Fully justify all your answers. (You may state and use standard big theo-
rems.) Do as many problems as you can, as completely as you can. The
exam is two and one-half hours.

Notation: Let \mathbb{Z}, \mathbb{Q}, and \mathbb{C} denote the rings of integers, rational numbers,
and complex numbers, respectively. If R is a ring and n is a positive integer,
then $\text{GL}_n(R)$ is the group of invertible $n \times n$ matrices with entries in R.

(5 points) 1. Let \mathbb{C}^* be the group of non-zero complex numbers under multiplication.
Let H_n be the subgroup of n-th roots of unity. Show that the quotient
group \mathbb{C}^*/H_n is isomorphic to \mathbb{C}^* by giving an explicit isomorphism.

(5 points) 2. Suppose G is a group of order n and F is a field. Prove that G is
isomorphic to a subgroup of $\text{GL}_n(F)$.

(6 points) 3. Let \mathbb{F}_p denote the finite field of p elements. Decide if each of the
following rings is a field.
(a) $\mathbb{F}_2[x]/(x^3 + x + 1)$
(b) $\mathbb{F}_3[x]/(x^3 + x + 1)$

(6 points) 4. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$.
(a) Show that R is not a UFD.
(b) Factor the principal ideal (6) into a product of prime ideals in the
ring R.

(12 points) 5. Classify the groups of order 12, up to isomorphism.

(10 points) 6. Let M be a matrix over \mathbb{Q} with characteristic polynomial $(x + 1)^2x^4$
and minimal polynomial $(x + 1)^2x^2$.
(a) Find $\text{trace}(M)$ and $\text{det}(M)$.
(b) How many distinct conjugacy classes of such matrices are there in
$\text{GL}_6(\mathbb{Q})$? Explain.
(c) Write down a 6×6 matrix with entries in \mathbb{Q} having the above
characteristic and minimal polynomials.

(10 points) 7. Suppose p is a prime number and L/K is a field extension of degree p.
(a) Prove that if $K = \mathbb{Q}$, then L/K is separable.
(b) Prove that if $K = \mathbb{F}_p$, then L/K is separable.
(c) Give an example of a field extension L/K of degree p that is not
separable.
8. Let K be the splitting field over \mathbb{Q} of $x^8 - 1$.

(a) Find $[K : \mathbb{Q}]$.

(b) Describe the Galois group $G = \text{Gal}(K/\mathbb{Q})$, both as an abstract group and as a set of automorphisms.

(c) Find explicitly all subgroups of G and the corresponding subfields of K under the Galois correspondence.

9. Suppose $f(x) \in \mathbb{Z}[x]$ is a polynomial of degree 5. Consider the following statements.

(i) f has no roots in \mathbb{Q},

(ii) $f \equiv g_2g_3 \pmod{11}$ where $g_2, g_3 \in (\mathbb{Z}/11\mathbb{Z})[x]$ are irreducible polynomials of degrees 2 and 3, respectively,

(iii) $f \equiv h_1h_4 \pmod{17}$ where $h_1, h_4 \in (\mathbb{Z}/17\mathbb{Z})[x]$ are irreducible polynomials of degrees 1 and 4, respectively.

For each of the following assertions, either prove it is true or give a counterexample to show that it is false.

(a) If (i) holds then f is irreducible in $\mathbb{Q}[x]$.

(b) If (ii) holds then f is irreducible in $\mathbb{Q}[x]$.

(c) If (iii) holds then f is irreducible in $\mathbb{Q}[x]$.

(d) If both (i) and (ii) hold then f is irreducible in $\mathbb{Q}[x]$.

(e) If both (i) and (iii) hold then f is irreducible in $\mathbb{Q}[x]$.

(f) If both (ii) and (iii) hold then f is irreducible in $\mathbb{Q}[x]$.

10. Determine whether each of the following statements is true or false, and justify your answer with a proof or counterexample (justify your counterexample).

(a) The groups $\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ are isomorphic.

(b) The group of units in $\mathbb{Z}/12\mathbb{Z}$ is isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

(c) Every UFD is a PID.

(d) For every commutative ring R, every subring of R is an ideal of R.

(e) For every commutative ring R, every ideal of R is a subring of R.

(f) For every commutative ring R with unity, every prime ideal of R is a maximal ideal of R.

2