Comprehensive Exam in Algebra June 2008	NAME	
PLEASE TRY ALL 10 PROBLEMS.		
NAME	_	

G1. Let G be a group and let $G = H \bowtie K$ (where \bowtie is the internal direct sum). Show that if G has the ascending chain condition on normal subgroups, then so does H. Be careful to prove all claims that you make.

NAME		

G2. A subgroup H of a group G is **characteristic** if H is σ -invariant for all automorphisms σ of G. Prove that every subgroup of a cyclic group is characteristic.

NAME			

G3. Show that no group of order $56 = 7 \cdot 2^3$ is simple. *Hint*: count elements.

NAME	

R4. Prove that a finite integral domain R is a field.

NAME	

R5. Prove that in an integral domain R, a prime element is irreducible.

NAME	

F6. a) If F < E is a field extension of finite degree, prove that E is algebraic over F. b) Let F < E be a field extension. If $a, b \in E$ are algebraic over F, show that a + b is also algebraic over F.

NAME	

F7. Is the polynomial $x^6 - 30x^5 + 6x^4 - 18x^3 + 12x^2 - 6x + 12$ irreducible over the rationals? Explain. (No credit for just yes/no)

NAME	

L8. Let V be a finite-dimensional vector space and let T be a linear operator on V. Prove that T is injective if and only if it is surjective.

NAMI	3				

L9. Let X be a 3×3 complex matrix. Find all solutions of the equation $X^2 - X = 0$, up to similarity. Use the Jordan canonical form.

NAME	

L10. Prove that similar matrices A and B have the same minimal polynomial.