Complex Analysis

Qualifying Exam

Thursday, September 18, 2008 — 10:00 am - 12:30 pm, Rowland Hall 306

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student’s name:
Problem 1.

Compute the area of the image of the unit disc $D = \{z \mid |z| < 1\}$ under the map $f(z) = z + \frac{z^2}{2}$.
Problem 2.

Find all entire functions $f(z)$ that satisfy

\[f''\left(\frac{1}{n}\right) = 4f\left(\frac{1}{n}\right) \]

for all $n \in \mathbb{N}$.
Problem 3.

Let \(L \subset \mathbb{C} \) be the line \(L = \{ z = x + iy \mid x = y \} \). Assume that \(f : \mathbb{C} \to \mathbb{C} \) is an entire function such that for any \(z \in L \) we have \(f(z) \in L \). Assume that \(f(1) = 0 \). Prove that \(f(i) = 0 \).
Problem 4.

Find the largest disk centered at 1 in which the Taylor series for

\[\frac{1}{1 + z^2} = \sum a_k (z - 1)^k \]

will converge. (Hint: you do not actually have to find the coefficients \(a_k\) nor the full series to answer this question.)
Problem 5.

Evaluate the integral

\[
\int_{0}^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx
\]
Problem 6.

Suppose a function \(f : D \rightarrow D \), where \(D = \{ |z| < 1 \} \) is the unit disc, is holomorphic and \(f(0) = \alpha \neq 0 \). Show that \(f \) cannot have a zero in the open disk \(D(0, |\alpha|) = \{ |z| < |\alpha| \} \).
Problem 7.

Let u be a harmonic function on \mathbb{R}^2 that does not take zero value (i.e. $u(x) \neq 0 \ \forall x \in \mathbb{R}^2$). Show that u is constant.
Problem 8.

How many zeros does the function \(f(z) = 14z^{100} - 5e^z \) have in the unit disc? What are the multiplicities of zeros?