linear functional $f \in V^*$ for which $f(v) = 1$ and $f(s) = 0$ for all $s \in S$.
L9. Let V be a finite-dimensional vector space and let $\tau \in \mathcal{L}(V)$. Suppose that the minimal polynomial of τ is $p(x) = x^3 - 2x^2 - x + 2$. Prove that τ is diagonalizable.
L10. Let S be a subspace of a finite-dimensional inner product space V. Prove that each coset in V/S contains exactly one vector that is orthogonal to S.