ALGEBRA

Advisory Exam (September 15, 2010)

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
</tr>
</tbody>
</table>

Student’s name:
Problem G1.

Show that any group of order 185 is commutative.
Problem G2.

Let A, B and C be finitely generated abelian groups such that $A \oplus C \cong B \oplus C$. Show that also $A \cong B$.
Problem G3.

Show that for any integer \(n \geq 1 \) the quotient group \(\mathbb{Q}/\mathbb{Z} \) has a unique subgroup of order \(n \).
Problem R4.

Show that the quotient ring $\mathbb{Z}[i]/\langle 3 \rangle$ is a field with 9 elements while $\mathbb{Z}[i]/\langle 2 \rangle$ is not a field.
Problem R5.

Suppose that R is a commutative ring with identity which has a unique maximal ideal M. Show that its complement $R \setminus M$ is precisely the set of units (i.e. invertible elements) in R.
Find all 4×4 matrices A with real coefficients such that $A^3 = I$, where I is the identity matrix.
Problem L7.

Let V, U, W be finite dimensional vector spaces over \mathbb{C}. Consider an injective linear map $\phi : V \to U$, a surjective linear map $\psi : U \to W$. Assume that the composition $\psi \circ \phi$ is zero and that $\dim U = \dim V + \dim W$. Show that $\ker(\psi) = \text{im}(\phi)$ as subspaces of U.
Problem L8.

Let V be a vector space with inner product (Hermitian or Euclidean) and $N : V \to V$ a normal operator (i.e. commuting with its own adjoint). Show that $\text{Ker}(N) = \text{Ker}(N^*)$.
Problem F9.
Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the subfield of elements which are algebraic over \mathbb{Q}. Prove that the field extension $\mathbb{Q} \subset \overline{\mathbb{Q}}$ has infinite degree.
Problem F10.

Let F be a field such that the multiplicative group F^* is finitely generated. Show that F is finite. (HINT: eliminate the case of characteristic zero by proving that \mathbb{Q}^* is not finitely generated. If F has finite characteristic p and $x \in F^*$ is of infinite multiplicative order then note x cannot be algebraic over the finite subfield $\mathbb{F}_p \subset F$ and consider irreducibles in $\mathbb{F}_p[x]$.)