Algebra Qualifying Exam, Spring 2007

Student Name:

Do as many problems as you can. Although some partial credits might be given, complete solutions are much preferred.

1 (10 points). Let \mathbf{Q} be the field of rational numbers. Find a field F such that $\text{Gal}(F/\mathbf{Q}) = D_8$, the dihedral group with 8 elements. Prove your answer.

2 (10 points). Let \mathbf{F}_q denote the finite field of q elements. Show that the order of the special linear group $SL_n(\mathbf{F}_q)$ is

$$ q^{n(n-1)/2} \prod_{i=2}^{n} (q^i - 1), $$

and the order of the projective special linear group $PSL_n(\mathbf{F}_q)$ is

$$ \frac{1}{(n,q-1)} q^{n(n-1)/2} \prod_{i=2}^{n} (q^i - 1). $$

3 (5 points). Let p be an odd positive integer. Show that if n is an integer such that p divides $n^2 + 1$, then $p \equiv 1 \pmod{4}$.

4 (15 points). Let M be an 8×8 matrix with entries in \mathbf{Q}, with minimal polynomial $(x^4 + 1)(x + 1)^2$.
 a) What is the characteristic polynomial of M?
 b) What are the trace and determinant of M?
 c) How many conjugacy classes are there of matrices in $\text{GL}_8(\mathbf{Q})$ with this minimal polynomial? Write down one matrix from each conjugacy class.

5 (10 points). Prove that $\mathbf{Z}[\sqrt{-2}]$ is an Euclidean domain with respect to the norm map $N(a + b\sqrt{-2}) = a^2 + 2b^2$.

6 (10 points). Prove that no group of order 105 is simple.

7 (10 points). Let F be a finite field and let K be a finite extension of F. Show that both the norm map and the trace map from K to F are surjective. Is the same statement true if K and F are number fields (finite extensions of \mathbf{Q})?

8 (10 points). Let R be a commutative ring with identity. Let A and B be $n \times n$ square matrices over R.
 a) Assume either A or B is invertible. Show that the characteristic polynomials of AB and BA are equal.
 b) For any A and B, not necessarily invertible, show that the characteristic polynomials of AB and BA are also equal.

9 (10 points). Let G be a finite cyclic p-group and let $\rho : G \rightarrow \text{Aut}(V)$ be a representation on a finite dimensional vector space V over a field of characteristic p. Assume that ρ is irreducible. Prove that ρ is trivial, i.e., G acts trivially on V.

10 (10 points). Let n be a positive integer. Prove that the polynomial $x^{4n} + 8x + 13$ is irreducible over \mathbf{Q}.