Convex Optimization in Image Processing

Ernie Esser

5-5-2010
Inverse Problems

Let f be some given measurements of an image h

Goal: Find h given f and knowledge of the kinds of measurements taken

Some Examples:

- **Denoising:** $f = h + \text{noise}$
- **Deblurring:** $f = \text{blurred } h + \text{noise}$
- **Super Resolution:** $f = \text{low resolution } h + \text{noise}$
Variational Models

Model the problem by defining a function $F(u)$ on images u such that

- $F(u)$ is large when u is a poor solution
- $F(u)$ is small when u is a good solution

Data Fidelity: $F(u)$ should be smaller when u is consistent with the measurements f

Regularization: Data fidelity is usually not enough by itself. To make the problem well posed, add an assumption about u:

- smooth u
- piecewise constant u
- sparse u, etc...

$F(u)$ should be smaller when the assumption is better satisfied
Optimization

Represent images as real $M \times N$ matrices or as vectors in \mathbb{R}^{MN}.

Find $u^{*} \in \mathbb{R}^{MN}$ that minimizes $F(u)$

Calculus Approach: Solve $\nabla F(u^{*}) = 0$

Iterative Approach: Find $u^{k} \rightarrow u^{*} \quad k = 1, 2, 3, ...$

Issues:

- linear versus nonlinear
- differentiability
- number of variables
- constraints on u
- local versus global minima
- convex versus nonconvex
Convexity

In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.

- R. T. Rockafellar

\[F((1 - s)u_1 + su_2) \leq (1 - s)F(u_1) + sF(u_2) \quad \text{for all } u_1, u_2 \]
\[0 \leq s \leq 1 \]
Local Min versus Global Min

If F is convex, Local Minimum \Rightarrow Global Minimum

Smooth, Nonconvex

Convex, Nonsmooth

Steepest descent, "go downhill", finds local min

Proximal point method finds global min

Proximal point method diagram from Bertsekas and Tsitsiklis
Solving Convex Problems

- There are efficient algorithms for convex optimization
- Image processing problems modeled as convex optimization problems can be reliably solved

Deblurring Example: $F(u)$ was defined to be a convex function that encourages data fidelity and prefers piecewise constant u

Original image Blurry/Noisy Recovered

(This was solved using an iterative method that is a generalization of the proximal point method.)
Nonconvex Problems

- Nonconvex problems are much harder in general

Example: Blind Deblurring (don’t know how image was blurred)
Example: Registration

Want to align h_1 and h_2

$$F(v) = \int (h_1(x+v(x)) - h_2(x))^2 \, dx$$

$h_1(x)$ and $h_2(x)$

$F(v)$ in the case when $v(x) = \tau$

(translation)
Convex Approximation

- Approaches for nonconvex problems often require convex optimization for subproblems
- Sometimes can approximate a nonconvex model by a convex one

Convex image registration example:

The good: based on convex model, so can find global minimum

The bad: slow to compute minimizer due to many extra variables (had to essentially double dimensionality of problem to make it convex)