Name:

Algebra Qualifying Exam, Spring 2008

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
ALGEBRA QUALIFYING EXAM
June 11, 2008

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers. Let \mathbb{R} denote the real numbers.

1. Compute the following.

 (a) Suppose G is a cyclic group of order 20. How many automorphisms does G have?

 (b) How many homomorphisms are there from \mathbb{Z} to the symmetric group S_n on n letters?

 (c) If G is a group, and $g \in G$ is an element of order 25, what is the order of g^{10}?

2. Show that if G is a group of order $2pq$, where p and q are (not necessarily distinct) odd primes, then G is not simple.

3. Factor the polynomial $x^4 + 1 \in \mathbb{F}[x]$ and find the splitting field over \mathbb{F} if the ground field \mathbb{F} is:

 (a) \mathbb{Q}

 (b) \mathbb{F}_2

 (c) \mathbb{R}

4. Let $R = \mathbb{Z}[X, Y]$, the ring of polynomials over \mathbb{Z} in the variables X, Y. For each of the following ideals, determine whether the ideal is prime and whether it is maximal. In each case give a short justification.

 (a) (X, Y)

 (b) $(3X, Y)$

 (c) $(X^2 + 1, Y)$

 (d) $(5, X^2 + 1, Y)$

5. Let K be the splitting field of $X^{40} - 1$ over \mathbb{Q}. Determine the number of fields F such that $\mathbb{Q} \subseteq F \subseteq K$.

6. Suppose G is a finite group and $H \neq G$ is a subgroup containing every subgroup $K \neq G$ of G.

 (a) Prove that the order of G is a prime power.

 (b) Prove that if G is abelian then G is cyclic.

7. Find all prime ideals in the ring $\mathbb{Z} \times \mathbb{Z}$.

8. Let S be the set of all 6×6 matrices A with entries in \mathbb{Q} such that the characteristic polynomial of A is $x^6 - x^2$ and the minimal polynomial of A is $x^3 - x$.

 (a) If $A, B \in S$, show that A and B are similar.

 (b) Give an example of an element of S.

 (c) If $A \in S$, what is the dimension of the null space of $(A^2 + 1)^2$?

9. Show that the quaternion group Q_8 of order 8 is not a semidirect product of two proper subgroups.

10. Suppose F is an algebraically closed field. Find all monic separable polynomials $f(x) \in F[x]$ such that the set of zeros of $f(x)$ is closed under multiplication.