(1) Short Answer:
 (1a) (2 points) Define “prime ideal”:
 (1b) (2 points) Define “Sylow p-subgroup”:
 (1c) (3 points) Give an example of a unique factorization domain that is not a principal ideal domain.
 (1d) (3 points) Give an example of a commutative ring \(R \) with identity, and a prime ideal \(M \) of \(R \) that is not a maximal ideal of \(R \).

(2) (10 points) Let \(L \) be the splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \).
 (a) Find \([L : \mathbb{Q}]\).
 (b) Describe the Galois group \(\text{Gal}(L/\mathbb{Q}) \), both as an abstract group and as a set of automorphisms.
 (c) Find explicitly all subgroups of \(\text{Gal}(L/\mathbb{Q}) \) and the corresponding subfields of \(L \) under the Galois correspondence.

(3) (10 points) Suppose \(n \) is a positive integer, and suppose \(A \) and \(B \) are two matrices in \(M_{n \times n}(\mathbb{C}) \) such that \(AB = BA \). Prove that \(A \) and \(B \) have a common eigenvector.

(4) (10 points) Suppose \(G \) is a group and \(H \) is a finite normal subgroup of \(G \). If \(G/H \) has an element of order \(n \), prove that \(G \) has an element of order \(n \).

(5) (10 points) Let \(C \) denote the center of \(GL_2(\mathbb{F}_3) \) and let \(PGL_2(\mathbb{F}_3) = GL_2(\mathbb{F}_3)/C \).
 (a) Prove that \(C = \{ \pm I \} \) where \(I \) is the identity matrix.
 (b) Prove that \(PGL_2(\mathbb{F}_3) \simeq S_4 \).

(6) (10 points) Describe the quotient ring \(\mathbb{R}[x]/(x^2 + ax + b) \) in terms of \(a, b \in \mathbb{R} \).

(7) (10 points) Let \(G \) be a finite group and suppose that \(p^n \) divides \(|G| \), where \(p \) is a prime and \(n \) is a positive integer. Prove that \(G \) has a subgroup of order \(p^n \). (You are allowed to use Sylow theorems without proving them, here.)

(8) (10 points) Suppose that \(H \) and \(K \) are subgroups of a group \(G \), and suppose that \(H \) and \(K \) have finite index in \(G \). Show that the intersection \(H \cap K \) also has finite index in \(G \).

(9) (10 points) Describe the conjugacy classes of \(GL_2(\mathbb{C}) \).

(10) (10 points) Suppose that \(p \) is a prime and \(M \) is an \(\mathbb{F}_p[X] \)-module. Suppose that \((X - 1)^3 M = 0 \) and \(|(X - 1)^2 M| = p \) and \(|(X - 1) M| = p^3 \) and \(|M| = p^7 \). Determine \(M \) as an \(\mathbb{F}_p[X] \)-module, up to isomorphism.